% The Edward S. Rogers Sr. Department
& of Electrical & Computer Engincering
&% UNIVERSITY OF TORONTO

software development
lifecycle (sdic) models &
agile methods

% The Edward S. Rogers Sr. Department
[@ of Electrical & Computer Enginecering

XJ UNIVERSITY OF TORONTO sdlc

how did that happen? o

* by analogy with civil engineering, where you
design first, then do construction

* in software, there is no “construction”
it's all design

» used to be called coding

% The Edward S. Rogers Sr. Department
2, of Electrical & Computer Engincering
&7 UNIVERSITY OF TORONTO SdIC (2)

HOW TO WRITE GOOD CODE:

THROW IT ALL OUT
AND START OVER.

% The Edward S. Rogers Sr. Department
[@ | of Electrical & Computer Engineering

XY UNIVERSITY OF TORONTO sdic (3)

* what is a software development process?
* what is the lifecycle of a software project?

+ will talk about “agile” later. first, we’ll talk
about “disciplined” or is it “traditional?” or is
it “sturdy?” oris it “planned?” or is it...

% The Edward S. Rogers Sr. Department
K: of Electrical & Computer Engincering

UNIVERSITY OF TORONTO sdic (4)

+ tend to talk about sdic in terms of a
dichotomy
— “agile” vs. well...um...“not agile”
— or, “planned” vs. “continuous”

— others tend to (incorrectly) think that the
deployment method implies the process
* saas == agile
* installed == traditional

 think more in terms applying the process
on an individual feature, or an aggregate

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Enginecering

PM/R&D

PM/R&D

attribute & size.
SHOULD have
developer assigned.

MUST have a
developer assigned.

R&D

Suggested Feature
(Task & Sub-Task)
Workflow for TPA R&D

Delivered

R&D
% The Edward S. Rogers Sr. Department % The Edward S. Rogers Sr. Department
(& of Electrical & Computer Engineering (& of Electrical & Computer Engineering
Y UNIVERSITY OF TORONTO goal O_f sdlc XJ UNIVERSITY OF TORONTO water f all

» what’s the goal of a good sdlc?
— passes all the tests (external quality attributes)
— good design/architecture (internal)
— good user experience (quality in use)

— process quality (can process help ensure
product quality)

Installation
Maintenance

* move from one phase to the next only when its preceding phase is
completed and perfected.

« first mentioned by Royce in 1970 as an example of a flawed, non-
working model for software development.

» US department of defence projects attempted to entrench this
model by requiring their contractors to produce the waterfall
deliverables and then to formally accept them to a certain schedule
(US military standard DoD-2167)

— there was a unwieldy process for going back and amending previous
deliverables

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Enginecering

&% UNIVERSITY OF TORONTO

waterfall (2)

problems

+ static view of requirements — ignores volatility

* lack of user involvement once specification is
written

* unrealistic separation of specification from
design

* doesn’t easily accommodate prototyping,
reuse, etc.

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Enginecering

waterfall (3)

» often tracked with Gantt charts!
— printed and taped up on the wall
— out of date immediately
— difficult to move tasks between developers
* must assign all tasks before starting!
— start writing in changes — disaster mess!

% The Edward S. Rogers Sr. Department

(& of Electrical & Computer Engineering

Bohem’s cost of change

Maintenance ——

Design Done

Cost of a Change

—Wall of Unmaintainability

Time
» Software Engineering Economics — Barry Boehm, 1981
— data from waterfall-based projects in 1970s at IBM
— acknowledged “architecture-breaker” flawed assumptions
— small project — 1:4, large project — 1:100
— also known as “software rot”

% The Edward S. Rogers Sr. Department
(& of Electrical & Computer Engineering
UNIVERSITY OF TORONTO v-model

system system

requirements \ / integration
software acceptance
requirements test
\ /
liminary software

pr
\ design integration f
“analyse ~ el “test

Level of absfraction

and detailed p and
design” design test integrate”
\ code and unit /
debug ™ test
time

% The Edward S. Rogers Sr. Department
[@ of Electrical & Computer Engincering
UNIVERSITY OF TORONTO

rapid prototyping

Preliminary| design build evaluate

requirement§ prototype prototype | prototype

Specify full

design code test integrate

requirements

» prototyping used for:
— understanding requirements for the user interface
— determining feasibility of a proposed design
* problems:
— users treat the prototype as the solution (or boss thinks it’s done!)
— prototype is only a partial specification

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Enginecering
v/ UNIVERSITY OF TORONTO

phased lifecycles

Release 1
F desin | code | test [mtearate] 0am | (oach relasse adds more.
o release 2 functionality)
'§. _’Izgn ‘ code I test Iinfcgraf¢| 0&m
release 3
; —”?ign | code | test |im¢qra?c| 0&M |
release 4
|design | code | test |infegra?e| 0&M ‘
version 1
reqts | design ’ code | test ’im’egmfe| 0&M |
—— lessons learnt
’Tzqﬂ | de:igg\ l code | test Iinfcgrnf¢| 0&M l
Evolutionary development ,ersion 3 l"“""‘ ”f"’" l,
each;/;r;s;:s#g{:;ﬁ::;‘l‘es reqts | design | code | test |ime9rufe

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering
UNIVERSITY OF TORONTO

spiral model

Determine goals, Evaluate
alter‘naﬁ_ves, alternatives
constraints and risks

Develop
and
test

""lplemg,,mmn plan

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Enginecering
&/ UNIVERSITY OF TORONTO

rational unified process

* inception - —
— establish scope Iteration O

— build business case Iteration #1

— stakeholder buy-in

+ elaboration
— identify & manage risks

Iteration #2
— work out architecture Iteration #n
— focus on high risk items

+ construction
— iterate & build operational version
— develop docs & training material

* transition
— fine-tune

Iteration #m

lteration #t

— resolve config, install & usability

issues Iteration #t+1

% The Edward S. Rogers Sr. Department
K: of Electrical & Computer Engincering

UNIVERSITY OF TORONTO rational uniﬁed process (2)

Phases

Disciplines Inception Elaboration Construction Transition
= Business Modeling T —
® Requirements ‘

o Implementation — N

8 Test

® Deployment —
a Configuration and T

Change e ——
.

Project Management
= Environment

i
Initial E1 E2 c1 Cc2 CN T T2
tterations A\ A A A

Lifecycle Lifecycle Initial Product

Objectives Architecture Operational Release

Milestone Milestone Capability Milestone
Milestone

+ framework created by Rational, acquired by IBM in 2003
» four phases:
— inception: business planning, requirements gather
— elaboration: mitigate risks, use cases, dev. plan, architecture, prototypes
— construction: development, unit tests, QA
— transition: user acceptance testing, training

% The Edward S. Rogers Sr. Department
[@ of Electrical & Computer Enginecering
, UNIVERSITY OF TORONTO

techniqu
lifecycle

% The Edward S. Rogers Sr. Department
[@ | of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO aglle

<__pure waterfall cowboy coding >

+ refers to a group of software development
methodologies created as a reaction against the
heavily regulated, regimented, micro-managed use
of the waterfall model (“pure waterfall”).

+ developed in the mid-1990’s as “lightweight
methods”. most popular ones to survive are:
— scrum — 1995
— extreme programming (XP) - 1996

+ “agile” term was first used in 2001.

% The Edward S. Rogers Sr. Department
[@ | of Electrical & Computer Engineering

&% UNIVERSITY OF TORONTO

agile manifesto

http://agilemanifesto.org/

we are uncovering better ways of developing
software by doing it and helping others do it.
through this work we have come to value:

individuals and interactions over processes and tools
working software over comprehensive documentation
customer collaboration over contract negotiation
responding to change over following a plan

that is, while there is value in the items on
the right, we value the items on the left more

% The Edward S. Rogers Sr. Department

of Electrical & Computer Engincering

o UNIVERSITY OF TORONTO 12 agile principles

 our highest priority is to satisfy the customer
through early and continuous delivery of
valuable software.

* welcome changing requirements, even late in
development. agile processes harness change
for the customer's competitive advantage.

+ deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter timescale.

* business people and developers must work
together daily throughout the project.

% The Edward S. Rogers Sr. Department

of Electrical & Computer Engincering

o UNIVERSITY OF TORONTO 12 agile principles (2)

* build projects around motivated individuals.
give them the environment and support they
need, and trust them to get the job done.

» the most efficient and effective method of
conveying information to and within a
development team is face-to-face conversation.

» working software is the primary measure of
progress.

+ agile processes promote sustainable
development. the sponsors, developers, and
users should be able to maintain a constant pace
indefinitely.

% The Edward S. Rogers Sr. Department

of Electrical & Computer Engincering

o UNIVERSITY OF TORONTO 12 agile principles (3)

< continuous attention to technical excellence
and good design enhances agility.

+ simplicity — the art of maximizing the amount of
work not done — is essential.

» the best architectures, requirements, and
designs emerge from self-organizing teams.

+ at regular intervals, the team reflects on how to
become more effective, then tunes and adjusts
its behavior accordingly.

% The Edward S. Rogers Sr. Department

of Electrical & Computer Engincering

) UNIVERSITY OF TORONTO eXtreme Programming (XP)

+ XP = eXtreme Programming (Beck 1999)
» frequent “releases” in short development cycles
* manage by features (“user story” / “use cases”) Most Important

eatures

Unfinished
Features

— release planning / iteration planning

v,
+ continuous integration Paming
. i i i i A Project
pair programming (continuous code review) /" Lioartboat™\

* unit testing of all code Working Honest

Software Plans
» avoiding programming of features until Team
they are actually needed sl
» simplicity and clarity in code Daily Communication

« frequent communication (customers and coders)

» expecting changes in the customer's requirements as time
passes and the problem is better understood

« coding standard
» collective code ownership
» sustainable pace

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Enginecering
&% UNIVERSITY OF TORONTO

XP alternate

Each cycle:
approx 2 weeks

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Enginecering
» UNIVERSITY OF TORONTO

XP alternate (2)

Each cycle:
approx 2 weeks

Suggested Feature
(Task & Sub-Task)
Workflow for TPA R&D

()

% The Edward S. Rogers Sr. Department
@ of Electrical & Computer Engineering
Y UNIVERSITY OF TORONTO scrum

« scrum (Schwaber & Beedle 2001)

+ product owner, team, scrum master

* ‘“sprints” 2-4 weeks

» ‘“stories” are described and sized in “units” or “points”

+ team commits to number of “points” they can do in next sprint

» product owner picks stories accordingly

» product owner tests stories and gives feedback after each sprint

DAILY SCRUM
MEETING

SHIPPABLE
PRODUCT
INCREMENT

SPRINT

BACKLOG BACKLOG

\

POTENTIALLY
[PRODUET]

CoPYRIGHT © 2005, MOUNTAIN GOAT SOFTWARE

% The Edward S. Rogers Sr. Department
(2 of Electrical & Computer Engineering
7> UNIVERSITY OF TORONTO

scrum fable

* in 2011 this fable was removed from the
SCrum process

— pigs (committed): project owner, scrum master,
development team

— chickens (involved): customers, executive
management

— rooster: struts around offering unrequested,
uninformed & unhelpful opinions

— analogy is breakfast — bacon & eggs

The Edward S. Rogers Sr. Department
| @ _ of Electrical & Computer Engincering
@ UNIVERSITY OF TORONTO

“Agile” vs “Sturdy”

Iterative <—> Planned
Small increments <—> Analysis before design

Adaptive planning <— Prescriptive planning
Embrace change <—> Control change
Innovation and exploration «<—> High ceremony

Trendy <— Traditional
Highly fluid <—> Upfront design / architecture
Feedback driven «<—> Negotiated requirements

Individuals and Interactions <—> Processes and Tools

Human communication <—> Documentation

Small teams <— Large teams

% The Edward S. Rogers Sr. Department
% of Electrical & Computer Engincering

) UNIVERSITY OF TORONTO personal experience

+ feature-driven development is not in question.
— almost nobody believes in pure waterfall

— written reqs/specs/design for entire release = waterfall

— written requirements/spec/design per feature when
necessary # waterfall

* advocated where necessary in agile
» continuous integration, keeping the code in good
shape at all times & automated architectural regression
testing? yes!
+ full unit tests? usually impractical
* pair programming? sometimes, maybe
» frequent communications? yes!
— involving stakeholders? yes (if they will attend!)
» simple design with constant re-factoring? yes, mostly
— but too extreme to never design for the future.

The Edward S. Rogers Sr. Department
| @ _ of Electrical & Computer Engincering
@ UNIVERSITY OF TORONTO

personal experience (2)

+ commit only to next sprint? not practical
» use of “points” as opposed to a time unit? no
— everyone outside of development will not trust it
» coding standards and collective code ownership? yes
+ eliminate final test phase? not practical
— reduce it with code/test iterations within the coding phase
* use working software as the primary measure of
progress? yes, for the most part

— for big-bang releases, | advocate:
» feature demos during the development process.
* independent function testing during the coding phase.
« reflect on release plan when a feature is done by above def'n.
* relentlessly plan and manage to dcut (= feature complete)

% The Edward S. Rogers Sr. Department
| @ of Electrical & Computer Engincering
@ UNIVERSITY OF TORONTO

personal experience (3)

+ welcome changing requirements? can’t avoid

— but within a planning framework. cannot welcome all
changes without considering the impact on the end-
dates.

+ sustainable development? yes
— but unrealistic without careful planning

» the best architectures, requirements, and
designs
emerge from self-organizing teams? not
convinced

* beware: it's easy to proudly claim agile but
actually be doing cowboy development!

% The Edward S. Rogers Sr. Department
2y of Electrical & Computer Engincering
¢ UNIVERSITY OF TORONTO

« all processes have their pros and cons, but
only in the context of a given project.
— does continuous deployment make sense for
the next version of microsoft office?
— what process is best for an x-ray machine?

— space shuttle avionics — hal/s developed

specifically for shuttle
* completely independently developed primary

and backup systems!
— curiosity rover software, installed in flight! and
then upgraded on mars!

which process is the best?

* again, depends on the nature of the project

% The Edward S. Rogers Sr. Department
2, of Electrical & Computer Engincering
X UNIVERSITY OF TORONTO summary

* do these things, and you are doing well!

source code
infrastructure control
defect/feature
tracking

reproducible
builds

automated
regression
testing

control \
. effort process
refinement tracking control
business
planning

