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* by analogy with civil engineering, where you
design first, then do construction

* in software, there is no “construction”
it's all design

» used to be called coding
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HOW TO WRITE GOOD CODE:
START
PROJECT.

| o [mRow IT ALLOOT
| AND START OVER.
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« what is a software development process?
« what is the lifecycle of a software project?

 will talk about “agile” later. first, we’ll talk
about “disciplined” or is it “traditional?” or is
it “sturdy?” oris it “planned?” or is it...
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* tend to talk about sdic in terms of a
dichotomy

— “agile” vs. well...um...“not agile”
— or, “planned” vs. “continuous”

— others tend to (incorrectly) think that the
deployment method implies the process
* saas == agile
* installed == traditional

« think more in terms applying the process
on an individual feature, or an aggregate
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PM/R&D

Backlog
PM/R&D
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(Task & Sub-Task)

Workflow for TPA R&D .

R&D

R&D

R&D
i
MUST have A/B-List @

attribute & size.
MUST have a

SHOULD have
developer assigned.

developer assigned.

R&D

Accepted

R&D
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« what's the goal of a good sdlc?
— passes all the tests (external quality attributes)
— good design/architecture (internal)
— good user experience (quality in use)

— process quality (can process help ensure
product quality)
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Requirements ‘\'

Design ‘\

Construction "\

Integration ‘\

Debugging —\
Installation _\

Maintenance

* move from one phase to the next only when its preceding phase is
completed and perfected.

» first mentioned by Royce in 1970 as an example of a flawed, non-
working model for software development.

« US department of defence projects attempted to entrench this
model by requiring their contractors to produce the waterfall
deliverables and then to formally accept them to a certain schedule
(US military standard DoD-2167)

— there was a unwieldy process for going back and amending previous
deliverables
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problems

« static view of requirements — ignores volatility

 lack of user involvement once specification is
written

 unrealistic separation of specification from
design

« doesn't easily accommodate prototyping,
reuse, etc.
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more problems
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 often tracked with Gantt charts!
— printed and taped up on the wall

— out of date immediately
— difficult to move tasks between developers
* must assign all tasks before starting!

— start writing in changes — disaster mess!
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Maintenance s

Design Done =

Cost of a Change
Wall of Unmaintainability

Time

« Software Engineering Economics — Barry Boehm, 1981
— data from waterfall-based projects in 1970s at IBM
— acknowledged “architecture-breaker” flawed assumptions
— small project — 1:4, large project —1:100
— also known as “software rot”
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« prototyping used for:
— understanding requirements for the user interface
— determining feasibility of a proposed design

e problems:
— users treat the prototype as the solution (or boss thinks it’s done!)
— prototype is only a partial specification
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Release 1 Incremental development
> design code test |integrate, O&M (each release adds more
S— E— functionality)
'§' * design | code test |integrate| O&M
§ ..... ~lease 3
% > design | code test |integrate] O&M
........... ~clease 4
> design | code | test |[integrate] O&M
version 1
reqts design code test | integrate O&M
lessons Ie%f
version 2 E
reqts design code test integrate O&M
Evolutionary development  ,ersion 3 , N — "f”" |
(each version incorporates : .
- reqts design code test | integrate
new requirements)
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Determine goals, — Evaluate

alternatives, alternatives
constraints and risks

fconcept of
operation

Develop
and
test

Plan
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|
“Iteration 0”

Inception
— establish scope
— build business case

Iteration #1
— stakeholder buy-in J

« elaboration lteration #2
— identify & manage risks s
— work out architecture Iteration #nj

— focus on high risk items \

construction
— iterate & build operational version

— develop docs & training material

transition
— fine-tune

lteration #m

lteration #t

\

lteration #t+1
J

— resolve config, install & usability
issues
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Phases

Disciplines Inception Elaboration Construction Transition

® Business Modeling

B Requirements

@ Analysis and Design

0 Implementation

B Test

8 Deployment

Configuration and
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Change Management | e —
e e e e il

8 Project Management

m Environment

P e S A
Initial E1 E2 C1 c2 CN T T2
lterations A A A A
Lifecycle Lifecycle Initial Product
Objectives Architecture Operational Release
Milestone Milestone Capability Milestone
Milestone

« framework created by Rational, acquired by IBM in 2003
« four phases:

— inception: business planning, requirements gather

— elaboration: mitigate risks, use cases, dev. plan, architecture, prototypes
— construction: development, unit tests, QA

— transition: user acceptance testing, training
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agile methods
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< pure waterfall cowboy coding>

 refers to a group of software development
methodologies created as a reaction against the
heavily regulated, regimented, micro-managed use
of the waterfall model (“pure waterfall”).

* developed in the mid-1990’s as “lightweight
methods”. most popular ones to survive are:
— scrum — 1995
— extreme programming (XP) - 1996

« “agile” term was first used in 2001.
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http://aqgilemanifesto.orqg/

we are uncovering better ways of developing
software by doing it and helping others do it.
through this work we have come to value:

Individuals and interactions over processes and tools
working software over comprehensive documentation
customer collaboration over contract negotiation
responding to change over following a plan

that is, while there is value in the items on
the right, we value the items on the left more
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 our highest priority is to satisfy the customer
through early and continuous delivery of
valuable software.

« welcome changing requirements, even late in
development. agile processes harness change
for the customer's competitive advantage.

 deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter timescale.

* business people and developers must work
together daily throughout the project.
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 build projects around motivated individuals.
give them the environment and support they
need, and trust them to get the job done.

« the most efficient and effective method of
conveying information to and within a
development team is face-to-face conversation.

« working software is the primary measure of
progress.

* agile processes promote sustainable
development. the sponsors, developers, and
users should be able to maintain a constant pace
indefinitely.
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e continuous attention to technical excellence
and good design enhances agility.

« simplicity — the art of maximizing the amount of
work not done — is essential.

* the best architectures, requirements, and
designs emerge from self-organizing teams.

 at reqgular intervals, the team reflects on how to
become more effective, then tunes and adjusts
its behavior accordingly.
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« XP = eXtreme Programming (Beck 1999)

UFnﬂnished
- frequent “releases” in short development cycles eqlures
* manage by features (“user story” / “use cases”) Most Important

) ) ) i Features
— release planning / iteration planning

Iterative

e continuous integration Planning
« pair programming (continuous code review) i)

Heart

« unit testing of all code Working Honest
Software Plans
« avoiding programming of features until
they are actually needed Emmwe’"‘e"‘
« simplicity and clarity in code Daily Commumcatlon

« frequent communication (customers and coders)

« expecting changes in the customer's requirements as time
passes and the problem is better understood

« coding standard
« collective code ownership
« sustainable pace
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Each cycle:
approx 2 weeks
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Each cycle:
approx 2 weeks

Suggested Feature
(Task & Sub-Task) ~ ((Delivered
Workflow for TPA R&D

cccccccc




% The Edward S. Rogers Sr. Department
k72 of Electrical & Computer Engineering
XJ UNIVERSITY OF TORONTO scrum

« scrum (Schwaber & Beedle 2001)

e product owner, team, scrum master

« “sprints” 2-4 weeks

« “stories” are described and sized in “units” or “points”

« team commits to number of “points” they can do in next sprint

« product owner picks stories accordingly

« product owner tests stories and gives feedback after each sprint

DAILY SCRUM
MEETING

24 HOuURs

POTENTIALLY
SHIPPABLE
PROobDpucCT
INCREMENT

[

SPRINT
BACKLOG

PRODUCT
BACKLOG

2-4 WEEKS

copyriGHT © 2005, MOUNTAIN BOAT SOFTWARE
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* In 2011 this fable was removed from the
SCrum process

— pigs (committed): project owner, scrum master,
development team

— chickens (involved): customers, executive
management

— rooster: struts around offering unrequested,
uninformed & unhelpful opinions

— analogy is breakfast — bacon & eggs
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“Agile” vs “Sturdy”

Iterative <— Planned
Small increments <—> Analysis before design

Adaptive planning <— Prescriptive planning
Embrace change <— Control change
Innovation and exploration <—> High ceremony

Trendy <— Traditional
Highly fluid <— Upfront design / architecture
Feedback driven «<—> Negotiated requirements

Individuals and Interactions <—> Processes and Tools

Human communication <—> Documentation

Small teams <— Large teams
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« feature-driven development is not in question.
— almost nobody believes in pure waterfall

— written reqs/specs/design for entire release = waterfall

— written requirements/spec/design per feature when
necessary # waterfall

* advocated where necessary in agile
e continuous integration, keeping the code in good
shape at all times & automated architectural regression
testing? yes!
 full unit tests? usually impractical
e pair programming? sometimes, maybe
« frequent communications? yes!
— involving stakeholders? yes (if they will attend!)

« simple design with constant re-factoring? yes, mostly
— but too extreme to never design for the future.
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« commit only to next sprint? not practical
« use of “points” as opposed to a time unit? no
— everyone outside of development will not trust it
« coding standards and collective code ownership? yes
 eliminate final test phase? not practical
— reduce it with code/test iterations within the coding phase
« use working software as the primary measure of
progress? yes, for the most part

— for big-bang releases, | advocate:
» feature demos during the development process.
* independent function testing during the coding phase.
 reflect on release plan when a feature is done by above def’n.
* relentlessly plan and manage to dcut (= feature complete)
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* welcome changing requirements? can’t avoid

— but within a planning framework. cannot welcome all
changes without considering the impact on the end-
dates.

« sustainable development? yes
— but unrealistic without careful planning

* the best architectures, requirements, and
designs

emerge from self-organizing teams? not
convinced

* beware: it's easy to proudly claim agile but
actually be doing cowboy development!
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 all processes have their pros and cons, but
only in the context of a given project.

— does continuous deployment make sense for
the next version of microsoft office?

— what process is best for an x-ray machine?

— space shuttle avionics — hal/s developed
specifically for shuttle

 completely independently developed primary
and backup systems!

— curiosity rover software, installed in flight! and
then upgraded on mars!

e again, depends on the nature of the project
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« do these things, and you are doing well!

source code

i control reproducible
infrastructure / — roduc

AN

automated
regression
testing

defect/feature
tracking

control
, effort process
refinement tracking ! control
business

planning




