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UNIVERSITY OF TORONTO showing the architecture

e coupling and cohesion
« uml package diagrams
 software architecture styles
— layered architectures
— pipe-&-filter
— object-oriented architecture
— implicit invocation

— repositories
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 architectural building blocks

+ connector + ‘

module module
e a good architecture:

— minimizes coupling between modules
e goal: modules don’t need to know much about one another to interact

* low coupling makes future changes easier

— maximizes the cohesion of each module
e goal: the contents of each module are strongluy inter-related
* high cohesion means the subcomponents really do belong together

s
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Conway'’s law

“The structure of a software system reflects
the structure of the organization that built it”
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People
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« a software architecture defines:
— the components of the software system
— how the components use each others functionality and data
— how control is managed between the components

e an example: client-server

— servers provide some kind of service; clients request and use
the service(s)

— reduced coupling: servers don’t need to know what clients
are out there

method
invocation

method
invocation

method
invocation
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« we need to represent our architectures

— uml elements can be grouped together in
packages — elements may be:

» other packages (representing subsystems/
modules)

e classes

* models (ex. use case models, interaction
diagrams, statechart diagrams, etc.)

— each element of a uml model is owned by a
single package
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« criteria for decomposing a system into
packages:
— different owners

* who is responsible for working on which
diagrams

— different applications
* each problem has its own obvious partitions

— clusters of classes with strong cohesion

e ex. course, course description, instructor,
student, ...

— or, use an architectural pattern to help find a
suitable decomposition
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util util
: pate Date
util
named package package with list package containing
of contained classes a class diagram
java
java::util util
Dt Date java::util::Date
package with package with

qualified name nested packages fully qualified name
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control

Button <<interface>>
"""""" > OnOff

turnOn()
Check box| __.--- 7 turnOff()
il isOn()

Furnace::Heater Lighting:Light
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or, use component diagrams
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«client» «peer
Sub-system A Sub-system C
: A
% VA
«servemn «peern
Sub-system B Sub-system D

The server sub-system does

not depend on the client sub-system
and is not affected by changes

to the client’s interface.

Each peer sub-system depends on
the other and each is affected by
changes in the other s interface.
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or, to show the interfaces...

|
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Source: Adapted from Shaw & Garlan 1996, p25. See also van Vitet, 1999, p281

 examples:
— operating systems

users

utilities
— communications protpcols

 Interesting properties:
— support increasing levels of abstraction during design
— support enhancement (add functionality) and re-use
— can define standard layer interfaces

» disadvantages:
— may not be able to identify clean layers
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* closed architecture Layer N
— each layer only uses services of the * Layer N-1

layer immediately below : :
— minimizes dependencies between i e * '
layers & reduces impact of change Layer 1

e open architecture

— alayer can use services from any lower
layer

— more compact code, as services of
lower layers can be access directly

— breaks encapsulation of layers, so
increases dependences between layers
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2 |QYErS s— Application (client)

L Database (server)
— application layer

— database layer
Presentation layer (user interface)

— ex. simple client-server
/ Business Logic
3 layers

Database
— separate out business logic

* makes Ul & DB layers modifiable | Presentation layer (user interface)

4 layers e Applications

— separate application from domain Domain Entities
* boundary classes in presentation Database
layer
* control classes in application layer Ul uI2 uI3 U4
App3 | App4d

* entity classes in dow Appl | App2
partitioned 4 Iayer Domain Entities

— identify separate applications Database
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8] e B ]
fi
ilter O) > filter O) P {J_@ —=
pipe pipe > filter O
: pipe
pipe
2 fiter ™ —O)- filter =~ —O)—
pipe pipe
 examples

— unix shell scripts

— compilers

 lexical analysis -> parsing -> semantic analysis -> optimization
(optional) -> code generation

— signal processing
* Interesting properties

— filters don’t need to know anything about what they are
connected to

— filters may be able to be implemented in parallel
— behaviour of the system is a composition of behaviour of the filters

» specialized analysis, such as deadlock and throughput, are possible
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method
invocation

—

method
invocation

method
invocation

e examples
— abstract data types
* interesting properties

— data hiding (internal representation not visible to clients)
— decompose into set of interacting agents
— multi-threaded or single thread

« disadvantages

— objects must know the identify of objects they interact with
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e examples

— GUI

event

agents)

announce

isten for
event

broadcast

announce
event event

— debugging systems (listening for breakpoints)
— DBMS checking R, firing triggers

— publish/subscribe

* Interesting properties
— announcers of events don’t need to know who will handle the

— supports re-use and evolution of systems (easy to add new

« disadvantages
— components have not control over ordering of computations
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blackboard
(shared
e examples cata)
— databases

— blackboard expert systems
— programming environments

 Interesting properties
— can choose where control lies (agents, blackboard, both)
— reduce need to duplicate complex data

« disadvantages
— bottleneck
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0 o
= opaga?e propagate :
acces access

1 S 1 S

= g s B 5] '3"

. = o 0 =

o o
update o o update
e properties:

— one central model, many views (viewers)

— each view has an associated controller

— the controller handles updates from the user of the
view

— changes to the model are propagated to all views




Y The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

LU

X UNIVERSITY OF TORONTO summary

* avoid unnecessary coupling & cohesion

* if alayered approach, what are the layers?
what goes in each

— following a pattern like MVC, MVP?

 modularize for reusability (well designed public
interface)

 uml diagrams for discussing architecture
— adherence to uml syntax is not the point

— clearly communicating the architecture is the
point




The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering
| | |

UNIVERSITY OF TORONTO summary (2)

"I/ semble gue la perfection soit atteinte non quand il
n'y a plus rien a ajouter, mais quand il n'y a plus rien a
retrancher.” — Antoine de Saint Exupéry, Terre des
Hommes, 1939

(my) translation: “perfection is finally attained not
when there is no longer anything to add, but when
there is no longer anything to take away"
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 uml books

UML Symzax and Usage M Symtax el L

Pockwt Il’lfv"'l'!h v




