

more uml: sequence & use case diagrams

as a sketch:

- very selective informal and dynamic
- forward engineering: describe some concept you need to implement
- reverse engineering: explain how some part of a program works

as a blueprint:

- emphasis on completeness
- forward engineering: model as a detailed spec for a programmer
- reverse engineering: model as a code browser
- round-trip: tools provide both forward & reverse engineering to move back and forth between design and code

- as a programming language:
 - uml models are automatically compiled into working code
 - executable uml:

https://en.wikipedia.org/wiki/Executable_UML

- requires sophisticated tools
- the model <u>is</u> the code

package decomposition

Source: from Egyed "Automated Abstraction of Class Diagrams, TSE 2002

class abstraction

finding dependencies

things to model

- structure of the code
 - code dependencies
 - components and couplings
- behaviour of the code
 - execution traces
 - state machine models of complex objects
- function of the code
 - what function(s) does it provide to the user?

things to model

- structure of the code
 - code dependencies
 - components and couplings
- behaviour of the code
 - execution traces
 - state macnine models of complex objects
- function of the code
 - what function(s) does it provide to the user?

sequence diagrams

design choices

object creation and deletion

interaction frames

interaction frames (2)

Operator	Meaning
alt	Alternative; only the frame whose guard is true will execute
opt	Optional; only executes if the guard is true
par	Parallel; frames execute in parallel
loop	Frame executes multiple times, guard indicates how many
region	Critical region; only one thread can execute this frame at a time
neg	Negative; frame shows an invalid interaction
ref	Reference; refers to a sequence shown on another diagram
sd	Sequence Diagram; used to surround the whole diagram (optional)

when to use sequence diagrams

- comparing design options
 - shows how objects collaborate to carry out a task
 - graphical form shows alternative behaviours
- assessing bottlenecks
 - ex. an object through which many messages pass
- explaining design patterns
 - mostly an academic exercise (my opinion)
- elaborating use cases
 - shows how user expects to interact with system
 - shows how user interface operates

modeling a design pattern

- ex. observer pattern
 - one-to-many dependency, maintaining consistency
 - subject pushes updates to observers

observer pattern sequence diagram

sequence diag. - style points

spatial layout

- left-to-right ordering of "messages"
- proactive "actors" on left, reactive on right

readability

- keep as simple as possible
- ok to omit <u>obvious</u> return values
- ok to omit object destruction

usage

focus on critical interactions (part of keep it simple)

consistency

- class names consistent with class diagrams
- message routes consistent with class associations

use case diagrams

use case driven design

- user stories in agile development
- introducing uml into the software process
- domain models
- use cases

refresher – uml notations

what do users want?

user stories

- used in XP, scrum, etc.
- identify the user (role)who wants it

(UI) storyboards

- sketch of how a user will do a task
- shows interactions at each step
- used in UI design

use cases

- sets of user features
- uml diagram shows interrelationships

tracking the stories

example use case diagram

relationships between use cases

<<extends>> one use case adds behaviour to a base case

- used to model a part of a use case that the user may see as optional system behaviour
- also models a separate sub-class which is executed conditionally

<<use><<use><<use><<use><<use></use></use></use></use></use>

- used to avoid describing the same flow of events several times
- puts common behaviour in a use case of its own

using generalizations

actor classes

- identify classes of actor
 - where several actors belong to a single class
 - some use cases are needed by all members in the class
 - other use cases are only needed by some members in the class
- actors inherit use cases from the class

use case classes

 sometimes useful to identify a generalization of several use cases

describing use cases

for each use case:

- a "flow of events" document, written from actor's p.o.v.
- describes what system must provide to actor when use case is executed

typical contents

- how the use case starts & ends
- normal flow of events
- alternate & exceptional (separate) flow of events

describing use cases (2)

- documentation style
 - choices on how to elaborate the use case:
 - english language description
 - activity diagrams good for business process
 - collaboration diagrams good for high-level design
 - sequence diagrams good for detailed design

UNIVERSITY OF TORONTO detailed use case — description

Buy a Product

Main Success Scenario:

- Customer browses catalog and selects items to buy
- Customer goes to check out
- Customer fills in shipping information (address, next-day or 3-day delivery)
- System presents full pricing information
- Customer fills in credit card information
- System authorizes purchase
- System confirms sale immediately
- System sends confirming email to customer

Extensions:

3a: Customer is Regular Customer

- .1 System displays current shipping, pricing and billing information
- .2 Customer may accept or override these defaults, returns to MSS at step 6

6a: System fails to authorize credit card

.1 Customer may reenter credit card information or may cancel

detailed use case - diagram

finding use cases

- browse through existing documents
 - noun phrases may be domain classes
 - verb phrases may be operations and associations
 - possessive phrases may indicate attributes
- for each actor, ask the following questions:
 - what functions does the actor require (from the system)?
 - what does the actor do?
 - does the actor need to read, create, destroy, modify or store info?
 - does the actor need to be notified about events?
 - does the actor need to notify the system about something?
 - what do the events require in terms of system functionality?
 - could the actor's work be simplified or made more efficient if new functions were added?