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Software Re-Engineering

- Why software evolves continuously
- Costs of Software Evolution
- Challenges of Design Recovery

- What reverse engineering tools can and can’ t do
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The Altimeter Example

IF not-readl(V1l) GOTO DEF1; if (read-meterl (V1))
display (V1); display(V1);

GOTO C; else {

DEFl: IF not-read2(V2) GOTO DEF2; if (read-meter2(Vv2))
display(V2); display(V2);

GOTO C; else

DEF2: display(3000); display(3000);

C: }

Questions:

Should you refactor this code?
Should you fix the default value?

Source: Adapted from van Vliet 1999
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Prog ram Types

Source: Adapted from Lehman 1980, pp1061-1063

S-type Programs (“Specifiable”)
problem can be stated formally and completely
acceptance: Is the program correct according to its specification?

“evolution” not relevant
A new specification defines a new problem

P-type Programs (“Problem-solving”)

imprecise statement of a real-world problem
acceptance: Is the program an acceptable solution to the problem?

This software may evolve continuously
the solution is never perfect, and can be improved
the real-world changes and hence the problem changes

E-type Programs (“Embedded”)
software that becomes part of the world that it models
acceptance: depends entirely on opinion and judgment

This software is inherently evolutionary
changes in the software and the world affect each other
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Laws of Program Evolution

Source: Adapted from Lehman 1980, pp1061-1063

Continuing Change

Any software that reflects some external reality undergoes continual change or
becomes progressively less useful

change continues until it is judged more cost effective to replace the system

Increasing Complexity

As software evolves, its complexity increases...
...unless steps are taken to control it.

Fundamental Law of Program Evolution

Software evolution is self-regulating
...with statistically determinable trends and invariants

Conservation of Organizational Stability

During the active life of a software system, the work output of a development
project is roughly constant (regardless of resources!)

Conservation of Familiarity

The amount of change in successive releases is roughly constant
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No.

Brief Name

Law

I |Continuing Change E-type systems must be continually adapted else they become progressively less
1974 satisfactory.
I |Increasing Complexity As an E-type system evolves its complexity increases unless work is done to
1974 maintain or reduce it.
IIT |Self Regulation E-type system evolution process is self regulating with distribution of product
1974 and process measures close to normal.
IV [Conservation of Organisational [The average effective global activity rate in an evolving E-type system is
1980 [Stability (invariant work rate) |invariant over product lifetime.
V |Conservation of Familiarity As an E-type system evolves all associated with it, developers, sales personnel,
1980 users, for example, must maintain mastery of its content and behaviour [leh80a]
to achieve satisfactory evolution. Excessive growth diminishes that mastery.
Hence the average incremental growth remains invariant as the system evolves.
VI |Continuing Growth The functional content of E-type systems must be continually increased to
1980 maintain user satisfaction over their lifetime.
VII [Declining Quality The quality of E-type systems will appear to be declining unless they are
1996 rigorously maintained and adapted to operational environment changes.
VIII |Feedback System E-type evolution processes constitute multi-level, multi-loop, multi-agent
1996 |(first stated 1974, feedback systems and must be treated as such to achieve significant improvement

formalised as law 1996)

over any reasonable base.
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User requirements always grow
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- RSN = release sequence number

- Dashed line is a smoothed trend

- Showing growth in module size (law 6)
and implying lots of other stuff
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7 E.g. Linux Kernel

2.500,000 (Source: Godfrey & Tu, 2000)
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E.g. Hadley Centre Climate Model

Evolution of the Unified Model
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Millions of Lines of Code
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& Software Geriatrics

Source: Adapted from Parnas, “Software Aging " 1996

Causes of Software Aging

Failure to update the software to meet changing needs
Customers switch to a new product if benefits outweigh switching costs

Changes to software tend to reduce coherence & increase complexity

Costs of Software Aging

Owners of aging software find it hard to keep up with the marketplace
Deterioration in space/time performance due to deteriorating structure

Aging software gets more buggy
Each “bug fix” introduces more errors than it fixes

Ways of Increasing Longevity

Design for change
Document the software carefully

Requirements and designs should be reviewed by those responsible for its
maintenance

Software Rejuvenation...
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Reducing Maintenance Costs

General Higher quality code
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Why maintenance is hard

Poor code quality

opaque code
poorly structured code
dead code

Lack of knowledge of the application domain

understanding the implications of change

Lack of documentation

code is often the only resource
missing rationale for design decisions

Lack of glamour

Source: Adapted from van Vliet 1999
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& Rejuvenation

Reverse Engineering

Re-documentation (same level of abstraction)
Design Recovery (higher levels of abstraction)

Restructuring

Refactoring (no changes to functionality)
Revamping (only the user interface is changed)

Re-Engineering
Real changes made to the code

Usually done as round trip:
design recovery -> design improvement -> re-implementation

Source: Adapted from van Vliet 1999
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Program Comprehension

During maintenance:

programmers spend as much time reading code as editing it

Experts have many knowledge chunks:

programming plans
beacons
design patterns

Experts follow dependency links

...while novices read sequentially

Much knowledge comes from outside the code

programmers study the code about 1.5 times as long as the documentation

Source: Adapted from van Vliet 1999
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Example 1

What does this do?

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {
if (A[i,31) {
for (k=0; k<n; k++) {
if (A[J.k])

A[i,k]=true;

Source: Adapted from van Vliet 1999
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Example 2

procedure A(var X: Ww); procedure change window(var nw: window);
begin begin
b(y, nl); border (current window, no highlight);
b(x, n2); border(nw, highlight);
m(w[x]); move cursor(w[nw]);
Yy = X; current window := nw;
r(plx]): resume (process[nw]) ;
end; end;

Source: Adapted from van Vliet 1999
© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 17
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Reformatters / documentation generators

Make the code more readable
Add comments automatically

What tools can do

Improve Code Browsing

E.g visualize and traverse a dependency graph

(simple) Code transformation

E.g. Refactoring class browsers
E.g. Clone detectors

(simple) Designh Recovery
E.g. build a basic class diagram
E.g. use program traces to build sequence diagrams
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design discovery tools
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Source: Adapted from van Vliet 1999
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design discovery tools (2)
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Source: Adapted from van Vliet 1999
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design discovery tools (3)
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