
software development 
lifecycle (sdlc) models & 

agile methods 



sdlc	
  

how did that happen? 

•  by analogy with civil engineering, where you 
design first, then do construction 

•  in software, there is no “construction” 
it’s all design 

•  used to be called coding 



sdlc	
  (2)	
  



sdlc	
  (3)	
  

•  what is a software development process? 
•  what is the lifecycle of a software project? 

•  will talk about “agile” later. first, we’ll talk 
about “disciplined” or is it “traditional?” or is 
it  “sturdy?” or is it “planned?” or is it… 



•  tend to talk about sdlc in terms of a 
dichotomy 
–  	
  “agile”	
  vs.	
  well…um…“not	
  agile”	
  
–  or,	
  “planned”	
  vs.	
  “con8nuous”	
  
–  others	
  tend	
  to	
  (incorrectly)	
  think	
  that	
  the	
  
deployment	
  method	
  implies	
  the	
  process	
  

•  saas	
  ==	
  agile	
  
•  installed	
  ==	
  tradi8onal	
  

•  think more in terms applying the process 
on an individual feature, or an aggregate 

sdlc	
  (4)	
  



example	
  feature	
  workflow	
  



goal	
  of	
  sdlc	
  

•  what’s the goal of a good sdlc? 
–  passes	
  all	
  the	
  tests	
  (external	
  quality	
  aAributes)	
  
–  good	
  design/architecture	
  (internal)	
  
–  good	
  user	
  experience	
  (quality	
  in	
  use)	
  
–  process	
  quality	
  (can	
  process	
  help	
  ensure	
  
product	
  quality)	
  



waterfall	
  

•  move from one phase to the next only when its preceding phase is 
completed and perfected. 

•  first mentioned by Royce in 1970 as an example of a flawed, non-
working model for software development. 

•  US department of defence projects attempted to entrench this 
model by requiring their contractors to produce the waterfall 
deliverables and then to formally accept them to a certain schedule 
(US military standard DoD-2167) 
–  there	
  was	
  a	
  unwieldy	
  process	
  for	
  going	
  back	
  and	
  amending	
  previous	
  

deliverables	
  

Requirements	
  

Design	
  

Construc8on	
  

Integra8on	
  

Debugging	
  

Maintenance	
  

Installa8on	
  



waterfall	
  (2)	
  

problems 

•  static view of requirements – ignores volatility 
•  lack of user involvement once specification is 

written 
•  unrealistic separation of specification from 

design 
•  doesn’t easily accommodate prototyping, 

reuse, etc. 



waterfall	
  (3)	
  
more problems 

•  often tracked with Gantt charts! 
–  printed	
  and	
  taped	
  up	
  on	
  the	
  wall	
  
–  out	
  of	
  date	
  immediately	
  
–  difficult	
  to	
  move	
  tasks	
  between	
  developers	
  

•  must	
  assign	
  all	
  tasks	
  before	
  star8ng!	
  
–  start	
  wri8ng	
  in	
  changes	
  –	
  disaster	
  mess!	
  



Bohem’s	
  cost	
  of	
  change	
  

 
 

•  Software Engineering Economics – Barry Boehm, 1981 
–  data	
  from	
  waterfall-­‐based	
  projects	
  in	
  1970s	
  at	
  IBM	
  
–  acknowledged	
  	
  “architecture-­‐breaker”	
  flawed	
  assump8ons	
  
–  small	
  project	
  –	
  1:4,	
  large	
  project	
  –	
  1:100	
  
–  also	
  known	
  as	
  “soWware	
  rot”	
  



v-­‐model	
  



rapid	
  prototyping	
  

•  prototyping used for: 
–  understanding	
  requirements	
  for	
  the	
  user	
  interface	
  
–  determining	
  feasibility	
  of	
  a	
  proposed	
  design	
  

•  problems: 
–  users	
  treat	
  the	
  prototype	
  as	
  the	
  solu8on	
  (or	
  boss	
  thinks	
  it’s	
  done!)	
  
–  prototype	
  is	
  only	
  a	
  par8al	
  specifica8on	
  



phased	
  lifecycles	
  



spiral	
  model	
  



raAonal	
  unified	
  process	
  
•  inception 

–  establish	
  scope	
  
–  build	
  business	
  case	
  
–  stakeholder	
  buy-­‐in	
  

•  elaboration 
–  iden8fy	
  &	
  manage	
  risks	
  
–  work	
  out	
  architecture	
  
–  focus	
  on	
  high	
  risk	
  items	
  

•  construction 
–  iterate	
  &	
  build	
  opera8onal	
  version	
  
–  develop	
  docs	
  &	
  training	
  material	
  

•  transition 
–  fine-­‐tune	
  
–  resolve	
  config,	
  install	
  &	
  usability	
  

issues	
  



raAonal	
  unified	
  process	
  (2)	
  

•  framework created by Rational, acquired by IBM in 2003 
•  four phases: 

–  incep8on:	
  business	
  planning,	
  requirements	
  gather	
  
–  elabora8on:	
  mi8gate	
  risks,	
  use	
  cases,	
  dev.	
  plan,	
  architecture,	
  prototypes	
  
–  construc8on:	
  development,	
  unit	
  tests,	
  QA	
  
–  transi8on:	
  user	
  acceptance	
  tes8ng,	
  training	
  



agile methods 



agile	
  

 
 
•  refers to a group of software development 

methodologies created as a reaction against the 
heavily regulated, regimented, micro-managed use 
of the waterfall model (“pure waterfall”). 

•  developed in the mid-1990’s as “lightweight 
methods”. most popular ones to survive are: 
–  scrum	
  –	
  1995	
  
–  extreme	
  programming	
  (XP)	
  -­‐	
  1996	
  

•  “agile” term was first used in 2001. 

pure waterfall cowboy coding 



agile	
  manifesto	
  
http://agilemanifesto.org/ 

 

we are uncovering better ways of developing 
software by doing it and helping others do it. 
through this work we have come to value:  

 

individuals and interactions over processes and tools 

working software over comprehensive documentation 

customer collaboration over contract negotiation 

responding to change over following a plan  
 

that is, while there is value in the items on 
the right, we value the items on the left more 



12	
  agile	
  principles	
  	
  

•  our highest priority is to satisfy the customer 
through early and continuous delivery of 
valuable software.  

•  welcome changing requirements, even late in 
development. agile processes harness change 
for the customer's competitive advantage.  

•  deliver working software frequently, from a  
couple of weeks to a couple of months, with a 
preference to the shorter timescale.  

•  business people and developers must work  
together daily throughout the project.  



12	
  agile	
  principles	
  (2)	
  

•  build projects around motivated individuals.  
give them the environment and support they 
need, and trust them to get the job done.  

•  the most efficient and effective method of  
conveying information to and within a 
development team is face-to-face conversation.  

•  working software is the primary measure of 
progress.  

•  agile processes promote sustainable 
development. the sponsors, developers, and 
users should be able to maintain a constant pace 
indefinitely.  



12	
  agile	
  principles	
  (3)	
  

•  continuous attention to technical excellence 
and good design enhances agility.  

•  simplicity – the art of maximizing the amount of 
work not done – is essential.  

•  the best architectures, requirements, and 
designs emerge from self-organizing teams.  

•  at regular intervals, the team reflects on how to 
become more effective, then tunes and adjusts 
its behavior accordingly.  



eXtreme	
  Programming	
  (XP)	
  

•  XP = eXtreme Programming (Beck 1999) 
•  frequent “releases” in short development cycles 
•  manage by features (“user story” / “use cases”) 

–  release	
  planning	
  /	
  itera8on	
  planning	
  
•  continuous integration 
•  pair programming (continuous code review) 
•  unit testing of all code 
•  avoiding programming of features until 

they are actually needed 
•  simplicity and clarity in code 
•  frequent communication (customers and coders) 
•  expecting changes in the customer's requirements as time 

passes and the problem is better understood 
•  coding standard 
•  collective code ownership 
•  sustainable pace 



XP	
  alternate	
  



XP	
  alternate	
  (2)	
  



scrum	
  
•  scrum (Schwaber & Beedle 2001) 
•  product owner, team, scrum master 
•  “sprints” 2-4 weeks 
•  “stories” are described and sized in “units” or “points” 
•  team commits to number of “points” they can do in next sprint 
•  product owner picks stories accordingly 
•  product owner tests stories and gives feedback after each sprint 



scrum	
  fable	
  

•  in 2011 this fable was removed from the 
scrum process 
–  pigs	
  (commiAed):	
  project	
  owner,	
  scrum	
  master,	
  
development	
  team	
  

–  chickens	
  (involved):	
  customers,	
  execu8ve	
  
management	
  

–  rooster:	
  struts	
  around	
  offering	
  unrequested,	
  
uninformed	
  &	
  unhelpful	
  opinions	
  

–  analogy	
  is	
  breakfast	
  –	
  bacon	
  &	
  eggs	
  





personal	
  experience	
  
•  feature-driven development is not in question. 

–  almost	
  nobody	
  believes	
  in	
  pure	
  waterfall	
  
–  wriAen	
  reqs/specs/design	
  for	
  en#re	
  release	
  ≈	
  waterfall	
  
–  wriAen	
  requirements/spec/design	
  per	
  feature	
  when	
  

necessary	
  ≠	
  waterfall	
  
•  advocated	
  where	
  necessary	
  in	
  agile	
  

•  continuous integration, keeping the code in good 
shape at all times & automated architectural regression 
testing? yes! 

•  full unit tests? usually impractical 
•  pair programming? sometimes, maybe 
•  frequent communications? yes! 

–  involving	
  stakeholders?	
  yes	
  (if	
  they	
  will	
  a/end!)	
  
•  simple design with constant re-factoring? yes, mostly 

–  but	
  too	
  extreme	
  to	
  never	
  design	
  for	
  the	
  future.	
  



personal	
  experience	
  (2)	
  

•  commit only to next sprint? not practical 
•  use of “points” as opposed to a time unit? no 

–  everyone	
  outside	
  of	
  development	
  will	
  not	
  trust	
  it	
  
•  coding standards and collective code ownership? yes 
•  eliminate final test phase? not practical 

–  reduce	
  it	
  with	
  code/test	
  itera8ons	
  within	
  the	
  coding	
  phase	
  	
  
•  use working software as the primary measure of 

progress? yes, for the most part 
–  for	
  big-­‐bang	
  releases,	
  I	
  advocate:	
  

•  feature	
  demos	
  during	
  the	
  development	
  process.	
  
•  independent	
  func8on	
  tes8ng	
  during	
  the	
  coding	
  phase.	
  
•  reflect	
  on	
  release	
  plan	
  when	
  a	
  feature	
  is	
  done	
  by	
  above	
  def’n.	
  
•  relentlessly	
  plan	
  and	
  manage	
  to	
  dcut	
  (=	
  feature	
  complete)	
  



personal	
  experience	
  (3)	
  

•  welcome changing requirements? can’t avoid 
–  but	
  within	
  a	
  planning	
  framework.	
  cannot	
  welcome	
  all	
  
changes	
  without	
  considering	
  the	
  impact	
  on	
  the	
  end-­‐
dates.	
  

•  sustainable development? yes 
–  but	
  unrealis8c	
  without	
  careful	
  planning	
  

•  the best architectures, requirements, and 
designs  
emerge from self-organizing teams? not 
convinced 

•  beware: it’s easy to proudly claim agile but 
actually be doing cowboy development! 



which	
  process	
  is	
  the	
  best?	
  

•  all processes have their pros and cons, but 
only in the context of a given project. 
–  does	
  con8nuous	
  deployment	
  make	
  sense	
  for	
  
the	
  next	
  version	
  of	
  microsoW	
  office?	
  

– what	
  process	
  is	
  best	
  for	
  an	
  x-­‐ray	
  machine?	
  
–  space	
  shuAle	
  avionics	
  –	
  hal/s	
  developed	
  
specifically	
  for	
  shuAle	
  

•  completely	
  independently	
  developed	
  primary	
  
and	
  backup	
  systems!	
  

–  curiosity	
  rover	
  soWware,	
  installed	
  in	
  flight!	
  and	
  
then	
  upgraded	
  on	
  mars!	
  

•  again, depends on the nature of the project 



summary	
  

•  do these things, and you are doing well! 

infrastructure 

control 

refinement 

source code 
control 

defect/feature 
tracking 

reproducible 
builds 

automated 
regression 

testing 

Agile Horizon 
Planning 

feature 
specifications architectural 

control 

business 
planning 

effort 
tracking process 

control 


