

planning

- discussed the top-10 essential practices for software development:
 - source code control
 - 2. issue tracking
 - 3. build automation
 - 4. automated regression tests
 - 5. release planning
 - 6. design specifications
 - 7. architecture control
 - 8. effort tracking
 - 9. process control
 - 10. business planning

capability maturity model

- classifies an organization's maturity into 5 levels
 - each level prescribes a group of practices
 - CMM is also a road to process improvement
 - must have all lower-level practices in place before attempting next level
- can be certified to a certain CMM level
 - some similarities to ISO 9000
 - not universally agreed to be a good thing, but is an interesting exercise

capability maturity model (2)

capability maturity model (3)

relationship to ISO 9000

- ISO 9000 is a set of quality standards
 - subset of these are specific to software
 - must document the process
 - must maintain "quality records"
 - used in audits to ensure adherence to the process
 - process can be anything

relationship to top-10

- top-10 practices are necessary to achieve CMM level 2 (repeatable)
- also, top-10 includes enough level 3 (defined) stuff to attain ISO 9000 certification
- and, top-10 even includes some level-4 (quantitatively managed) stuff, where most useful
 - defect arrival/departure rates
 - estimate vs. actuals

- planning is the most important aspect of CMM Level 2
- common flaws regarding planning
 - making no plans!
 - make a plan, but don't track it
 - attempt to track the plan with inadequate tools
 - Gantt charts
 - Microsoft Project

- planning isn't always a good thing
 - release/expected date is not important
 - no expectations on new functionality
 - proof-of-concept (a.k.a. "spike")
- planning is required when external pressures come to bear on feature availability dates
- doesn't usually apply to first releases, but is necessary to "cross the chasm"

crossing the chasm

book by Geoffrey Moore (1991)

planning essentials

What are we building? By when will it be ready? How many people do we have?

- answer these questions, and nothing more
 - not "who will be doing what?"
 - not "what are the detailed tasks required?"
 - not "in what order must the tasks be performed?"

implementation plans

- once initial planning is complete we can transition to a more detailed development plan
- this more detailed plan sorts out:
 - who is assigned to what
 - dependencies between features
 - etc.

of mice and men

"The best-laid schemes o' mice an' men Gang aft agley" - Robbie Burns

- the essence of planning is uncertainty
 - plans never go "according to plan"
 - must embrace change rather than resisting it
- how to make plans and embrace change?
 - track the plan constantly, not just at the start
 - react quickly & decisively to adverse situations
 - embrace a change in direction
 - re-plan quickly, can't be hard to deal with unexpected changes

Gantt charts == harmful

agile planning with pivotal

storyboarding with trello

internal changes

- estimation errors
 - initial estimates contain a significant (usually one-sided) margin of error
 - as plan progresses, and more information becomes available, variance in errors drops
- developer availability changes
 - illness, parental leave, resignations, cut backs, unexpected vacation plans, unexpectedly low hours of work, unexpected low productivity

external changes

- new (big) customer with specific demands
- pressure from competition
- collaboration opportunities
- acquisitions & mergers
- sudden changes in customer needs
 - ex. regulatory changes that affect them

the difficult question

- what are we building?
 - hard for 1st release, later ones have big wish list
 - marketing/product manager pick ones that will get most sales
- by when will it be ready?
 - too soon: customers won't be ready, won't want to learn, install, pay for it
 - too late: competition will pass you, customers will forget you == forgone revenue
- how many developers?
 - usually fixed for a given release, or planning horizon

the difficult question (2)

What are we building? By when will it be ready? How many people do we have?

the difficult question is:

can we do all 3 at once?

a common problem

- often organizations will answer all 3 questions,
 but not address the difficult one
- development mgmt. wants to please the rest of the company and agrees to too much – gung-ho spirit!
 - some actually believe in over-commitment to boost productivity – "it's a stretch, but we'll pull it off!"
- developers will say "it can't be done!" but that's all those folks ever say, right?

a common problem (2)

- major state of denial sets in...
 - or sometimes hopeless optimism
 - everybody is secretly hoping for a miracle
- nobody will accept any blame, and why should they?
 - dev. mgmt.: "we told you it was a stretch!"
 - developers: "we said it couldn't be done!"
 - marketing & sales: "R&D, should have said something earlier!"
 - CEO: "you all told me everything was fine!"
 - Yourdon's death march...

a common problem (3)

Death March – Edward Yourdon

the solution – good planning

- the "death march" doesn't need to happen
- to avoid it we need some courage and conviction
- also need common sense:
 - is it even feasible to do what's asked by the date required?
 - don't give a quick (off-the-cuff) answer even if it's obviously impossible
 - put together a plan to demonstrate the facts.

agile horizon planning

- provide a software planning framework
 - that balances
 - business concerns
 - software development concerns
 - provides better predictability of
 - end-date
 - delivered defect-minimized feature set
 - provides early notification of slips
 - allows for re-planning as events unfold
 - deals explicitly with uncertainty

product lifecycle

follow-on lifecycles

simple Git branching model

complex Git branching model

SaaS lifecycle

- more frequent release of code to production
 - forced upgrade spreads the risk
 - low release overhead possible
- planning horizon is according to business convenience or planning necessities

UNIVERSITY OF TORONTO eliciting potential requirements

- starts with a wish-list
- stated as business requirements
 - features for architectural enhancements

simple release plan

Dates: Coding phase: Jul.1—Oct.1

Beta availability: Nov.1 General availability: Dec.1

Capacity: <u>days available</u>

Fred 31 ecd Lorna 33 ecd

 Bill
 21 ecd

 total
 317 ecd

Requirement: <u>days required</u>

AR report 14 ecd Dialog re-design 22 ecd

.. ...

Thread support 87 ecd 17 total 317 ecd

Status: Capacity: 317 effective coder-days

Requirement: 317 effective coder-days

Delta: 0 effective coder days

simple SaaS horizon plan

Horizon: Dates: Jul.1—Dec.1

Workdays: 104
Coding Factor: 0.75
Coding Days: 77
Sprints: 5

Capacity: <u>days available</u>

Fred 31 ecd Lorna 58 ecd

.. ..

Bill 47 ecd 317 ecd

Requirement: <u>days required</u>

AR report 14 ecd Dialog re-design 22 ecd

.. ..

Thread support 87 ecd total 317 ecd

Status: Capacity: 317 effective coder-days

Requirement: 317 effective coder-days

Delta: 0 effective coder days

sizing available resources

- who can work on the release?
 - skills & familiarity required
- for how long?
 - count of workdays in development phase (horizon)
 - is each resource (developer) available for the entire development phase?
 - are they available 100% or are working on other projects too?
 - subtract (estimated, where necessary) vacation

sizing available resources (2)

- how much time can the developers spend actually writing code?
 - work factor = w
 - converts 8-hour (nominal, arbitrary) days to time available to write code and unit tests for the next release (or horizon)
 - $ex. w = 0.6 \Rightarrow 0.6 \times 8 \text{ h/d} = 4.8 \text{ h/d}$
 - first estimated, then measured quantity
 - accounts for things like:
 - sick days, other tasks, meetings, etc.
 - for a "normal" developer is usually around 0.6

sizing potential requirements

- cost / benefit analysis
 - cost: financial + opportunity
- sizing in ECDs
 - planning poker: Inherent size of the work item
 - who will work on it? resize
 - productivity of that person (w)
- ensure that units are well understood

the capacity constraint

after all is done in a release (horizon)...

<u>actual</u> resources used == sum of <u>actual</u> feature time

- this is always true no matter what, so it really is a constraint
- so, given that we know this must work out for each planning cycle, we estimate both sides and force them to be equal

resource <u>estimate</u> == sum of feature <u>estimates</u>

geometric analogy – capacity

geometric analogy - requirement

of Electrical & Computer Engineering UNIVERSITY OF TORONTO geometric analogy – capacity constraint

everything must fit!

planning

- what are we building?F
- when will it be ready?
- how many developers?N

$F \leq N \times T$

- plan must respect the capacity constraint
- must continuously update the plan to maintain this property

- in horizon planning we explicitly plan coding activities only
 - other resources: testers, docs, managers
 - other phases: spec., test, etc. (non-coding)
 - above sized relative to coding phase/resource
- why?
 - debugged code is ultimate target can't ship feature set if it's only 90% done for example
 - how much time to devote to docs, testing, spec?
 - when is enough, enough?

UNIVERSITY OF TORONTO planning non-coding activities (2)

- how?
 - establish ratios
 - measure what works for ratios for a given product
 - adjust next time around
 - converges rapidly
 - initial guess is usually pretty good

resource ratios

- typical ratios used in horizon planning
- adjust as necessary
- assumes availability throughout the (overlapping) release cycle.

traditional phase ratios

- typical ratios used for shipping software using traditional practices
- adjust as necessary
- if performing extensive automated unit testing during coding phase (possibly utilizing TDD), test phases can be considerably reduced (5:1)

traditional release overlap

overlapping release cycles smoothes resource utilization

shipping the traditional release

- after dcut, proactive management is gone
- can only watch defect arrivals and hope for the best.
 - if your ratios are way off you could be in trouble and not know until it's in the field
 - react by adjusting them for next time (hope there is a next time!)

SaaS coding ratio

use a ratio of:

to
workdays in the planning horizon

- one definition of a PCD may be any day where a coder spends > 1 hour coding features in the next release
- defects should be managed at every sprint, and a stabilization sprint inserted when the levels are too high.