
csc444h:&
so(ware&engineering&I&

matt medland

matt@cs.utoronto.ca
http://www.cs.utoronto.ca/~matt/csc444

defect&tracking&

top610&

infrastructure

control

refinement

source code
control

defect/feature
tracking

reproducible
builds

automated
regression

testing

Agile Horizon
Planning

feature
specifications architectural

control

business
planning

effort
tracking process

control

defect&&tracking&
•  keeping track of all the defects that have been

discovered
•  keeping track of all the steps required to validate,

correct, and take preventative action for a defect

•  necessary:
–  to#not#lose#any#reported#defects#
–  to#co/ordinate#defect#resolu2on#
–  to#ensure#coders#don’t#work#on#non/defects#

•  features#masquerading#as#defects#
•  was2ng#2me#fixing#something#that#isn’t#broken#
•  was2ng#2me#chasing#down#a#badly#reported#defect#

–  to#control#defect#correc2on#ac2vity#
•  ensure#the#right#defects#are#being#worked#on#

•  in practice:
–  A#database#of#defect#records#
–  A#workflow#driven#by#the#state#and#owner#fields.#

defect&informa:on&
•  where it was found

–  product,#release,#version,#hardware,#os,#drivers,#general#area#

•  who found it
–  customer,#internal,#when#

•  description of the defect
–  summary,#descrip2on,#how#to#reproduce,#associated#data#

–  links#to#related#defects#or#features#

•  triage
–  severity,#likelihood#→#priority#

•  audit trail
–  all#changes#to#the#defect#data,#by#whom,#when#

•  state
–  state,#owner#

priority&matrix&
likelihood

priority
low medium high

severity

crash,
bad data 2 1 1

work
around 5 3 2

cosmetic 5 4 3

•  submitter of defect chooses severity and likelihood
–  may#later#correct#if#determined#to#be#an#exaggera2on#or#in#error#

•  priority assigned according to the priority matrix
•  humans may change the priority using their judgment

–  no#need#to#s2ck#to#“the#matrix”,#which#is#aEer#all#too#simple#to#
account#for#every#con2ngency#

defect&workflow&

NEW

FIXED

CLOSED

WIP

DISPUTED

defect

customer
QA

VALID

issue&workflow&(also&used&for&bugs)&

developer&assignment&

•  bug is auto-assigned to a developer based upon
–  “auto”#may#mean#assigned#by#a#person#

–  the#product#in#which#it#was#found#
–  the#func2onal#area#of#the#defect#

•  catch-all category (misc.) goes to team-lead for defect
assignment and overview for assignment elsewhere.
–  keeps#track#of#the#defect#load#by#priority#on#all#coders#
–  balanced#the#load#
–  chips#in#where#needed#

•  developers may move the defect to the appropriate
coder without management permission.
–  may#also#move#to#team#lead#for#re/assignment#

–  natural#corollary#to#auto/assignment.#

management&controls&
•  provide defect visibility to enable management to

ensure defects are appropriately prioritized

•  management must:
–  review#all#ac2ve#defect#records#
–  ensure#priori2es#are#appropriate#
–  if#languishing#too#long#in#a#given#state,#act#
–  ensure#coders#are#working#on#defects#of#appropriate#priority#at#

any#given#2me#

•  system support
–  most#systems#can#be#configured#to#

•  send#e/mail#and/or#re/assign#to#manager#when#certain#condi2onal#
ac2on#thresholds#are#reached#

–  ex.#priority#1#defect#with#state#unchanged#for#24#hrs.#
•  post#daily#reports#of#overdue#defects#

controls&on&the&system&
•  most defect tracking systems allow permissions
•  each user is given various group memberships:

–  developers,#testers,#managers,#builders,#…#

•  permissions can then be set up by
–  group,#state,#field#

•  don’t do it!
#Q:+what+are+you+trying+to+control?+
+A:+source+code+

•  putting restrictions on defect control system will not
help you to gain control of the source
–  it#will#hurt#
–  developers#will#work#around#silly#security#restric2ons#
–  defect#system#will#not#accurately#reflect#what#is#being#worked#on#

•  dirty data will go uncorrected

metrics&
•  proper defect tracking enables the gathering of good,

clean defect arrival/departure data.
•  gives insight into productivity of

–  developers#fixing#defects#
–  testers#finding#defects#

•  clean data is essential
–  ex.#if#no#way#to#validate#defects#

•  lots#of#arrivals#may#be#due#to#bad#code#or#to#bad#defect#triage#
•  may#expend#a#lot#of#effort#on#coding#ini2a2ves#and#numbers#will#go#
the#wrong#way!#

–  must#quickly#get#defects#out#of#NEW#and#FIXED#
•  arrivals:

–  defects#per#day#entering#into#VALID+
•  departures:

–  defects#per#day#going#from#FIXED#to#CLOSED+
•  total:

–  sum#of#defects#in#states#VALID,#WIP,#and#FIXED.#

metrics&(2)&

NEW

FIXED

CLOSED

WIP

DISPUTED

VALID arrivals

hurry! hurry!
hurry!

departures

issue&workflow&(also&used&for&bugs)&

metrics&(3)&

-20

0

20

40

60

80

100

1 3 5 7 9 11 13 15 17 19 21 23 25

days

de
fe

ct
s

total
arrivals
departures
net

towards&release&
•  these metrics should be tracked:

–  by#product#
–  by#priority#

•  company should establish shipping thresholds

–  ex.#no#known#priority#1#or#2#defects#
–  ex.#arrival#rate#for#priority#1/3#<#1#defect#per#day#

•  watch trends, compare to last release & if not good:
–  try#the#“bug#olympics”#

–  “bug#blitz#weekends”#and/or#stabiliza2on#sprint#
–  slip#the#release#date#
–  clean#up#the#architecture#

rela:onship&to&source&control&
•  two reasons for changes to source:

–  fix#a#defect#
–  add#a#feature#

•  link source control and defect/feature tracking
•  whenever a coder checks in a change

–  prompted#for:#defect#or#feature#ID#

–  check#to#ensure#assigned#to#them#

–  persistently#stored#
•  this allows management to see

–  what#was#changed#(see#diff#report)#
–  why#it#was#changed#(look#up#feature/defect#descrip2on)#
–  by#whom#

•  is this really control?
–  yes:#audit#trail#

source&control&report&

David Kathleen Douglas Brian
D100203 23
F100350 108 34
D155401 56
D100343 10
D100453 1
F100782 508
Totals: 24 108 598 10

Last 24 hours

defect&aFribu:on&

•  beginning to understand what are the systemic root
causes of defects.

•  include as data in the defect tracking system that
must be there before defect is closed

•  should record time taken to deal with it, or at least a
“difficulty” field (high, medium, low)

•  attribute to:
–  where#in#the#source#code#

•  can#iden2fy#modules#whose#re/design#will#add#most#bang/for/the/
buck#

–  which#developer#introduced#it#
•  organiza2onally#tricky#but#very#useful#

–  during#what#phase#
•  spec,#design,#code#

customer&issue&tracking&
•  distinct from defect tracking
•  customers have many issues:

–  how#to#use#soEware#
–  installa2on#issues#
–  perceived#problems#

–  problems#that#have#already#been#resolved#in#a#previous#patch#

–  known#issues#
–  ship#me#a#manual,#please#

–  …#
•  some of these issues will result in new defects
•  requirements of issue tracking systems will include:

–  customer#rela2onship#management#2e/in#

–  searchable#knowledge#bases#
–  customer#tracking#of#issue#progress#

–  …#

shipping&with&known&defects&
•  0-defects is not practical or sustainable for most

businesses
–  how#many#defects#are#acceptable?#

–  how#many#are#you#shipping?#
•  defect#seeding#

–  inject#defects,#see#how#many#are#found,#use#the#ra2o#

–  hard#to#work#this#in#prac2ce#

•  must measure customer satisfaction with perceived
level of defects and correlate to known defects at
ship. ex.
–  if#we#ship#with#350#known#defects#and#customers#are#down#on#

the#release#then#it’s#too#high#

–  if#we#ship#with#50#and#customers#say#“best#release#ever”#super#
stable,#then#it’s#good.#

•  might#want#to#use#50#as#the#shipping#threshold,#and#then#gradually#
lower#that#over#2me#

adjus:ng&development/test&ra:o&
•  can only compare across releases if have a consistent

testing effort
–  same#number#of#testers,#same#produc2vity,#same#2me,#same#general#

size#of#the#release#

•  if increase size of testing team relative to coding team,
–  ra2o#of#known#to#unknown#defects#decreases#

•  assume ratio is 50%
–  ship#with#50#known,#actually#shipping#100#defects#

•  add testers, raising ratio to 75%
–  ship#with#75#known,#actually#shipping#100#defects#

•  good#to#know.#if#increasing#tes2ng#effort#without#increasing#coding#
efforts,#will#be#hard/pressed#to#meet#the#old#thresholds#

•  add developers, lowering ratio to 25%
–  ship#with#25#known,#actually#shipping#100#defects#

•  add developers and testers
–  ra2os#stay#the#same#
–  but#will#reach#the#thresholds#faster#for#the#same#sized#effort#

release¬es&
•  when shipping point releases, good to say which

defects are fixed
–  hard#to#get#this#info!#

•  start with source control and defect tracking to see
which defect corrections have been checked in since
the last point release

•  must describe the defect in terms the users will
understand
–  ex.#load#this#data#file#it#crashes#

•  good#enough#to#find#and#fix#the#defect#
•  not#good#enough#for#release#notes#

–  must#track#down#the#root#cause,#and#extrapolate#into#what#kind#of#
situa2ons#will#trigger#the#defect.#

–  If#doing#this,#must#make#it#a#part#of#the#defect#correc2on#process#

automated&patching&
•  ability for the software to query a server to see if it is

up-to-date
–  if#not,#then#download#an#appropriate,#ideally#small,#patch#and#apply#it#

•  distinguish “critical” from “optional”
•  run immediately after install
•  facility must be able to chain patches
•  determine smallest download combo to get you from

where you are to current version

•  need excellent build/release disciplines to ensure
release numbers completely identify the file set
–  will#want#to#provide#binary#diff#files#as#patches#–#need#to#be#sure#

•  will#double/check#a#checksum#on#all#files#before#applying#anything!#

automated&patching&(2)&
•  a patch always starts with a complete image of the

software installed into the file system.
–  a#normal,#regular#release#

–  test#it#as#such#
•  use a patching utility to generate a binary diff patch

–  point#at#release#A#and#release#Z#
•  will#generate#a#small#patch#self/installer#that#moves#you#from#A#to#Z#

–  point#at#releases#A,#B,#C#and#Z#
•  will#generate#a#somewhat#larger#patch#self/installer#that#is#capable#of#
moving#the#soEware#form#any#of#the#releases#A,#B,#or#C#to#Z#

–  larger,#but#saves#due#to#common#files#between#A,#B,#C#

–  if#no#common#files,#is#a#waste#

–  end#user#may#have#to#download:#
•  patch#1:#from#A#to#W#

•  patch#2:#from#W#to#Z#

feature&tracking&

feature&tracking&
•  keeping track of all the features that have been

requested
•  keeping track of all the steps required to validate,

specify, design, code, and test each feature

•  necessary:
–  to#not#lose#any#requested#features#
–  to#co/ordinate#feature#addi2on#
–  to#make#it#clear#which#features#are#in#and#which#are#out#

–  to#ensure#only#approved#features#get#worked#on#

•  in practice:
–  a#database#of#feature#records#
–  a#workflow#driven#by#the#state#and#owner#fields#

feature&informa:on&
•  description

–  one#phrase#summary,#one/paragraph#descrip2on#
–  which#product,#which#area#of#the#product,#targeted#at#which#segment?#

•  who requested it
–  customer,#internal,#when#
–  internal#champion#

•  priority
–  customer#desired#priority#
–  company#assigned#priority#

•  target release
–  set#once#in#a#release#plan#
–  set#if#decided#definitely#not#in#the#next#release#

•  effort
–  ##of#ECDs#required#to#implement#the#feature#

•  attached documents
–  specifica2on,#design,#review#results,#...#

•  working notes
–  2me#stamped#notes#forming#a#discussion#thread#

•  process tracking
–  spec#required?#spec#done?#spec#reviewed?#...#

feature&workflow&

employee
(perhaps on behalf of customer)

PM

PM

QA

QA

DEV

DEV

PMC

DEV
DEV

QA

QA

PM

VERIFIED

SIZED

READY

IN-
PLAN

WIP COMPLETE

CLOSED

NEW

VALID

PM = product manager

QA = quality assurance

DEV = developers

PMC = product management committee

feature&workflow&(2)&

specifica:ons&
•  after features are IN-PLAN

–  dev/docs/QA/PM#meet#to#discuss#each#in/plan#feature#
•  will#likely#bundle#a#bunch#of#lower/level#features#together#

–  will#discuss#and#scope#out#feature#
•  notes#adached#to#feature#record#

–  will#decide#if#a#detailed#wriden#spec#is#required#
•  boolean#field#set#accordingly#

•  specification documentation
–  describes#all#externally#visible#behavior#of#the#feature#

•  does#not#discuss#internal#design#considera2ons#
•  rough#(conceptual)#design#for#UI#(ex.#mockups#in#balsamiq)#

•  menu#items,#op2ons,#what#they#do#

•  algorithms#

•  impacts#to#other#areas#
–  extend#reports?#files?#databases?#

•  compa2bility#concerns#

#

UML&for&analysis&

•  specifications will often use UML to clarify the
concepts that are being discussed
–  name#concepts#unambiguously#

–  show#how#they#are#related#
–  get#everybody#to#a#common#understanding#

•  UML diagram
•  explained with written text

•  then go on and describe the feature

example&UML& specifica:on&review&
•  once a specification is written, should review it

•  get a group together
–  mainly#developers#

•  have them read the spec
•  ask them to come to the meeting prepared

•  does not review what is the feature or how the
feature is exposed in the software
–  too#late#for#that#–#should#have#been#discussed#in#requirements#

valida2on#and#spec#mee2ngs#already#

•  identify defects in the spec:
–  incompleteness#

–  inconsistency#

example&spec&review&results&
variant spec review meeting – Multisim V8

 chair: Braulio
 scribe: Dave
 reviewers: John, Maks, Rodney, Anita, Shauna

feature suggestions:
 change name of all recursively mapped-to variants ***
 allow export to UB of selection of variants ***
 sight-click menu to change active variant? ***
 don’t silently automap? ***
 when hierarchy viewer gone – must UI indicate active variant? ***

minor issues:
 delete all variants?
 across circuits not specified?
 preferences circuit tab should also have show variant status attribute

defects:
 no mention of multi-section components?
 missing detail: if printing will it print dimmed as you see it on the screen?
 netlist report format changes?
 Ultiboard V7 compatibility issues not addressed
 refdes mapping when using instance refdes and variants?
[see Dave’s spec and Anita for how instance refdes will work in V8]

other&reviews&
•  feature review

–  pre/spec:#is#used#to#ensure#feature#is#well/formed#

##

•  design review
–  at#least#by#chief#architect#
–  similar#to#a#spec#review#
#

•  code review
–  informal:#another#developer#looks#over#the#code,#or#

–  formal:#mee2ng#

•  feature demo
–  make#a#point#of#demoing#every#feature#as#soon#as#it#can#be#

–  scribe#should#record#ac2ons#(scribe#dictates#pace)#
–  good#early#milestone#

effort&tracking&
•  track time:

–  dedicated#hours#spent#on#each#feature#
–  dedicated#hours#spent#fixing#defects#
–  vaca2ons#taken#

•  need a system:
–  fine/grained#2me/tracking#system#

–  will#prompt#you#with#features#you#are#working#on#(in#WIP#state)#

•  no need to track all time
–  may#be#counter/produc2ve#

•  combine with a prompt for a re-estimate each time
time is logged against a feature
–  prompts#for#reason#if#slips##

management&control&
•  developer work factors and vacation estimates

–  managing#them#

•  actual versus estimated feature time
–  managing#them#

•  progress to process

0

5

10

15

20

25

30

In-Plan Spec Done Demo Done

fe
at
ur
es

