Q University of Toronto Department of Computer Science

Software Re-Engineering

- Why software evolves continuously
- Costs of Software Evolution
- Challenges of Design Recovery

- What reverse engineering tools can and can’ t do

gm © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

D University of Toronto Department of Computer Science

The Altimeter Example

IF not-readl(V1l) GOTO DEF1; if (read-meterl (V1))
display (V1); display(V1);

GOTO C; else {

DEFl: IF not-read2(V2) GOTO DEF2; if (read-meter2(Vv2))
display(V2); display(V2);

GOTO C; else

DEF2: display(3000); display(3000);

C: }

Questions:

Should you refactor this code?
Should you fix the default value?

Source: Adapted from van Vliet 1999

m © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

-

- University of Toronto

Department of Computer Science

and Practices. Wiley 1999, p449

Software Evolves Continuously

corrective

user
43% \enhancements adaptive
25%
4%
Data from:
van Vliet, H.. Software Engineering: Principles preventative

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

_? University of Toronto Department of Computer Science

Prog ram Types

Source: Adapted from Lehman 1980, pp1061-1063

S-type Programs (“Specifiable”)
problem can be stated formally and completely
acceptance: Is the program correct according to its specification?

“evolution” not relevant
A new specification defines a new problem

P-type Programs (“Problem-solving”)

imprecise statement of a real-world problem
acceptance: Is the program an acceptable solution to the problem?

This software may evolve continuously
the solution is never perfect, and can be improved
the real-world changes and hence the problem changes

E-type Programs (“Embedded”)
software that becomes part of the world that it models
acceptance: depends entirely on opinion and judgment

This software is inherently evolutionary
changes in the software and the world affect each other

m © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

University of Toronto

Department of Computer Science

A

formal
may statement K controls the
relate roduction
to of problem of
real PROGRAM
world
provides
maybe of solution
interest to S-type

Source: Adapted from Lehman 1980, pp1061-1063

real world

= {PROGRAM

requirements
specification

E-type

abstract
view of worlg

model

abs‘rr'acT
view of world

“
-
*
.

.‘
.
-
*
“
+

equirements
specification

/

PROGRAM ‘

solution

m © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

o

3 University of Toronto Department of Computer Science

Laws of Program Evolution

Source: Adapted from Lehman 1980, pp1061-1063

Continuing Change

Any software that reflects some external reality undergoes continual change or
becomes progressively less useful

change continues until it is judged more cost effective to replace the system

Increasing Complexity

As software evolves, its complexity increases...
...unless steps are taken to control it.

Fundamental Law of Program Evolution

Software evolution is self-regulating
...with statistically determinable trends and invariants

Conservation of Organizational Stability

During the active life of a software system, the work output of a development
project is roughly constant (regardless of resources!)

Conservation of Familiarity

The amount of change in successive releases is roughly constant

m © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

No.

Brief Name

Law

I |Continuing Change E-type systems must be continually adapted else they become progressively less
1974 satisfactory.
I |Increasing Complexity As an E-type system evolves its complexity increases unless work is done to
1974 maintain or reduce it.
IIT |Self Regulation E-type system evolution process is self regulating with distribution of product
1974 and process measures close to normal.
IV [Conservation of Organisational [The average effective global activity rate in an evolving E-type system is
1980 [Stability (invariant work rate) |invariant over product lifetime.
V |Conservation of Familiarity As an E-type system evolves all associated with it, developers, sales personnel,
1980 users, for example, must maintain mastery of its content and behaviour [leh80a]
to achieve satisfactory evolution. Excessive growth diminishes that mastery.
Hence the average incremental growth remains invariant as the system evolves.
VI |Continuing Growth The functional content of E-type systems must be continually increased to
1980 maintain user satisfaction over their lifetime.
VII [Declining Quality The quality of E-type systems will appear to be declining unless they are
1996 rigorously maintained and adapted to operational environment changes.
VIII |Feedback System E-type evolution processes constitute multi-level, multi-loop, multi-agent
1996 |(first stated 1974, feedback systems and must be treated as such to achieve significant improvement

formalised as law 1996)

over any reasonable base.

_f? University of Toronto Department of Computer Science

User requirements always grow

fo

conventional
development

User needs

FuncTionaIiTy

¢~Inapppdpriateness

(shaded area)

0000000

5 ' J > Time
q}{\ " 0,,0 & o o'?q'
o 57 & 3
<@ & xR Q¥ Q
S Y XY R N
g ¢ TR &
@ & & O O &
4 & S v
X o v (@ o
QY NN R &

Source: Adapted from Davis 1988, pp1453-1455
|(‘2‘ | ® 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

.

kﬁ University of Toronto

Department of Computer Science

fy
sl

2300
2400
2000
1600
1200

800

400

E.g. Logica Financial Software

S1ze 1n Modules

(Source: Lehman et al, 2000)

- RSN = release sequence number

- Dashed line is a smoothed trend

- Showing growth in module size (law 6)
and implying lots of other stuff

10 15

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

o University of Toronto Department of Computer Science

7 E.g. Linux Kernel

2.500,000 (Source: Godfrey & Tu, 2000)

—+—Total LOC ("wc -I") -- development releases

—— Total LOC ("wc -I") -- stable releases

-+ Total LOC uncommented -- development releases 'ff
- Total LOC uncommented -- stable releases

2,000,000

1,500,000 £

Total LOC

1,000,000 /

500,000 W

X+

0 T T T T T 1
Jan 1993 Jun 1994 Oct 1995 Mar 1997 Jul 1998 Dec 1999 Apr 2001
© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with atiribution under a creative commons license. 9

g University of Toronto

Department of Computer Science

E.g. Hadley Centre Climate Model

Evolution of the Unified Model

—&— Lines of Cede (left hand scale) —e— Number of Files (right hand scale)

@0
) -
1000 2 < ©
=z N g Q
900 4 34 e
§ b
£
800 8 £
E § v6.1
0 700 & V5 V60 .
5 5 V5.4 ——/ E ‘?x -
£ 600 = V52 V ® 3 8
3 v4.5 < L
s va.4 v5.0 i = g g g
5 g
g 500 e £ S & §
E va.d o g
- e
5 400 va1 V42 w
o g
£ =
3 300 :
200
100

0 . : .
Jan 1993 Jan 1994 Jan 1995 Jan 1996 Jan 1997 Jan 1998 Jan 1999 Jan 2000 Jan 2001 Jan 2002 Jan 2003 Jan 2004 Jan 2005 Jan 2006 Jan 2007 Jan 2008

v7.1

10

Number of files (thousands)

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

10

Millions of Lines of Code

60

o0

40

30

20

10

Lines of Code in Windows

Years: 1993-2006

D Unuversity of Toronto Department of Computer Science

& Software Geriatrics

Source: Adapted from Parnas, “Software Aging " 1996

Causes of Software Aging

Failure to update the software to meet changing needs
Customers switch to a new product if benefits outweigh switching costs

Changes to software tend to reduce coherence & increase complexity

Costs of Software Aging

Owners of aging software find it hard to keep up with the marketplace
Deterioration in space/time performance due to deteriorating structure

Aging software gets more buggy
Each “bug fix” introduces more errors than it fixes

Ways of Increasing Longevity

Design for change
Document the software carefully

Requirements and designs should be reviewed by those responsible for its
maintenance

Software Rejuvenation...

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

S e

11

3 University of Toronto Department of Computer Science

Reducing Maintenance Costs

General Higher quality code
Modular structure Better testing (verification)
COMPreMeWSLbLLLtg use of standards

Good documentation

21%

correctiv

user
43%gnhancements adapﬁv 2

25%

4% Platform independence

' _ preventative Destan for chawnoe
Better requwemewts ana Lgsts qooa?arfhitectur@e

prototyping, iterative development
Desigwn for change

m © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with atiribution under a creative commons license. 12

_? Unuversity of Toronto Department of Computer Science

Why maintenance is hard

Poor code quality

opaque code
poorly structured code
dead code

Lack of knowledge of the application domain

understanding the implications of change

Lack of documentation

code is often the only resource
missing rationale for design decisions

Lack of glamour

Source: Adapted from van Vliet 1999
m © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

o Unuversity of Toronto Department of Computer Science

& Rejuvenation

Reverse Engineering

Re-documentation (same level of abstraction)
Design Recovery (higher levels of abstraction)

Restructuring

Refactoring (no changes to functionality)
Revamping (only the user interface is changed)

Re-Engineering
Real changes made to the code

Usually done as round trip:
design recovery -> design improvement -> re-implementation

Source: Adapted from van Vliet 1999
m © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

i

& Umiversity of Toronto Department of Computer Science

Program Comprehension

During maintenance:

programmers spend as much time reading code as editing it

Experts have many knowledge chunks:

programming plans
beacons
design patterns

Experts follow dependency links

...while novices read sequentially

Much knowledge comes from outside the code

programmers study the code about 1.5 times as long as the documentation

Source: Adapted from van Vliet 1999

m © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

15

_? University of Toronto Department of Computer Science

Example 1

What does this do?

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {
if (A[i,31) {
for (k=0; k<n; k++) {
if (A[J.k])

A[i,k]=true;

Source: Adapted from van Vliet 1999
© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with atiribution under a creative commons license. 16

&

R Pl L R e

_? University of Toronto Department of Computer Science

Example 2

procedure A(var X: Ww); procedure change window(var nw: window);
begin begin
b(y, nl); border (current window, no highlight);
b(x, n2); border(nw, highlight);
m(w[x]); move cursor(w[nw]);
Yy = X; current window := nw;
r(plx]): resume (process[nw]) ;
end; end;

Source: Adapted from van Vliet 1999
© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 17

o University of Toronto Department of Computer Science

F@
Tl

Reformatters / documentation generators

Make the code more readable
Add comments automatically

What tools can do

Improve Code Browsing

E.g visualize and traverse a dependency graph

(simple) Code transformation

E.g. Refactoring class browsers
E.g. Clone detectors

(simple) Designh Recovery
E.g. build a basic class diagram
E.g. use program traces to build sequence diagrams

® 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

18

Department of Computer Science

design discovery tools

Ll api
< e S Hmym| | v | = | 2 Q %
FAVORITES - [META-INF » [] openmrs » [activelist ~ 3] ActiveListService.java
E All My Files | (] org > 5] Address.java [5] AdministrationService.java
) (1] annotation » [i] APIAuthenti...ception.java
© AirDrop (] aop ~ 3] APIException.java
r/_\g Applications (2 api » [j| Blankidentifi...ception.java
I:] Desktop (] arden P @ CohortService.java
5] Attributable.java [5] ConceptinUseException.java
@ Documents (1 attribute @ ConceptNa...xception.java
) Downloads 5] Auditable.java [5] ConceptNameType.java
= Movies 5] BaseConceptMap.java [5] ConceptService.java
. &J BaseCustomizableData.java @ ConceptsLo...ception.java
n Music @ BaseCustom...etadata.java @ ConceptSto...xception.java
Pictures &J BaseOpenmrsData.java (] context r
£} matt i BaseOpenmrsMetadatajava |j| DataSetService.java
— 5] BaseOpenmrsObject.java [5] DatatypeService.java
SHARED 5| BaseOrderable.java 3 db »
% pmbackup (] cohort D_{ DuplicateCo...ception.java
5] Cohort.java [5] Duplicatelde...ception.java
DEVICES (1] comparator [5] EncounterService.java
£ Matt’s Mac... 5] Concept.java [5] EventListeners.java
5] ConceptAnswer.java [5] FormService.java
5] ConceptClass.java [5] GlobalPropertyListener.java
[il ConceptComplex.iava [handler >

Source: Adapted from van Vliet 1999

® 2012 Steve Easterbrook. This presentation s available free for non-commercial use with attribution under a creative commons license.

16

_? University of Toronto Department of Computer Science

design discovery tools (2)

5] Java - openmrs-core/api/src/main/java/org/openmrs/api/ConceptService.java - Eclipse SDK - /Users/matt/stuff/courses/csc302s_2013/OpenMRS/... 1™

=t |30 Q- | |# G- |® | J &1~ &~ i £ | &ava
f: Package Explorer 33 = B[4 conceptservice.java % = O|(GE outiine R — =)
PRI - COMUEPT. SETLOMNCEPTULUSS LUNTEXT . YETLUNLEPTOErVLILEL). YETLONCEPTLLUSS(D)); ; a ﬁ
=S * concept.setDatatype(Context.getConceptService().getConceptDatatype(17)); = % VWY eo w
Zorg * concept.setName. ..) 2 org.openmrs.api
¥ (3 openmrs : ; .t//tandtgther rt‘zquu.'ed valuescon th: concep: . VODConceptService
> Gy activelist - :n ext.getConceptService().saveConcept(concept); ® setConceptDAO(Concer
> (5 annotation * e ,0/ createConcept(Concept;
¥ yaop * @see org.openmrs.api.context.Context & createConcept(Conceptl
¥ S api */ ﬁ/ updateConcept(Concep!
> [context public interface ConceptService extends OpenmrsService { @ getConceptByUuid(Strin
b db p/ updateConcept(Concep!
» (= handler - /x* .)) ,6/ createDrug(Drug) : void
> Gy impl : izj;rshetﬁ:tzai;;z:: object for Concepts. The dao is used for saving and ﬁ/ updateDrug(Drug) - voic
E"B ActiveListService.java * . ﬁ/ deleteConcept(Concept]
[} AdministrationService.java * @param dao The data access object to use & voidConcept(Concept, S
EYBAPlAuthenticationException.java */ @ saveConcept(Concept) :
EBAPIException.java public void setConceptDAO(ConceptDAO dao); @ saveDrug(Drug) : Drug
[;rg BlankldentifierException.java @ purgeConcept(Concept)
ETBCohortService.java B /x* @ retireConcept(Concept,
* @deprecated i i
ETBConceptanseException.java ny deprecated use #saveConcept(Concept) @ retireDrug(Drug, String)
ETB ConceptNamelnUseException.java - @Deprecated @ unretireDrug(Drug) : Dr
4} ConceptNameType.java @Authorized({ PrivilegeConstants.MANAGE_CONCEPTS }) © pur(g:eDrug(Drug).vmd
(4} ConceptService.java public void createConcept(Concept concept) throws APIException; ® getConcept(integer) : Cy
EYB ConceptsLockedException.java @ getConceptName(intege
[} ConceptStopWordException.java z /** @ getConceptAnswer(Intes
£} DataSetService java '[21 Problems 53 . @ Javadoc [[, Declaration | ¥ =8|
[4) DatatypeService.java -
ETB DuplicateConceptNameException.j: O ems
1 Description 4 Resource Path Location Type

[4) DuplicateldentifierException java
[} EncounterService.java

[4}) EventListeners.java

[} FormService.java

EB GlobalPropertyListener.java

[4}) IdentifierNotUniqueException.java
[1 InsufficientidentifiersException.jav:

Source: Adapted from van Vliet 1999
m ® 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 16

University of Toronto Department of Computer Science

design discovery tools (3)

Untitled - untitledModel_classes - ArgoUML *

BDRasBE DS (B F (& BEBEBBRB

. K
E | Package-centric 5 -I BIE —vovee — % 8 2 Te BB 8 o - D@
| Order By Type, Name =

» [Profile Configuration
v [untitledModel java
Class Diagram

[B) untitledModel_classes

Main

main(args : String[]) : void

Use Case Diagram Node
» Ejava
» £] Main.j_ava value : double Mode — Hiode

£] Node.java < <createx>> Node(value : double)
» €] Tree.java . Tree => Npde ,[

o double

o String() root tchild

o void Tree

«» javalmport < <createx > Tree()

TD documentation

T0 GeneratedFromimport
T param

TD return

— Node -> Node

— Node -> Node

— Tree -> Node

— Tree -> Random
A

| By Priority
=3 High

» [Medium

> CJLlow

*| 18 items ¢

addMode(n : Node) : void
average() : double

insert(root : Node,n : Node) : void

i Disgram

| 4 Documentation 4 Presentation 4 Source 4 Constraints > |
HcCass & T «< B B Client Dependencies: » Attributes: >
Name: Tree Supplier Dependencies: » Operations: > B Tree
— Ceneralization > Association Ends: » +— (unname
Namespace: Funtit w e funname
Specialization: > Owned Elements: »
Visibility:
() public () package () prote
modifiers
[]isRoot [|isLeaf [| isAbstrs

Template Parameters: »

]‘ 36M used of 505M max

Source: Adapted from van Vliet 1999

® 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 16

AL

