
software development
lifecycle (sdlc) models &

agile methods

sdlc%

how did that happen?

•  by analogy with civil engineering, where you
design first, then do construction

•  in software, there is no “construction”
it’s all design

•  used to be called coding

sdlc%(2)% sdlc%(3)%

•  what is a software development process?
•  what is the lifecycle of a software project?

•  will talk about “agile” later. first, we’ll talk
about “disciplined” or is it “traditional?” or is
it “sturdy?” or is it “planned?” or is it…

•  tend to talk about sdlc in terms of a
dichotomy
–  !“agile”!vs.!well…um…“not!agile”!
–  or,!“planned”!vs.!“con8nuous”!
–  others!tend!to!(incorrectly)!think!that!the!
deployment!method!implies!the!process!

•  saas!==!agile!
•  installed!==!tradi8onal!

•  think more in terms applying the process
on an individual feature, or an aggregate

sdlc%(4)% example%feature%workflow%

goal%of%sdlc%

•  what’s the goal of a good sdlc?
–  passes!all!the!tests!(external!quality!aAributes)!
–  good!design/architecture!(internal)!
–  good!user!experience!(quality!in!use)!
–  process!quality!(can!process!help!ensure!
product!quality)!

waterfall%

•  move from one phase to the next only when its preceding phase is
completed and perfected.

•  first mentioned by Royce in 1970 as an example of a flawed, non-
working model for software development.

•  US department of defence projects attempted to entrench this
model by requiring their contractors to produce the waterfall
deliverables and then to formally accept them to a certain schedule
(US military standard DoD-2167)
–  there!was!a!unwieldy!process!for!going!back!and!amending!previous!

deliverables!

Requirements!

Design!

Construc8on!

Integra8on!

Debugging!

Maintenance!

Installa8on!

waterfall%(2)%

problems

•  static view of requirements – ignores volatility
•  lack of user involvement once specification is

written
•  unrealistic separation of specification from

design
•  doesn’t easily accommodate prototyping,

reuse, etc.

waterfall%(3)%
more problems

•  often tracked with Gantt charts!
–  printed!and!taped!up!on!the!wall!
–  out!of!date!immediately!
–  difficult!to!move!tasks!between!developers!

•  must!assign!all!tasks!before!star8ng!!
–  start!wri8ng!in!changes!–!disaster!mess!!

Bohem’s%cost%of%change%

•  Software Engineering Economics – Barry Boehm, 1981
–  data!from!waterfallMbased!projects!in!1970s!at!IBM!
–  acknowledged!!“architectureMbreaker”!flawed!assump8ons!
–  small!project!–!1:4,!large!project!–!1:100!
–  also!known!as!“soWware!rot”!

v>model%

rapid%prototyping%

•  prototyping used for:
–  understanding!requirements!for!the!user!interface!
–  determining!feasibility!of!a!proposed!design!

•  problems:
–  users!treat!the!prototype!as!the!solu8on!(or!boss!thinks!it’s!done!)!
–  prototype!is!only!a!par8al!specifica8on!

phased%lifecycles%

spiral%model% raAonal%unified%process%
•  inception

–  establish!scope!
–  build!business!case!
–  stakeholder!buyMin!

•  elaboration
–  iden8fy!&!manage!risks!
–  work!out!architecture!
–  focus!on!high!risk!items!

•  construction
–  iterate!&!build!opera8onal!version!
–  develop!docs!&!training!material!

•  transition
–  fineMtune!
–  resolve!config,!install!&!usability!

issues!

raAonal%unified%process%(2)%

•  framework created by Rational, acquired by IBM in 2003
•  four phases:

–  incep8on:!business!planning,!requirements!gather!
–  elabora8on:!mi8gate!risks,!use!cases,!dev.!plan,!architecture,!prototypes!
–  construc8on:!development,!unit!tests,!QA!
–  transi8on:!user!acceptance!tes8ng,!training!

agile methods

agile%

•  refers to a group of software development

methodologies created as a reaction against the
heavily regulated, regimented, micro-managed use
of the waterfall model (“pure waterfall”).

•  developed in the mid-1990’s as “lightweight
methods”. most popular ones to survive are:
–  scrum!–!1995!
–  extreme!programming!(XP)!M!1996!

•  “agile” term was first used in 2001.

pure waterfall cowboy coding

agile%manifesto%
http://agilemanifesto.org/

we are uncovering better ways of developing
software by doing it and helping others do it.
through this work we have come to value:

individuals and interactions over processes and tools

working software over comprehensive documentation

customer collaboration over contract negotiation

responding to change over following a plan

that is, while there is value in the items on
the right, we value the items on the left more

12%agile%principles%%

•  our highest priority is to satisfy the customer
through early and continuous delivery of
valuable software.

•  welcome changing requirements, even late in
development. agile processes harness change
for the customer's competitive advantage.

•  deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter timescale.

•  business people and developers must work
together daily throughout the project.

12%agile%principles%(2)%

•  build projects around motivated individuals.
give them the environment and support they
need, and trust them to get the job done.

•  the most efficient and effective method of
conveying information to and within a
development team is face-to-face conversation.

•  working software is the primary measure of
progress.

•  agile processes promote sustainable
development. the sponsors, developers, and
users should be able to maintain a constant pace
indefinitely.

12%agile%principles%(3)%

•  continuous attention to technical excellence
and good design enhances agility.

•  simplicity – the art of maximizing the amount of
work not done – is essential.

•  the best architectures, requirements, and
designs emerge from self-organizing teams.

•  at regular intervals, the team reflects on how to
become more effective, then tunes and adjusts
its behavior accordingly.

eXtreme%Programming%(XP)%

•  XP = eXtreme Programming (Beck 1999)
•  frequent “releases” in short development cycles
•  manage by features (“user story” / “use cases”)

–  release!planning!/!itera8on!planning!
•  continuous integration
•  pair programming (continuous code review)
•  unit testing of all code
•  avoiding programming of features until

they are actually needed
•  simplicity and clarity in code
•  frequent communication (customers and coders)
•  expecting changes in the customer's requirements as time

passes and the problem is better understood
•  coding standard
•  collective code ownership
•  sustainable pace

XP%alternate% XP%alternate%(2)%

scrum%
•  scrum (Schwaber & Beedle 2001)
•  product owner, team, scrum master
•  “sprints” 2-4 weeks
•  “stories” are described and sized in “units” or “points”
•  team commits to number of “points” they can do in next sprint
•  product owner picks stories accordingly
•  product owner tests stories and gives feedback after each sprint

scrum%fable%

•  in 2011 this fable was removed from the
scrum process
–  pigs!(commiAed):!project!owner,!scrum!master,!
development!team!

–  chickens!(involved):!customers,!execu8ve!
management!

–  rooster:!struts!around!offering!unrequested,!
uninformed!&!unhelpful!opinions!

–  analogy!is!breakfast!–!bacon!&!eggs!

personal%experience%
•  feature-driven development is not in question.

–  almost!nobody!believes!in!pure!waterfall!
–  wriAen!reqs/specs/design!for!en#re!release!≈!waterfall!
–  wriAen!requirements/spec/design!per!feature!when!

necessary!≠!waterfall!
•  advocated!where!necessary!in!agile!

•  continuous integration, keeping the code in good
shape at all times & automated architectural regression
testing? yes!

•  full unit tests? usually impractical
•  pair programming? sometimes, maybe
•  frequent communications? yes!

–  involving!stakeholders?!yes&(if&they&will&a/end!)&
•  simple design with constant re-factoring? yes, mostly

–  but!too!extreme!to!never!design!for!the!future.!

personal%experience%(2)%

•  commit only to next sprint? not practical
•  use of “points” as opposed to a time unit? no

–  everyone!outside!of!development!will!not!trust!it!
•  coding standards and collective code ownership? yes
•  eliminate final test phase? not practical

–  reduce!it!with!code/test!itera8ons!within!the!coding!phase!!
•  use working software as the primary measure of

progress? yes, for the most part
–  for!bigMbang!releases,!I!advocate:!

•  feature!demos!during!the!development!process.!
•  independent!func8on!tes8ng!during!the!coding!phase.!
•  reflect!on!release!plan!when!a!feature!is!done!by!above!def’n.!
•  relentlessly!plan!and!manage!to!dcut!(=!feature!complete)!

personal%experience%(3)%

•  welcome changing requirements? can’t avoid
–  but!within!a!planning!framework.!cannot!welcome!all!
changes!without!considering!the!impact!on!the!endM
dates.!

•  sustainable development? yes
–  but!unrealis8c!without!careful!planning!

•  the best architectures, requirements, and
designs
emerge from self-organizing teams? not
convinced

•  beware: it’s easy to proudly claim agile but
actually be doing cowboy development!

which%process%is%the%best?%

•  all processes have their pros and cons, but
only in the context of a given project.
–  does!con8nuous!deployment!make!sense!for!
the!next!version!of!microsoW!office?!

– what!process!is!best!for!an!xMray!machine?!
–  space!shuAle!avionics!–!hal/s!developed!
specifically!for!shuAle!

•  completely!independently!developed!primary!
and!backup!systems!!

–  curiosity!rover!soWware,!installed!in!flight!!and!
then!upgraded!on!mars!!

•  again, depends on the nature of the project

summary%

•  do these things, and you are doing well!

infrastructure

control

refinement

source code
control

defect/feature
tracking

reproducible
builds

automated
regression

testing

Agile Horizon
Planning

feature
specifications architectural

control

business
planning

effort
tracking process

control

