The Edward S. Rogers Sr. Department
‘_ of Electrical & Computer Engineering

X UNIVERSITY OF TORONTO

csc444h:
software engineering |

matt medland
matt@cs.utoronto.ca
http://www.cs.utoronto.ca/~matt/csc444

g% The Edward S. Rogers Sr. Department
| of Electrical & Computer Engineering

&) UNIVERSITY OF TORONTO

summary

$% The Edward S. Rogers Sr. Department

« why do we need a course on software
engineering (of large systems)?

— historically, humans are pretty bad at software
engineering

— lots of spectacular failure examples
— billions wasted annually

Y The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

N UNIVERSITY OF TORONTO

e we discussed what it means for a software
system to be considered “large”

— lots of possible choices for metrics
— chose another definition without metrics:

for our purposes, “large” means anything
non-trivial that benefits from proper
planning and tools, and will be used by
someone other than the developer

g% The Edward S. Rogers Sr. Department
| of Electrical & Computer Engineering

l‘y UNIVERSITY OF TORONTO

source code

i control reproducible
infrastructure / I— roduc

AN

automated
regression
testing

defect/feature
tracking

control
: effort process
refinement tracking ! control
business

planning

The Edward S. Rogers Sr.

Department

o of Electrical & Computer Engineering
N UNIVERSITY OF TORONTO

Shareholders

Board of Directors

Chief Executive Executive Team
(Marketing) (Sales) CCIient Services) CSoftware Development) (Finance/Administration)
e} - N, Nl at)
vy } 3 % L o g %
H k4 H 3% g 2 é S
w (- < & 158
AT A W L B Ak S TR e
”«wwwg“’ SV ¥ SR X g~ 2 33 (o
ap0a aa® < € % 33 é é\} \I] ; < wo(,_%
WAL VDL L 5 b
TeAm m\ | saces | [cwT. .
cTo LEkAD kad | \ SeRVICE MNITEnte s 3
\ 2. MARETIAG" J
\ s7s P ¢
ot Eagraeeriy] O R T 3
L— , ADMIM\STHI
=Ll CEO ceo o

#% The Edward S. Rogers Sr. Department

UNIVERSITY OF TORONTO modeling

* models are abstractions
— often with many details removed

— used in reverse & forward engineering

* diagrams as models
 UML (& others)

— structural:
* class, package, object, component
— behaviuoral:

* use case, sequence, state chart

$% The Edward S. Rogers Sr. Department

® universiTy oF Toronto modeling — class diagrams

 standard notation

* visibility

* generalization

« aggregation/composition
 association (& multiplicity)

#% The Edward S. Rogers Sr. Department

% universiTy o Toronto modeling — sequence diagrams

« used to elaborate use cases
— good at modeling the tricky bits
— event ordering & object creation/deletion

e comparing design choices
e assessing bottlenecks

a Handler
T
queryDatabase |
© new _ aQuery
Command
new _| a Database
Statement
execute {
<--Jesults_ _____ 1_
|
— i
extract results |
i |
close \'/
< Jes.tuts_______>'<

The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

%Y unTVERSITY OF ToRONTO Mmodeling — sequence diagrams (2)

* Interaction frames:

Operator

alt

Alternative; only the frame whose guard is true will
execute

opt

Optional; only executes if the guard is true

par

Parallel; frames execute in parallel

loop

Frame executes multiple times, guard indicates how
many

region

Critical region; only one thread can execute this
frame at a time

neg

Negative; frame shows an invalid interaction

ref

Reference; refers to a sequence shown on another
diagram

sd

Sequence Diagram; used to surround the whole
diagram (optional)

Y The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO modeling — use cases

* USe Cases
— flow of events, written from users p.o.v.
— describes functionality system must provide
— user stories

e detailed written use case:
— how the use case starts & ends
— normal flow of events

— alternate & exceptional (separate) flow of
events

The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

UNIVERSITY OF TORONTO modeling — use cases (2)

« example

Buy a Product

Main Success Scenario:

Customer browses catalog and selects items to buy

Customer goes to check out

Customer fills in shipping information (address, next-day or 3-day delivery)
System presents full pricing information

Customer fills in credit card information

System authorizes purchase

System confirms sale immediately

System sends confirming email to customer

e e S s s

Extensions:
3a: Customer is Regular Customer

.1 System displays current shipping, pricing and billing information

.2 Customer may accept or override these defaults, returns to MSS at step 6
ba: System fails to authorize credit card

.1 Customer may reenter credit card information or may cancel

The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

UNIVERSITY OF TORONTO

modeling — use cases (2)

« diagrams
— actors
— classes

— relationships

Trading
manager

Analyse

e

-

Price a i
Deal
'\
Capture a
Deal

Update
Accounts

— KX
Accounting
System

~
— A

* generalizations

* ex. <<uses>>, <<extends>>

Salesperson

% The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO architecture

« components often represented by UML
package diagrams

« coupling
— try to minimize interfaces between modules
— makes changes, or swap outs, easier

e cohesion

— strongly interrelated subcomponents

e

The Edward S. Rogers Sr. Department

% universiTy oF ToroNTo @rchitecture — Conway’s law

Conway'’s law

“The structure of a software system reflects
the structure of the organization that built it”

g% The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

UNIVERSITY OF TORONTO drchitecture — component diagrams

« alternative to package diagrams

DataAccess g:l
O Facilities
Facilities
O
s
- =
seminar £~ DataAccess g
Management é O— Stadcat
! s
<<||>> \) MB
N #o
Xe =%
o Ban g]
a \D amoee%o— Seminar
Student y
Administration jp— — — -bé’emgo—
<> \
<<oomponent>>
DataAoo&o_
Schedule
Schedule
O—

Encryption
o
Sccurity
Access Control | <<infrastructure>>
S
Persistence
Persistence | <<jnfrastructure>>
© |
\
\
<<reqyires>>
] \
e \
University DB
<<database>> JDBC

g% The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

%Y UNIVERSITY OF TORONTO architecture — component diagrams (2)

e Or, iIn combination

|
Presentation Layer Package
Applicaﬁ$o:r]\
— ,-"| Windows
Java AWT £
|
fo\ Application Logic Layer Package
Controiﬂ
Objects
p— N Business
Objects
I
Storage Layer Package PN
1
-
JDBC K------- Oojet © (P
Relational
“\. =
3 Java SQL

$% The Edward S. Rogers Sr. Department

UNIVERSITY OF TORONTO architecture — types

 layered:
— multiple tiers
— open vs. closed
— partitioned layers

pipe & filter

event-based

repositories

« MVC (architectural pattern)

§% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

%Y UNIVERSITY OF TORONTO reverse engineering

e some reasons software tends to deteriorate
over time:

— not kept up to date with changing needs
— legacy technology

— documentation becomes obsolete

— changing requirements

— not properly architected for adaptability

#% The Edward S. Rogers Sr. Department

© UNIVERSITY OF TORONTO reverse engineering (2)

 corrective actions
— re-documentation
— design (re)discovery
— refactoring and reimplementation

 tools range from command-line, to UML
diagram auto-generation

$% The Edward S. Rogers Sr. Department

UNIVERSITY OF TORONTO SDLC

« what’s the goal of a good SDLC?
— passes all the tests (external quality attributes)
— good design/architecture (internal)
— good user experience (quality in use)

— process quality (can process help ensure
product quality)

The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

UNIVERSITY OF TORONTO SDLC (Z)

 two main flavors:

— traditional
* more rigid
* |little user involvement after spec
* big-bang releases

— agile
» continuous (or frequent) deployment
* react quickly to changing requirements
* manifesto & 12 principles

Y The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

188 8

%) UNIVERSITY OF TORONTO SDLC - agile manifesto

http://aqgilemanifesto.orqg/

we are uncovering better ways of developing
software by doing it and helping others do it.
through this work we have come to value:

Individuals and interactions over processes and tools
working software over comprehensive documentation
customer collaboration over contract negotiation
responding to change over following a plan

that is, while there is value in the items on
the right, we value the items on the left more

% The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO SDLC - agile dangers

committing only next sprint

— doesn’t work well for rest of company

— planning horizon includes multiple sprints
 eliminating comprehensive testing

— still need a solid testing strategy

points don't mean much

— “points” are cute, but meaningless outside R&D
may find yourself in "cowboy country”

— may pride yourself on responsiveness to
customers, but really just fighting fires

§% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO planning

* planning is required when external pressures
come to bear on feature availability dates

« common flaws regarding planning
— making no plans!
— make a plan, but don’t track it

— attempt to track the plan with inadequate tools

% The Edward S. Rogers Sr. Department
- of Electrical & Computer Engineering

I UNIVERSITY OF TORONTO planning (2)

What are we building?
By when will it be ready?
How many people do we have?

* answer these questions, and nothing more
— not “who will be doing what?”
— not “what are the detailed tasks required?”

— not “in what order must the tasks be
performed?”

%Th Edw ard S. Rogers Sr. Department
@ of Electrical & Computer Engineering

@; UNIVERSITY OF TORONTO planmng

What are we building?
By when will it be ready?
How many people do we have?

the difficult question is:

can we do all 3 at once?

The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO planning — balance sheet

Dates: Coding phase: Jul.1—Oct.1
Beta availability: Nov.1
General availability: Dec.1

Capacity: days available
Fred 31 ecd
Lorna 33 ecd
Bill 21 ecd
total 317 ecd

Requirement: days required
AR report 14 ecd

Dialog re-design 22 ecd

Thread support 87 ecd
total 317 ecd

Status: Capacity: 317 effective coder-days

Requirement: 317 effective coder-days
Delta: 0 effective coder days

The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

UNIVERSITY OF TORONTO planning — geometry

»w S5O0 W = T

everything must fit!

Y The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

©J universiTY ofF ToroNTO PlAnNning — capacity constraint

* what are we building? F

 when will it be ready? T

* how many developers? N
FSNxT

* plan must respect the capacity constraint

* must continuously update the plan to maintain
this property

Y The Edward S. Rogers Sr. Department
® of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO planning — ratios

1 CODERS

1:3| TESTERS

1:4 | DOCS

» typical ratios used in horizon planning
e adjust as necessary

* assumes availability throughout the
(overlapping) release cycle.

g% The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

m UNIVERSITY OF TORONTO planning — overflow

overflow

add time

cut features

both

The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

®J UNIVERSITY OF TORONTO risk management

« about risk
— risk is the possibility of suffering loss
— risk itself is not bad, it is essential to progress
— the challenge is to manage the amount of risk

* two parts:
— risk assessment
— risk control

 useful concepts:
— for each risk: Risk Exposure
RE = p(unsatisfactory outcome) x loss(unsatisfactory outcome)
— for each mitigation action: Risk Reduction Leverage
RRL = (RE, ... — RE_,) + cOst of mitigating action

% The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering
B8 28

%Y UNIVERSITY OF TORONTO risk mgmt. — quantative

« RRL > 1: good ROI, do it if you have the
money

« RRL = 1: the reduction in risk exposure
equals the cost of the mitigating action. could
pay the cost to fix instead (always?)

0 < RRL < 1: costs more than you save. still
improves the situation, but losing $$

 RRL < 0: mitigating action actually made
things worse! don’t do it!

The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

risk mgmt. — qualitative

 risk exposure matrix:

Likelihood of Occurrence

Undesirable

outcome

Very likely Possible Unlikely
(5) Loss of Life
(4) Loss of Spacecraft
(3) Loss of Mission High
(2) Degraded Mission High Moderate Low
(1) Inconvenience Moderate Low Low

$% The Edward S. Rogers Sr. Department

XJ UNIVERSITY OF TORONTO releases

* releases are expensive
— marketing collateral
— launch events
— training

 biggest cost is supporting different versions

— maintenance releases are less costly

The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

UNIVERSITY OF TORONTO releases (2)

« usually need to support 2 or 3 releases
— try to limit it as much as possible

— don’t do release per customer if at all possible
e product vs. service, scalability

— opportunity cost of developers

* time between releases can be important

— tradeoff: new features vs. costly maintenance
— never put features in a maintenance release!

* may result in increase in bug count

Y The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO releases (3)

 release proliferation
— buggy releases cause some customers to not
upgrade quickly
* leads to many releases in the field

« If all else fails, and features go into
maintenance release, or custom version,
or...

— a really solid regression system may be the only
hope

The Edward S. Rogers Sr. Department
H. of Electrical & Computer Engineering o
%) UNIVERSITY OF TORONTO versions

e versions and releases are different

— versions are different variants of the same
software
* may be very small differences
» doesn't’t apply as much to SaaS, except for client

— versions have their own maintenance release
streams

— lots of reasons for different versions
* multiple os support, demos, different hardware, ...

§% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO versions (2)

« watch out for version proliferation
— really need bberry version?

e develop common code, and minimize
version-specific code

e custom versions

— minimize by scripting, configuration,
customization, user API, etc.


~~~~~ ¢ The Edward S. Rogers Sr. Department
- of Electrical & Computer Engineering

@,@, UNIVERSITY OF TORONTO requirements analysis

 quality = fitness for purpose
« software is designed for a purpose
— if it doesn’t work, designer got the purpose wrong
 the purpose is found in human activities
« what is the goal of the design?

— new components, algorithms, interfaces, etc.
— make activities more efficient, effective, enjoyable

« usually many stakeholders and complex (or
conflicting) problem statements

— may never totally capture spec

— user participation is essential




The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering
) UNIVERSITY OF TORONTO

requirements analysis (2)

« separate problem desc is
useful

— can be discussed with
stakeholders

— used to eval design choices
— good source of test cases

— note: most obvious problem
might not be right one to

solve
 still need to check:

— soln correctly solves the
problem (verification)

— problem stmt corresponds
to stakeholder need

(validation)

Correspondence

Correctness

Problem

Situation

Problem
Statement

Implementation
Statement

Verification

Validation

System




The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

UNIVERSITY OF TORONTO requirements analysis (3)

Problem
Situation

ann
ass
o*

abstract
model of world

implementation
statement

problem
statement




% The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

m UNIVERSITY OF TORONTO requirements analysis (4)

* requirements as theories

Note similarity with

Prior Knowledge Process of scientific

(e.g. customer feedback) Investigation:
Requirements models are

theories about the world:
Designs are tests of those

Initial hypothesis

theories
Observe
(what is wrong with
the current system?)
Look for anomalies - what can’t
the current theory explain?
Model

Intervene

(replace the old system) (describe/explain the

observed problems)

Design experiments to

test the new theory Create/refine

a better theory

Carry out the
experiments

Design
(invent a better system)




#% The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

X) UNIVERSITY OF TORONTO requirements analysis (5)
Machine
oﬂnbh

C - computers

P - programs

domain properties (assumptions):
— things in domain that are true regardless if system built
(system) requirements:

— things in the application domain we wish to be made true by
building proposed system
* may involve things which the machine can’t access

a (software) specification:

— a description of behaviours that the program must have to
meet the requirements

* can only be written in terms of the shared phenomena

S, D=R




The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

®J UNIVERSITY OF TORONTO requirements to design

* requirements analysis:
— It’s all about (correctly) identifying the purpose

what problem are we
trying to solve?

— answer this wrong and you’ll have a quality fail
(and all it’s associated nastiness)




The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

UNIVERSITY OF TORONTO requirements to design (2)

* what requirements analysts do:
— which problem needs to be solved? (boundaries)
— where is the problem? (understand context/domain)
— whose problem is it? (identify all stakeholders)
— why does it need solving? (stakeholder goals)

— when does it need to be solved? (identify development
constraints)

— what might prevent the solution? (feasibility and risk)
— how might a software system help (collect use cases)




The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

XY UNIVERSITY OF TORONTO defect tracking

 where it was found

— product, release, version, hardware, os, drivers, general area

 who found it

— customer, internal, when

 description of the defect

— summary, description, how to reproduce, associated data
— links to related defects or features

 triage
— severity, likelihood - priority

e audit trall

— all changes to the defect data, by whom, when

e state

— state, owner




% The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

UNIVERSITY OF TORONTO defect tracking (2)

likelihood
priority
low medium high
crash, bad
data 2 1 1
(7))
2
c_g work around 5 3 2
=
<
cosmetic 5 4 3




The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

m UNIVERSITY OF TORONTO defect tracking (3)

™ customer




% The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO defect tracking (4)

auto-assigned to developer, or devs pick
« developers can exchange defects
 R&D management needs to:

— review all defects to:
* ensure correct priority
* ensure properly assigned and worked on
* track trends — arrivals & departures

« system connected to source control
— helps with attribution

« automated patching to correct severe
defects in field




The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

UNIVERSITY OF TORONTO feature tracking

description
— one phrase summary, one-paragraph description
— which product, which area of the product, targeted at which segment?
who requested it
— customer, internal, when
— internal champion
priority
— customer desired priority
— company assigned priority
target release
— setoncein arelease plan
— set if decided definitely not in the next release

effort

— # of ECDs required to implement the feature

attached documents
— specification, design, review results, ...

working notes
— time stamped notes forming a discussion thread

process tracking
— spec required? spec done? spec reviewed? ...



The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

m UNIVERSITY OF TORONTO feature tracking (2)

PM = product manager
QA = quality assurance

DEV = developers

PMC = product management committee PMC
DEV
QA /‘ DEV
employee
(perhaps on behalf QA

of customer)




Y The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO feature tracking (3)

« R&D meets to discuss features in the “in-
plan” state

— specifications written for complicated features
— UML diagrams for use cases

— UML sequence diagrams for clarity

— UML state chart diagrams for clarity

* reviews:
— specification review before dev starts
— feature demo meetings
— design review
— code review




§% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO feature tracking (4)

« effort tracking attached to each feature
record

* management reports:

— features in-plan, spec done, code complete,
demo done, acceptance test done, etc.

— ecds and burn-down charts
* velocity, ecd delta, expected delay, etc.




§% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO testing

* humans are fallible
— infeasible to completely fix the humans

— need to double and triple check their work to find
the problems

 testing
— running the software to see if it works the way it is
supposed to.

» works according to specifications

* ensures specifications are reasonable (that they solve the
intended problem)

* correctness proofs




Y The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO testing (2)

e unit tests
— performed by developers
— save and automate for regression

 functional test (black box)
— performed by QA on single features
— starts before feature complete

* Integration test
— after all features have been finished
— whole system works together
— problems here are logged as defects




The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

%Y UNTVERSITY OF TORONTO testing (3)

* test-driven development (TDD)
— before feature is written devise all test cases

— implement all tests with whatever automated
tool you are using

e tests will all fail because the feature code is not
written yet

— write the feature code
— check that all tests now pass

— unit tests developed in first step are saved as
regression system and run automatically




Y The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO testing (4)

« performance regression

— keep performance statistics on the regression
run for trending

— functionality may be fine, but performance not

* memory leak regressions
— specialized software can check
— less important in managed code (with gc)

* even harder to correct in this scenario, usually a
runtime system bug




Y The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

LU

%) UNIVERSITY OF TORONTO regression testing

locks-in quality
— once you achieve quality, you don’t backslide
— everybody focuses on new features and forgets the old

finding defects sooner

— finds the defect nearest the point in time it was injected

— freshest in the coder’s mind
— least expensive time to fix it

development aid

— can work on complex, central bits of the code without fear of
breaking something major on not finding out

releasing

— if need a last minute critical defect fix to release

— if no/poor automated regression, might have to delay until re-
tested




The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

®J UNIVERSITY OF TORONTO regression testing (2)

« coverage is a measure of how much of the
system is exercised by the regression tests

— all functions

— every line of code

— all conditions

— overridden and overriding methods

» GUI regression testing is hard
— tools can help
— minor layout changes can mess it up
— can use an API to simulate as close to Ul as possible




The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

UNIVERSITY OF TORONTO e_ﬂ"ort estimation

« estimates are imprecise
— optimistic? pessimistic? some confidence level?

* many techniques
— three-point estimates, function points, etc.

» confidence intervals
— Tis fixed, F & N are stochastic variables
— D(T)=NxT-F (isthe delta)
— compute normal curve for D(T) and select T such that
desired confidence is achieved
* repeat with different feature set Fif T is fixed

— shortcut is to estimate at 80%, and 50% (average), then
fit normal and predict P(D(T)) <0




% The Edward S. Rogers Sr. Department
k72 of Electrical & Computer Engineering
X UNIVERSITY OF TORONTO

the end

good luck on the exam!




