
releases	  



concepts	  &	  terminology	  

 
R3.2 (feature release) 

R3.2.0 (initial release) 

R3.2.1a (patch release) 

R3.2.1 

R3.2.2 

R3.2.3 

R3.2.4 

R3.2.5 

(point releases) 

(beta release) R3.2B1 



another	  example	  
main 

maintenance 
R1 

shipping 
R1.0 

shipping 
R1.1 

maintenance 
R2 

shipping 
R2.1 

retired 

shipping 
R2.2 

active ongoing 
X 

maintenance 
R3 

shipping 
R3.0 

shipping 
R3.1 

active 

shipping 
R2.0 

R2.2.a 

shipping 
R1.2 

shipping 
R1.3 

shipping 
R2.3 



cost	  of	  feature	  releases	  

•  considerable overhead associated with a 
feature release 
–  system	  tes'ng	  
– marke'ng	  collateral	  
–  launch	  events	  
–  customer/partner	  briefings	  
–  new	  training	  courses	  &	  material	  
–  new	  training	  internally	  
–  burn	  CDs	  and	  shrink-‐wrap	  boxes	  
– website	  down'me	  
– …	  



cost	  of	  feature	  releases	  (2)	  

•  largest cost of them all 
–  increased	  maintenance	  burden	  from	  suppor'ng	  
another	  version	  in	  the	  field	  

•  reproduce	  bugs	  in	  mul'ple	  codelines	  
•  decide	  what/when	  to	  fix	  
•  re-‐test,	  re-‐release	  

•  maintenance releases are much less costly 
–  regression	  tests	  will	  catch	  problems	  



simultaneous	  release	  support	  

•  generally support 2 feature release 
maintenance streams 

•  sometimes need to support 3 or more! 
•  MUST try to limit this 
•  if not, maintenance will erode and company 

will not be able to respond quickly to 
market conditions 
–  extreme	  is	  separate	  release	  per	  customer	  

•  how do web apps and mobile apply? 



simultaneous	  release	  support	  (2)	  

•  opportunity cost of developers 
–  a	  trained	  developer	  is	  a	  scarce	  and	  valuable	  
resource!	  

–  new	  features	  or	  maintenance	  tradeoff	  
–  opportunity	  cost	  of	  maintenance	  is	  the	  revenue	  
the	  new	  feature	  might	  have	  brought	  in	  

–  opportunity	  cost	  of	  feature	  development	  is	  
customer	  loss	  due	  to	  lack	  of	  maintenance	  



8me	  between	  releases	  

•  feature releases are costly: 
–  therefore	  increase	  the	  'me	  between	  releases	  

•  but, customers want more features 
–  therefore	  decrease	  the	  'me	  between	  releases	  

•  but, they also want stability in their own IT 
environment 
–  therefore	  increase	  the	  'me	  between	  releases	  
–  some'mes	  customers	  get	  very	  s'cky	  on	  old	  
releases	  

–  need	  to	  make	  the	  new	  release	  compelling	  to	  end-‐
users	  



8me	  between	  releases	  (2)	  

•  what if one customer or prospect wants a new 
feature? 
–  new	  feature	  release?	  
–  probably	  not	  

•  what if the market condition changes rapidly? 
–  cut	  short	  current	  release	  to	  rush	  it	  out?	  
–  go	  back	  to	  last	  release,	  extend	  it,	  and	  put	  that	  out?	  
–  costly:	  because	  of	  short	  release	  cycle	  will	  need	  to	  
support	  >	  3	  releases	  in	  the	  field.	  



pushing	  back	  

•  a successful development manager will need 
to distinguish between people asking for 
things that can be pushed off, and truly 
urgent things 
–  everything	  is	  presented	  as	  the	  laIer!	  

•  track the request back to its source, 
personally 
– will	  learn	  the	  true	  nature	  of	  thee	  request	  
–  can	  deal	  with	  80%	  of	  “urgent”	  requests	  in	  this	  
manner	  



features	  in	  maintenance	  releases	  
•  tried pushing back 
•  cannot justify a new feature release 
•  customer/prospect still wants/needs features earlier than 

the next scheduled feature release 
•  what now? 

•  slip new features into a maintenance release 
•  in theory, maintenance releases should change no 

externally visible program behavior (other than to correct it 
if faulty) 

•  what the heck, do it anyways 
•  does not have the cost of a new feature release 
•  why not? 



features	  in	  maintenance	  releases	  (2)	  

•  cannot introduce new code without introducing 
new defects 

•  reasons for adding code: feature, bug fix 

•  if fixing bugs: 
–  fix	  2,	  add	  1:	  trend	  is	  good:	  -‐1	  
– will	  eventually	  get	  them	  all	  –	  converge	  on	  quality	  

•  if also doing new features: 
–  fix	  2,	  add	  1,	  add	  new	  feature,	  add	  4:	  trend	  is	  bad:	  
+3	  –	  diverging	  quality	  



nega8ve	  leveraging	  

•  the new feature is only useful to one customer 

•  the defects introduced as a result can negatively 
impact every customer 

•  because touching code risks breaking ANYTHING, 
ANYWHERE 

•  customers get irate if a “maintenance release” 
breaks previously working functionality 
–  danger	  even	  when	  just	  fixing	  defects	  
–  gets	  much	  worse	  if	  adding	  features	  



release	  prolifera8on	  

•  if your software is generally of poor quality 
customers will be slow to upgrade due to fear 
of more bugs 
–  leads	  to	  suppor'ng	  many	  releases	  

•  EVEN WORSE: if customers come to fear 
maintenance releases the situation multiplies 
–  customers	  may	  insist	  on	  patches	  to	  their	  
maintenance	  level	  

–  turns	  every	  point	  release	  into	  its	  own	  
maintenance	  stream!	  



mi8ga8ng	  the	  consequences	  

•  “can we do it between releases?” 
•  “it’s a web app, so it’s easy” 

•  ugh! if absolutely forced to, then: 
– MUST	  have	  excellent	  regression	  tes'ng	  
environment	  

–  segregate	  new	  func'onality	  with	  run'me	  
configura'on	  switch	  

•  code	  review	  to	  ensure	  switch	  off	  ==	  no	  new	  code	  
in	  the	  system	  

–  try	  not	  to	  allow	  this	  to	  set	  a	  precedent	  



versions	  



versions	  
•  as distinguished from “releases”. 
•  different variants of the same software 

–  differ in small ways 

•  does not apply as much to SaaS 

 

R3.2.0 

R3.2.1a 

R3.2.1 

R3.2.2 

R3.2.3 

R3.2.4 

R3.2.5 

R3.3.0 

R3.3.1 

R3.3.2 

R3.3.3 

R3.2 R3.3 

must support: 
• stream of maintenance 

releases for each version 
• each feature release will 

continue to ship that version 
•  ideally at the same time 

hard to undo the decision to 
support a new version: 

• some customer now relies on it 

version reasons: 
• multiple hardware platforms 
• multiple os’s 
• multiple databases 
• multiple app frameworks 
• multiple partner software 
• security 
•  functional tiers 
• demoware 
•  translations 
• customizations 



cost	  of	  versions	  

•  surprisingly costly to support many versions 
–  not the development cost: relatively cheap – just another feature 
–  ongoing maintenance costs 

•  technical means: 
–  different code (linked differently or #ifdef’d) 
–  run-time switches (e.g., dynamically detect version of Windows and 

change API calls appropriately). 
–  different dev platform and tools 
–  binary-compatible: different test environments 

•  in any case: 
–  testers must test all supported versions 
–  coders must bear in mind they are supporting multiple versions 
–  must track down bugs in each version and fix 



javascript	  web	  apps	  



version	  prolifera8on	  

•  software company will support many versions 
in hopes sales will increase 
–  each version opens up a new market segment 

•  danger: too hastily commit to supporting too 
many versions 

•  be aware of costs and push-back 

•  if in the business of supporting many versions: 
–  architect the software well to support it 
–  construct a superb multi-platform automated build/test 

environment 



customized	  soAware	  
•  a different variant of the software for important customers 

–  static methods: require a distinct executable 
–  dynamic methods: same executable 

•  run-time switches 
•  alternate dll’s (.dylib, .so) 

•  if customization required on feature release boundary 
–  evaluate if feature’s dev opportunity costs are worth the revenue 

•  if customization required sooner 
–  either: 

•  carefully insert changes into the point release stream 
•  #ifdef all code and build a unique executable for the customer 

–  can we merge the changes into the next feature release? 
–  nothing very palatable here 

•  better to build in enough configurability that customers do not 
require customizations 
–  GUI-based configuration 
–  scripting-based configuration 



user	  extension	  API	  
•  allows customers to implement their own features into the 

software 
•  nowadays called “SOA” – implemented using web methods 
•  danger: 

–  must support the API forever more 
–  even if one already exists internally: 

•  clean it up 
•  identify public versus private APIs 
•  document it 
•  train customers on it 
•  hire programmers to provide help desk support on it 

–  support becomes “debug the customer’s code” 
•  maintain it unchanged 

–  do not inadvertently change behavior 

•  market it and sell it 
•  consult on it 

–  write it once 
–  support it forever? 

»  paid/unpaid? 

 

Vendor’s 
Product 

Vendor’s User 
Extension API 

Vendor’s User 
Extension Library 

User’s 
Extension 

Program Code 

Dynamic load module 

dynamically loaded into 


