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concepts	  &	  terminology	  
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cost	  of	  feature	  releases	  

•  considerable overhead associated with a 
feature release 
–  system	  tes'ng	  
– marke'ng	  collateral	  
–  launch	  events	  
–  customer/partner	  briefings	  
–  new	  training	  courses	  &	  material	  
–  new	  training	  internally	  
–  burn	  CDs	  and	  shrink-‐wrap	  boxes	  
– website	  down'me	  
– …	  



cost	  of	  feature	  releases	  (2)	  

•  largest cost of them all 
–  increased	  maintenance	  burden	  from	  suppor'ng	  
another	  version	  in	  the	  field	  

•  reproduce	  bugs	  in	  mul'ple	  codelines	  
•  decide	  what/when	  to	  fix	  
•  re-‐test,	  re-‐release	  

•  maintenance releases are much less costly 
–  regression	  tests	  will	  catch	  problems	  



simultaneous	  release	  support	  

•  generally support 2 feature release 
maintenance streams 

•  sometimes need to support 3 or more! 
•  MUST try to limit this 
•  if not, maintenance will erode and company 

will not be able to respond quickly to 
market conditions 
–  extreme	  is	  separate	  release	  per	  customer	  

•  how do web apps and mobile apply? 



simultaneous	  release	  support	  (2)	  

•  opportunity cost of developers 
–  a	  trained	  developer	  is	  a	  scarce	  and	  valuable	  
resource!	  

–  new	  features	  or	  maintenance	  tradeoff	  
–  opportunity	  cost	  of	  maintenance	  is	  the	  revenue	  
the	  new	  feature	  might	  have	  brought	  in	  

–  opportunity	  cost	  of	  feature	  development	  is	  
customer	  loss	  due	  to	  lack	  of	  maintenance	  



8me	  between	  releases	  

•  feature releases are costly: 
–  therefore	  increase	  the	  'me	  between	  releases	  

•  but, customers want more features 
–  therefore	  decrease	  the	  'me	  between	  releases	  

•  but, they also want stability in their own IT 
environment 
–  therefore	  increase	  the	  'me	  between	  releases	  
–  some'mes	  customers	  get	  very	  s'cky	  on	  old	  
releases	  

–  need	  to	  make	  the	  new	  release	  compelling	  to	  end-‐
users	  



8me	  between	  releases	  (2)	  

•  what if one customer or prospect wants a new 
feature? 
–  new	  feature	  release?	  
–  probably	  not	  

•  what if the market condition changes rapidly? 
–  cut	  short	  current	  release	  to	  rush	  it	  out?	  
–  go	  back	  to	  last	  release,	  extend	  it,	  and	  put	  that	  out?	  
–  costly:	  because	  of	  short	  release	  cycle	  will	  need	  to	  
support	  >	  3	  releases	  in	  the	  field.	  



pushing	  back	  

•  a successful development manager will need 
to distinguish between people asking for 
things that can be pushed off, and truly 
urgent things 
–  everything	  is	  presented	  as	  the	  laIer!	  

•  track the request back to its source, 
personally 
– will	  learn	  the	  true	  nature	  of	  thee	  request	  
–  can	  deal	  with	  80%	  of	  “urgent”	  requests	  in	  this	  
manner	  



features	  in	  maintenance	  releases	  
•  tried pushing back 
•  cannot justify a new feature release 
•  customer/prospect still wants/needs features earlier than 

the next scheduled feature release 
•  what now? 

•  slip new features into a maintenance release 
•  in theory, maintenance releases should change no 

externally visible program behavior (other than to correct it 
if faulty) 

•  what the heck, do it anyways 
•  does not have the cost of a new feature release 
•  why not? 



features	  in	  maintenance	  releases	  (2)	  

•  cannot introduce new code without introducing 
new defects 

•  reasons for adding code: feature, bug fix 

•  if fixing bugs: 
–  fix	  2,	  add	  1:	  trend	  is	  good:	  -‐1	  
– will	  eventually	  get	  them	  all	  –	  converge	  on	  quality	  

•  if also doing new features: 
–  fix	  2,	  add	  1,	  add	  new	  feature,	  add	  4:	  trend	  is	  bad:	  
+3	  –	  diverging	  quality	  



nega8ve	  leveraging	  

•  the new feature is only useful to one customer 

•  the defects introduced as a result can negatively 
impact every customer 

•  because touching code risks breaking ANYTHING, 
ANYWHERE 

•  customers get irate if a “maintenance release” 
breaks previously working functionality 
–  danger	  even	  when	  just	  fixing	  defects	  
–  gets	  much	  worse	  if	  adding	  features	  



release	  prolifera8on	  

•  if your software is generally of poor quality 
customers will be slow to upgrade due to fear 
of more bugs 
–  leads	  to	  suppor'ng	  many	  releases	  

•  EVEN WORSE: if customers come to fear 
maintenance releases the situation multiplies 
–  customers	  may	  insist	  on	  patches	  to	  their	  
maintenance	  level	  

–  turns	  every	  point	  release	  into	  its	  own	  
maintenance	  stream!	  



mi8ga8ng	  the	  consequences	  

•  “can we do it between releases?” 
•  “it’s a web app, so it’s easy” 

•  ugh! if absolutely forced to, then: 
– MUST	  have	  excellent	  regression	  tes'ng	  
environment	  

–  segregate	  new	  func'onality	  with	  run'me	  
configura'on	  switch	  

•  code	  review	  to	  ensure	  switch	  off	  ==	  no	  new	  code	  
in	  the	  system	  

–  try	  not	  to	  allow	  this	  to	  set	  a	  precedent	  



versions	  



versions	  
•  as distinguished from “releases”. 
•  different variants of the same software 

–  differ in small ways 

•  does not apply as much to SaaS 

 

R3.2.0 

R3.2.1a 

R3.2.1 
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R3.2.3 
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R3.3.0 
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must support: 
• stream of maintenance 

releases for each version 
• each feature release will 

continue to ship that version 
•  ideally at the same time 

hard to undo the decision to 
support a new version: 

• some customer now relies on it 

version reasons: 
• multiple hardware platforms 
• multiple os’s 
• multiple databases 
• multiple app frameworks 
• multiple partner software 
• security 
•  functional tiers 
• demoware 
•  translations 
• customizations 



cost	  of	  versions	  

•  surprisingly costly to support many versions 
–  not the development cost: relatively cheap – just another feature 
–  ongoing maintenance costs 

•  technical means: 
–  different code (linked differently or #ifdef’d) 
–  run-time switches (e.g., dynamically detect version of Windows and 

change API calls appropriately). 
–  different dev platform and tools 
–  binary-compatible: different test environments 

•  in any case: 
–  testers must test all supported versions 
–  coders must bear in mind they are supporting multiple versions 
–  must track down bugs in each version and fix 



javascript	  web	  apps	  



version	  prolifera8on	  

•  software company will support many versions 
in hopes sales will increase 
–  each version opens up a new market segment 

•  danger: too hastily commit to supporting too 
many versions 

•  be aware of costs and push-back 

•  if in the business of supporting many versions: 
–  architect the software well to support it 
–  construct a superb multi-platform automated build/test 

environment 



customized	  soAware	  
•  a different variant of the software for important customers 

–  static methods: require a distinct executable 
–  dynamic methods: same executable 

•  run-time switches 
•  alternate dll’s (.dylib, .so) 

•  if customization required on feature release boundary 
–  evaluate if feature’s dev opportunity costs are worth the revenue 

•  if customization required sooner 
–  either: 

•  carefully insert changes into the point release stream 
•  #ifdef all code and build a unique executable for the customer 

–  can we merge the changes into the next feature release? 
–  nothing very palatable here 

•  better to build in enough configurability that customers do not 
require customizations 
–  GUI-based configuration 
–  scripting-based configuration 



user	  extension	  API	  
•  allows customers to implement their own features into the 

software 
•  nowadays called “SOA” – implemented using web methods 
•  danger: 

–  must support the API forever more 
–  even if one already exists internally: 

•  clean it up 
•  identify public versus private APIs 
•  document it 
•  train customers on it 
•  hire programmers to provide help desk support on it 

–  support becomes “debug the customer’s code” 
•  maintain it unchanged 

–  do not inadvertently change behavior 

•  market it and sell it 
•  consult on it 

–  write it once 
–  support it forever? 

»  paid/unpaid? 
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