------ 2 The Edward S. Rogers Sr. Department
“. of Electrical & Computer Engineering

XJ UNIVERSITY OF TORONTO

software development
lifecycle (sdic) models &
agile methods

The Edward S. Rogers Sr. Department
‘- of Electrical & Computer Engineering
XJ UNIVERSITY OF TORONTO sdlc

* by analogy with civil engineering, where you
design first, then do construction

* in software, there is no “construction”
it's all design

» used to be called coding

g% The Edward S. Rogers Sr. Department
% | of Electrical & Computer Engineering

UNIVERSITY OF TORONTO sdlc (2)
HOW TO WRITE GOOD CODE:
START
PROJECT.

| o [mRow IT ALLOOT
| AND START OVER.

Y The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering
8 28

%) UNIVERSITY OF TORONTO sdlc (3)

« what is a software development process?
« what is the lifecycle of a software project?

 will talk about “agile” later. first, we’ll talk
about “disciplined” or is it “traditional?” or is
it “sturdy?” oris it “planned?” or is it...

Y The Edward S. Rogers Sr. Department
mm of Electrical & Computer Engineering
X UNIVERSITY OF TORONTO sdlc (4)

* tend to talk about sdic in terms of a
dichotomy

— “agile” vs. well...um...“not agile”
— or, “planned” vs. “continuous”

— others tend to (incorrectly) think that the
deployment method implies the process
* saas == agile
* installed == traditional

« think more in terms applying the process
on an individual feature, or an aggregate

g% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

%/ universiTY oF ToroNTO example feature workflow

PM/R&D

Backlog
PM/R&D

Suggested Feature
(Task & Sub-Task)

Workflow for TPA R&D .

R&D

R&D

R&D
i
MUST have A/B-List @

attribute & size.
MUST have a

SHOULD have
developer assigned.

developer assigned.

R&D

Accepted

R&D

#% The Edward S. Rogers Sr. Department

UNIVERSITY OF TORONTO goal Of sdlc

« what's the goal of a good sdlc?
— passes all the tests (external quality attributes)
— good design/architecture (internal)
— good user experience (quality in use)

— process quality (can process help ensure
product quality)

The Edward S. Rogers Sr. Department
| of Electrical & Computer Engineering

UNIVERSITY OF TORONTO waterfall

Requirements ‘\'

Design ‘\

Construction "\

Integration ‘\

Debugging —\
Installation _\

Maintenance

* move from one phase to the next only when its preceding phase is
completed and perfected.

» first mentioned by Royce in 1970 as an example of a flawed, non-
working model for software development.

« US department of defence projects attempted to entrench this
model by requiring their contractors to produce the waterfall
deliverables and then to formally accept them to a certain schedule
(US military standard DoD-2167)

— there was a unwieldy process for going back and amending previous
deliverables

Y The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO waterfall (2)

problems

« static view of requirements — ignores volatility

 lack of user involvement once specification is
written

 unrealistic separation of specification from
design

« doesn't easily accommodate prototyping,
reuse, etc.

% The Edward S. Rogers Sr. Department

_ of Electrical & Computer Engineering
X) UNIVERSITY OF TORONTO waterfall (3)
more problems

13 15 Fob “i(22 Feb "0
EEEEM T W T FEREEM TW T FERBEEM T W T F RS

D;Appomnnamm Seniormansgemant
D;N‘“m Mapatng Gales 4——— Today's date

.......

Q Define mestage Maketog Sales
Choose trade show Maseting Sales Task labels follow bars
Choose stand sxe and location Masating §aier Conrd H’;/
éji—""‘ﬁm Coordinator Groups or people
de Maretng Sale responsible for task

/! e, et g whe MaketsSaies
Miestione budpet Masatinh $alexCoordinatorFinance (resources)
] sehvddute Coordgater

220] Oraw up lief of padicipants Maseting 5 a04s.Coordinatr

-
B] Sebé madng te cutomen & prespedts Coordinater

Lines and armows show ——>»
bhcize show on corporate wed site Wedmaster Production

how tasks are linked Pl

(dependencies) JERLE B epress relesse Maseting Sales
Schedvie meetngs with customen & prospects Maseting Sales.
Send free pames 1o major cutomen & prospacts Conrdinater
Schedule mestings with press allendance Mabeting Sat
Different colors for 4) |

 often tracked with Gantt charts!
— printed and taped up on the wall

— out of date immediately
— difficult to move tasks between developers
* must assign all tasks before starting!

— start writing in changes — disaster mess!

The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

XY UNIVERSITY OF TORONTO Bohem’s cost of change

Maintenance s

Design Done =

Cost of a Change
Wall of Unmaintainability

Time

« Software Engineering Economics — Barry Boehm, 1981
— data from waterfall-based projects in 1970s at IBM
— acknowledged “architecture-breaker” flawed assumptions
— small project — 1:4, large project —1:100
— also known as “software rot”

% The Edward S. Rogers Sr. Department
o of Electrical & Computer Engineering
%) UNIVERSITY OF TORONTO v-model

s
= SYSTEM |\ oeeeeeeeeceessmsnssnssensessesssssansnngfone system
‘3: requirements integration
o
t sofmare ... acce ptance
© requirements test
L
prc'iminary sofmcre
design integration
“analyse \ / test
and detailed | ... component and
design” design test integrate”

=

code and unit
debug test

v

time

The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

UNIVERSITY OF TORONTO r apid prototyping

el ﬁ
Preliminaryj design build evaluate

requirementy prototype prototype pro'rotpr

Qf)' full design code test integrate

requirements

« prototyping used for:
— understanding requirements for the user interface
— determining feasibility of a proposed design

e problems:
— users treat the prototype as the solution (or boss thinks it’s done!)
— prototype is only a partial specification

% The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

UNIVERSITY OF TORONTO phased Iifecycles

Release 1 Incremental development
> design code test |integrate, O&M (each release adds more
S— E— functionality)
'§' * design | code test |integrate| O&M
§ ~lease 3
% > design | code test |integrate] O&M
........... ~clease 4
> design | code | test |[integrate] O&M
version 1
reqts design code test | integrate O&M
lessons Ie%f
version 2 E
reqts design code test integrate O&M
Evolutionary development ,ersion 3 , N — "f”" |
(each version incorporates : .
- reqts design code test | integrate
new requirements)

% The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO spiral model
Determine goals, — Evaluate

alternatives, alternatives
constraints and risks

fconcept of
operation

Develop
and
test

Plan

§% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

XY UNIVERSITY OF TORONTO rational unified process

|
“Iteration 0”

Inception
— establish scope
— build business case

Iteration #1
— stakeholder buy-in J

« elaboration lteration #2
— identify & manage risks s
— work out architecture Iteration #nj

— focus on high risk items \

construction
— iterate & build operational version

— develop docs & training material

transition
— fine-tune

lteration #m

lteration #t

\

lteration #t+1
J

— resolve config, install & usability
issues

% The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

%7 untversiTy oF ToronTo Fational unified process (2)

Phases

Disciplines Inception Elaboration Construction Transition

® Business Modeling

B Requirements

@ Analysis and Design

0 Implementation

B Test

8 Deployment

Configuration and

I NS nm———
Change Management | e —
e e e e il

8 Project Management

m Environment

P e S A
Initial E1 E2 C1 c2 CN T T2
lterations A A A A
Lifecycle Lifecycle Initial Product
Objectives Architecture Operational Release
Milestone Milestone Capability Milestone
Milestone

« framework created by Rational, acquired by IBM in 2003
« four phases:

— inception: business planning, requirements gather

— elaboration: mitigate risks, use cases, dev. plan, architecture, prototypes
— construction: development, unit tests, QA

— transition: user acceptance testing, training

The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

UNIVERSITY OF TORONTO

agile methods

oduct

a mt€< ration
feature: 11 usmg agility

impact activity s-oductivity manifesto stakeholders
Qdetmled ren \(F;) manufacturing Y . specifications H
b 2 B I I I I l % defect
. m;ny valuable
technlques larman % dicuss ¥ qua u) o~

arm developers % - I'OCCSS bebavi
lifecycle mu st prlnClp o team pI: chsses 1% knowing

U spproach documcntatlonfmh A § _)_tﬁ(i{?i,
dcs,wng o™ often ; de e B * £ sppoting
- E Esignificant g 3 8 oo
B 89

g gl o er w4
oo g "', o d msgesgld 2 }1busmes's L4 H give Workmg Pe°Ple O

| progress phase
& pI'OJCCtS _x: g Q-«
B s e ot oS early "o waterfall

& £ collaboration % releasing

i systems £

dence

beteer

within

difficult

changmg iterative @

always

m.‘n'm(
functional

The Edward S. Rogers Sr. Department
‘T[of Electrical & Computer Engineering o
%) UNIVERSITY OF TORONTO aglle

< pure waterfall cowboy coding>

 refers to a group of software development
methodologies created as a reaction against the
heavily regulated, regimented, micro-managed use
of the waterfall model (“pure waterfall”).

* developed in the mid-1990’s as “lightweight
methods”. most popular ones to survive are:
— scrum — 1995
— extreme programming (XP) - 1996

« “agile” term was first used in 2001.

Y The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

188 8

XJ UNIVERSITY OF TORONTO agile manifesto

http://aqgilemanifesto.orqg/

we are uncovering better ways of developing
software by doing it and helping others do it.
through this work we have come to value:

Individuals and interactions over processes and tools
working software over comprehensive documentation
customer collaboration over contract negotiation
responding to change over following a plan

that is, while there is value in the items on
the right, we value the items on the left more

% The Edward S. Rogers Sr. Department
- of Electrical & Computer Engineering

%@ UNIVERSITY OF TORONTO 12 agile principles

3\

 our highest priority is to satisfy the customer
through early and continuous delivery of
valuable software.

« welcome changing requirements, even late in
development. agile processes harness change
for the customer's competitive advantage.

 deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter timescale.

* business people and developers must work
together daily throughout the project.

% The Edward S. Rogers Sr. Department
- of Electrical & Computer Engineering

%@ UNIVERSITY OF TORONTO 12 agile principles (2)

3\

 build projects around motivated individuals.
give them the environment and support they
need, and trust them to get the job done.

« the most efficient and effective method of
conveying information to and within a
development team is face-to-face conversation.

« working software is the primary measure of
progress.

* agile processes promote sustainable
development. the sponsors, developers, and
users should be able to maintain a constant pace
indefinitely.

The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

XJ UNIVERSITY OF TORONTO 12 agile pr inciples (3)

e continuous attention to technical excellence
and good design enhances agility.

« simplicity — the art of maximizing the amount of
work not done — is essential.

* the best architectures, requirements, and
designs emerge from self-organizing teams.

 at reqgular intervals, the team reflects on how to
become more effective, then tunes and adjusts
its behavior accordingly.

% The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

%7 UNIVERSITY OF TorRoONTO eXtreme Programming (XP)

« XP = eXtreme Programming (Beck 1999)

UFnﬂnished
- frequent “releases” in short development cycles eqlures
* manage by features (“user story” / “use cases”) Most Important

))) i Features
— release planning / iteration planning

Iterative

e continuous integration Planning
« pair programming (continuous code review) i)

Heart

« unit testing of all code Working Honest
Software Plans
« avoiding programming of features until
they are actually needed Emmwe’"‘e"‘
« simplicity and clarity in code Daily Commumcatlon

« frequent communication (customers and coders)

« expecting changes in the customer's requirements as time
passes and the problem is better understood

« coding standard
« collective code ownership
« sustainable pace

g% The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

%Y UNTVERSITY OF TORONTO XP alternate

Each cycle:
approx 2 weeks

g% The Edward S. Rogers Sr. Department
| of Electrical & Computer Engineering

UNIVERSITY OF TORONTO XP alternate (2)

Each cycle:
approx 2 weeks

Suggested Feature
(Task & Sub-Task) ~ ((Delivered
Workflow for TPA R&D

cccccccc

% The Edward S. Rogers Sr. Department
k72 of Electrical & Computer Engineering
XJ UNIVERSITY OF TORONTO scrum

« scrum (Schwaber & Beedle 2001)

e product owner, team, scrum master

« “sprints” 2-4 weeks

« “stories” are described and sized in “units” or “points”

« team commits to number of “points” they can do in next sprint

« product owner picks stories accordingly

« product owner tests stories and gives feedback after each sprint

DAILY SCRUM
MEETING

24 HOuURs

POTENTIALLY
SHIPPABLE
PROobDpucCT
INCREMENT

[

SPRINT
BACKLOG

PRODUCT
BACKLOG

2-4 WEEKS

copyriGHT © 2005, MOUNTAIN BOAT SOFTWARE

Y The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO scrum fable

* In 2011 this fable was removed from the
SCrum process

— pigs (committed): project owner, scrum master,
development team

— chickens (involved): customers, executive
management

— rooster: struts around offering unrequested,
uninformed & unhelpful opinions

— analogy is breakfast — bacon & eggs

The Edward S. Rogers Sr. Department
- of Electrical & Computer Engineering
X UNIVERSITY OF TORONTO

“Agile” vs “Sturdy”

Iterative <— Planned
Small increments <—> Analysis before design

Adaptive planning <— Prescriptive planning
Embrace change <— Control change
Innovation and exploration <—> High ceremony

Trendy <— Traditional
Highly fluid <— Upfront design / architecture
Feedback driven «<—> Negotiated requirements

Individuals and Interactions <—> Processes and Tools

Human communication <—> Documentation

Small teams <— Large teams

§% The Edward S. Rogers Sr. Department

i

of Electrical & Computer Engineering

@, UNIVERSITY OF TORONTO personal exper ience

« feature-driven development is not in question.
— almost nobody believes in pure waterfall

— written reqs/specs/design for entire release = waterfall

— written requirements/spec/design per feature when
necessary # waterfall

* advocated where necessary in agile
e continuous integration, keeping the code in good
shape at all times & automated architectural regression
testing? yes!
 full unit tests? usually impractical
e pair programming? sometimes, maybe
« frequent communications? yes!
— involving stakeholders? yes (if they will attend!)

« simple design with constant re-factoring? yes, mostly
— but too extreme to never design for the future.

§% The Edward S. Rogers Sr. Department

i

of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO personal experience (2)

« commit only to next sprint? not practical
« use of “points” as opposed to a time unit? no
— everyone outside of development will not trust it
« coding standards and collective code ownership? yes
 eliminate final test phase? not practical
— reduce it with code/test iterations within the coding phase
« use working software as the primary measure of
progress? yes, for the most part

— for big-bang releases, | advocate:
» feature demos during the development process.
* independent function testing during the coding phase.
 reflect on release plan when a feature is done by above def’n.
* relentlessly plan and manage to dcut (= feature complete)

The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

%) UNTVERSITY OF TORONTO personal experience (3)

* welcome changing requirements? can’t avoid

— but within a planning framework. cannot welcome all
changes without considering the impact on the end-
dates.

« sustainable development? yes
— but unrealistic without careful planning

* the best architectures, requirements, and
designs

emerge from self-organizing teams? not
convinced

* beware: it's easy to proudly claim agile but
actually be doing cowboy development!

¢ The Edward S. Rogers Sr. Department
- of Electrical & Computer Engineering

@,‘@, UNIVERSITY OF TORONTO which process is the best?

 all processes have their pros and cons, but
only in the context of a given project.

— does continuous deployment make sense for
the next version of microsoft office?

— what process is best for an x-ray machine?

— space shuttle avionics — hal/s developed
specifically for shuttle

 completely independently developed primary
and backup systems!

— curiosity rover software, installed in flight! and
then upgraded on mars!

e again, depends on the nature of the project

% The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO summary

« do these things, and you are doing well!

source code

i control reproducible
infrastructure / — roduc

AN

automated
regression
testing

defect/feature
tracking

control
, effort process
refinement tracking ! control
business

planning

