% The Edward S. Rogers Sr. Department
k72 of Electrical & Computer Engineering
X UNIVERSITY OF TORONTO

software
architecture

#% The Edward S. Rogers Sr. Department

UNIVERSITY OF TORONTO showing the architecture

e coupling and cohesion
« uml package diagrams
 software architecture styles
— layered architectures
— pipe-&-filter
— object-oriented architecture
— implicit invocation

— repositories

% The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO coupling & cohesion

 architectural building blocks

+ connector + ‘

module module
e a good architecture:

— minimizes coupling between modules
e goal: modules don’t need to know much about one another to interact

* low coupling makes future changes easier

— maximizes the cohesion of each module
e goal: the contents of each module are strongluy inter-related
* high cohesion means the subcomponents really do belong together

s

$% The Edward S. Rogers Sr. Department

Conway'’s law

“The structure of a software system reflects
the structure of the organization that built it”

§% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

%) unTVERSITY OF TorRONTO SOCiO-technical congruence

People

§% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

%7 un1vERsITY OF TorONTO SOCIO-technical congruence (2)

People

A\ ~ /

Modules

2

S

{ \'n 10
6

The Edward S. Rogers Sr. Department
| of Electrical & Computer Engineering

UNIVERSITY OF TORONTO SOfl’ ware architecture

« a software architecture defines:
— the components of the software system
— how the components use each others functionality and data
— how control is managed between the components

e an example: client-server

— servers provide some kind of service; clients request and use
the service(s)

— reduced coupling: servers don’t need to know what clients
are out there

method
invocation

method
invocation

method
invocation

#% The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

le: 3-layer architecture

%J UNIVERSITY OF TORONTO €Xxamp

Presentation Layer

==
—J]ava |Application
""""" Views
awt S L
Application Logic "~
l e l
Control PR N Business
Objects Logic

Storage Layer .~

] v |
Query -----""“I """" 7 File
Engine ™ Managemt

Y The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

LU L]

%) UNIVERSITY OF TORONTO uml packages

« we need to represent our architectures

— uml elements can be grouped together in
packages — elements may be:

» other packages (representing subsystems/
modules)

e classes

* models (ex. use case models, interaction
diagrams, statechart diagrams, etc.)

— each element of a uml model is owned by a
single package

Y The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

X) UNIVERSITY OF TORONTO uml packages (2)

« criteria for decomposing a system into
packages:
— different owners

* who is responsible for working on which
diagrams

— different applications
* each problem has its own obvious partitions

— clusters of classes with strong cohesion

e ex. course, course description, instructor,
student, ...

— or, use an architectural pattern to help find a
suitable decomposition

The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

®7 UNIVERSITY OF TORONTO package notation
util util
: pate Date
util
named package package with list package containing
of contained classes a class diagram
java
java::util util
Dt Date java::util::Date
package with package with

qualified name nested packages fully qualified name

The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

, UNIVERSITY OF TORONTO towards component-based design

control

Button <<interface>>
"""""" > OnOff

turnOn()
Check box| __.--- 7 turnOff()
il isOn()

Furnace::Heater Lighting:Light

g% The Edward S. Rogers Sr. Department

o of Electrical & Computer Engineering
& UNIVERSITY OF TORONTO

or, use component diagrams

Till

g]

sales

essage
©

-

message
queue

(|

Sales Server = |
t ti = ti =]
~fransaction e accounting
> processor © driver
3]

accounting
system

The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

.ng, universiTY oF ToronTo UML v1 component diagram

DataAccess
Facilities
Fw"ﬁ":zE §\\ ~
4 ~
& L St Encryption
- pe L \ ~ Security
g 7 :
Seminar - DataAccess NS Rties Co <<infrastructure>>
Management (7 Student e —— = ——
s<application>>: |" Student ~ \ S
N ™~ No ot
N / 57 i 1 /\ /
\\ R S . p-Y - b4
?ée ~ \
\\ 5 N Seminar - 4 . e S A\ Persistence
/ > =L - ; <<infrastructure>>
i /s"'“"ﬁ / Bﬂsﬁ?&%—;ﬁ
YRR 1 /\/ 4 e o \
75 e \ /< - \
Student 22" DataAckess s
Administration £ Schedule - |
<<application>> — — — _Schedule l
University DB _(gJoBc

! <<database>>

g% The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

% universiTy o Toronto UML v2 component diagram

DataAccess g:]
O Facilities
Faciliti
o aeso Encryption
= O—
= i
- Security
Seminar gl - DataAccess @ Access Control | <<infrastructure=>
Management § O— Student S
2 \
<<]>> s T —~—Stude
N 2
N s =
B
% 2]
a Damaks&o— Seminar a Persistence
Student . ersistence | <<jnfrastructure>>
Administration jp— — — -ée mgo—‘ - _O— \
<<UI>> \ | \
<<eomponent>> < | \
DaMw%_ <<requires>>
Schedule
Schedule \
o— gl

University DB
<<database>> JDBC

g% The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO avoid dependency cycles
«client» «peer
Sub-system A Sub-system C
: A
% VA
«servemn «peern
Sub-system B Sub-system D

The server sub-system does

not depend on the client sub-system
and is not affected by changes

to the client’s interface.

Each peer sub-system depends on
the other and each is affected by
changes in the other s interface.

g% The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

m!n UNIVERSITY OF TORONTO architectural patterns

|
Presentation Layer Package

, ‘Application\
= t,f' Windows

E.g. 3 layer Java AWT
architecture:
- \“\]
Presentation .. Application Logic Layer Package
Layer R s
T vy Control ‘
Application Objects 1,

Logic Layer |
Storage % Business
L Objects
ayer o

-
-
-
l -
-

Storage Layer Package
1

-
-
-
-
-
-
-
-
-
-
-
-
-
o
-
-

_______ Objectto ,.
JOBC < Relational =

~

AN 1

! Java SQL

g% The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering
%) UNIVERSITY OF TORONTO

or, to show the interfaces...

|

Presentation Layer Package

‘Applicati?\
,-~| Windows
E.g. 3 layer Java AWT
architecture:
_]
Presentation fO\ Application Logic Layer Package
Layer
Application ggjnet(r:?
Logic Layer .
— Business
Storage % Objects
Layer
|
Storage Layer Package \
1
— 2] T
JDBC K------1 Object to ?
Relational
\\\‘ —

~

y Java SQL

The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

®J UNIVERSITY OF TORONTO layered systems

Source: Adapted from Shaw & Garlan 1996, p25. See also van Vitet, 1999, p281

 examples:
— operating systems

users

utilities
— communications protpcols

 Interesting properties:
— support increasing levels of abstraction during design
— support enhancement (add functionality) and re-use
— can define standard layer interfaces

» disadvantages:
— may not be able to identify clean layers

The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

&7 un1vERSITY OF TorRONTO — Open Vs. closed layered arch.

* closed architecture Layer N
— each layer only uses services of the * Layer N-1

layer immediately below : :
— minimizes dependencies between i e * '
layers & reduces impact of change Layer 1

e open architecture

— alayer can use services from any lower
layer

— more compact code, as services of
lower layers can be access directly

— breaks encapsulation of layers, so
increases dependences between layers

#% The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO how many Iayer s?

2 |QYErS s— Application (client)

L Database (server)
— application layer

— database layer
Presentation layer (user interface)

— ex. simple client-server
/ Business Logic
3 layers

Database
— separate out business logic

* makes Ul & DB layers modifiable | Presentation layer (user interface)

4 layers e Applications

— separate application from domain Domain Entities
* boundary classes in presentation Database
layer
* control classes in application layer Ul uI2 uI3 U4
App3 | App4d

* entity classes in dow Appl | App2
partitioned 4 Iayer Domain Entities

— identify separate applications Database

The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

&Y UNIVERSITY OF TORONTO pipe & filter
8] e B]
fi
ilter O) > filter O) P {J_@ —=
pipe pipe > filter O
: pipe
pipe
2 fiter ™ —O)- filter =~ —O)—
pipe pipe
 examples

— unix shell scripts

— compilers

 lexical analysis -> parsing -> semantic analysis -> optimization
(optional) -> code generation

— signal processing
* Interesting properties

— filters don’t need to know anything about what they are
connected to

— filters may be able to be implemented in parallel
— behaviour of the system is a composition of behaviour of the filters

» specialized analysis, such as deadlock and throughput, are possible

The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

) universiTY oF ToronTo Object oriented architectures

method
invocation

—

method
invocation

method
invocation

e examples
— abstract data types
* interesting properties

— data hiding (internal representation not visible to clients)
— decompose into set of interacting agents
— multi-threaded or single thread

« disadvantages

— objects must know the identify of objects they interact with

The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

&Y unIvERSITY OF ToRONTO event based (implicit invocation)

e examples

— GUI

event

agents)

announce

isten for
event

broadcast

announce
event event

— debugging systems (listening for breakpoints)
— DBMS checking R, firing triggers

— publish/subscribe

* Interesting properties
— announcers of events don’t need to know who will handle the

— supports re-use and evolution of systems (easy to add new

« disadvantages
— components have not control over ordering of computations

The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

®J UNIVERSITY OF TORONTO repositories

blackboard
(shared
e examples cata)
— databases

— blackboard expert systems
— programming environments

 Interesting properties
— can choose where control lies (agents, blackboard, both)
— reduce need to duplicate complex data

« disadvantages
— bottleneck

The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

UNIVERSITY OF TORONTO model-view-controller

0 o
= opaga?e propagate :
acces access

1 S 1 S

= g s B 5] '3"

. = o 0 =

o o
update o o update
e properties:

— one central model, many views (viewers)

— each view has an associated controller

— the controller handles updates from the user of the
view

— changes to the model are propagated to all views

Y The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

LU

X UNIVERSITY OF TORONTO summary

* avoid unnecessary coupling & cohesion

* if alayered approach, what are the layers?
what goes in each

— following a pattern like MVC, MVP?

 modularize for reusability (well designed public
interface)

 uml diagrams for discussing architecture
— adherence to uml syntax is not the point

— clearly communicating the architecture is the
point

The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering
| | |

UNIVERSITY OF TORONTO summary (2)

"I/ semble gue la perfection soit atteinte non quand il
n'y a plus rien a ajouter, mais quand il n'y a plus rien a
retrancher.” — Antoine de Saint Exupéry, Terre des
Hommes, 1939

(my) translation: “perfection is finally attained not
when there is no longer anything to add, but when
there is no longer anything to take away"

g% The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

UNIVERSITY OF TORONTO summary (3)

 uml books

UML Symzax and Usage M Symtax el L

Pockwt Il’lfv"'l'!h v

