% The Edward S. Rogers Sr. Department
[@ of Electrical & Computer Engincering

/) UNIVERSITY OF TORONTO

csc444h:
software engineering |

matt medland
matt@cs.utoronto.ca
http://www.cs.utoronto.ca/~matt/csc444

% The Edward S. Rogers Sr. Department
2, of Electrical & Computer Engincering

7> UNIVERSITY OF TORONTO

summary

% The Edward S. Rogers Sr. Department
[@ | of Electrical & Computer Engineering
) UNIVERSITY OF TORONTO

» why do we need a course on software
engineering (of large systems)?

— historically, humans are pretty bad at software
engineering

— lots of spectacular failure examples
— billions wasted annually

% The Edward S. Rogers Sr. Department
[@ | of Electrical & Computer Engineering
) UNIVERSITY OF TORONTO

* we discussed what it means for a software
system to be considered “large”
— lots of possible choices for metrics
— chose another definition without metrics:

for our purposes, “large” means anything
non-trivial that benefits from proper
planning and tools, and will be used by
someone other than the developer

% The Edward S. Rogers Sr. Department
@ of Electrical & Computer Engineering
&% UNIVERSITY OF TORONTO

reproducible

infrastructure builds

source code
control

defect/feature
tracking

automated
regression
testing

control \
X effort process
refinement tracking control

business
planning

% The Edward S. Rogers Sr. Department
@ of Electrical & Computer Engineering
7> UNIVERSITY OF TORONTO

Shareholders

Board of Directors

Chief Executive Executive Team

[[
(Marketng) (__sales) ((ClintServices) ((Sofware Development) (Finance/Admiristration)

TTTT
TTTT
TTTT
TTTT
TTTT

0 - ~, v

Yy} 38 % -SRI

(3% 3% b3 § 63

L L LIS AL [Tely L% HEVE BE T
2300 ByY 833 33 S sYi 33 @ b
2383 2%3a 3 4 = X

e e
53 ~ Y)
! | ‘ DB

s
(7 manpenioe”
v 708 F7.

e
§i—
e
) Frs

* i\‘“ 104

lg |
A
'1
»
¥
!
<
S
i
7
i
<
5,
<
=
=
B
t
£
2.
EY

>
Apup| ST
g

~
“
Q
o
o,
C)
o
9
o

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

X UNIVERSITY OF TORONTO modeling

* models are abstractions
— often with many details removed
— used in reverse & forward engineering

» diagrams as models
* UML (& others)

— structural:
* class, package, object, component
— behaviuoral:

* use case, sequence, state chart

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Enginecering

% UNIVERSITY OF TORONTO modeling —class diagrams

» standard notation

* visibility

* generalization

* aggregation/composition
 association (& multiplicity)

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Enginecering

UNIVERSITY OF TORONTO modeling — sequence diagrams

* used to elaborate use cases

— good at modeling the tricky bits

— event ordering & object creation/deletion
* comparing design choices
» assessing bottlenecks

a Handler

‘ T
queryDatabase |
Suelyoatabase

a Query
Command

new a Database
Statement

i
) extractresults |
™ i

close

- Jesults______ D ;
o X
i

% The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering

&7 un1vERSITY OF TorRONTO Modeling — sequence diagrams (2)

* interaction frames:

Operator Meaning

alt Alternative; only the frame whose guard is true will
execute

opt Optional; only executes if the guard is true

par Parallel; frames execute in parallel

loop Frame executes multiple times, guard indicates how
many

region Critical region; only one thread can execute this
frame at a time

neg Negative; frame shows an invalid interaction

ref Reference; refers to a sequence shown on another
diagram

sd Sequence Diagram; used to surround the whole
diagram (optional)

% The Edward S. Rogers Sr. Department
(2 of Electrical & Computer Engineering
7. UNIVERSITY OF TORONTO

modeling — use cases

* uUSe cases
— flow of events, written from users p.o.v.
— describes functionality system must provide
— user stories

detailed written use case:
— how the use case starts & ends
— normal flow of events

— alternate & exceptional (separate) flow of
events

% The Edward S. Rogers Sr. Department
K of Electrical & Computer Engincering
7. UNIVERSITY OF TORONTO

modeling — use cases (2)

* example

Buy a Product

Main Success Scenario:

1. Customer browses catalog and selects items to buy

Customer goes to check out

Customer fills in shipping information (address, next-day or 3-day delivery)
System presents full pricing information

Customer fills in credit card information

System authorizes purchase

System confirms sale immediately

System sends confirming email to customer

ONOOOAWN

Extensions:
3a: Customer is Regular Customer

.1 System displays current shipping, pricing and billing information

.2 Customer may accept or override these defaults, returns to MSS at step 6
6a: System fails to authorize credit card

.1 Customer may reenter credit card information or may cancel

% The Edward S. Rogers Sr. Department
[@ of Electrical & Computer Engincering

UNIVERSITY OF TORONTO modeling — use cases (2)

N Update :
Accounts Accounting
System
- e,

O
. /
« diagrams A\
Trader ™ O
— actors ~
— N\
- C|aSSES Salesperson

— relationships
e ex. <<uses>>, <<extends>>
* generalizations

% The Edward S. Rogers Sr. Department
[@ of Electrical & Computer Enginecering

UNIVERSITY OF TORONTO architecture

» components often represented by UML
package diagrams

» coupling
— try to minimize interfaces between modules
— makes changes, or swap outs, easier

* cohesion
— strongly interrelated subcomponents

e —

% The Edward S. Rogers Sr. Department
[@ | of Electrical & Computer Engineering

XY UNIVERSITY OF TORONTO architecture — Conway’s law

Conway'’s law

“The structure of a software system reflects
the structure of the organization that built it”

% The Edward S. Rogers Sr. Department
[@ | of Electrical & Computer Engineering

& UNIVERSITY OF TORONTO @rchitecture — component diagrams

+ alternative to package diagrams

DataAccess a
o Facilities
Faciliti
acil |heso -
—~ ol
- - Security
Seminar ﬂ ~ DataAccess i] Access Control | <<infrastructure>>
Management O— Student €
—
<> ~ T —Stude
RGN 0
N 3
i g
g X DataAc®8ry, | Seminar Persistence
Student N\ Semin Persistence | <<infrastructure>>
Administration f— — — MY o— = o \
<> \ | \
[<<component>]e _J \
DaIaAoo%_ <<reqyires>>
Schedule
Schedule 1
o e \
University DB
<<database>> JDBC

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Enginecering

Y9 UNIVERSITY OF TORONTO @rchitecture — component diagrams (2)

e or, in combination

Presentation Layer Package

g]
§ Application
.- Windows
Java AWT ¥
]
@ Application Logic Layer Package
| Contro
Objects _
‘——~—— | Business
Objects
Storage Layer Package Py
) - 5
JDBC &------ Object to

Relational

" Java sQL

% The Edward S. Rogers Sr. Department
[@ of Electrical & Computer Enginecering
& UNIVERSITY OF TORONTO

architecture — types

layered:

— multiple tiers

— open vs. closed

— partitioned layers

pipe & filter

event-based

repositories

MVC (architectural pattern)

% The Edward S. Rogers Sr. Department
2y of Electrical & Computer Engincering

, UNIVERSITY OF TORONTO

reverse engineering

* some reasons software tends to deteriorate
over time:

— not kept up to date with changing needs
— legacy technology

— documentation becomes obsolete

— changing requirements

— not properly architected for adaptability

% The Edward S. Rogers Sr. Department
2y of Electrical & Computer Engincering

&% UNIVERSITY OF TORONTO

reverse engineering (2)

* corrective actions
— re-documentation
— design (re)discovery
— refactoring and reimplementation

* tools range from command-line, to UML
diagram auto-generation

The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering
Y UNIVERSITY OF TORONTO SDLC

» what’s the goal of a good SDLC?
— passes all the tests (external quality attributes)
— good design/architecture (internal)
— good user experience (quality in use)

— process quality (can process help ensure
product quality)

The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering

UNIVERSITY OF TORONTO SDLC (2)

* two main flavors:

— traditional
* more rigid
* little user involvement after spec
* big-bang releases

— agile
* continuous (or frequent) deployment
* react quickly to changing requirements
* manifesto & 12 principles

% The Edward S. Rogers Sr. Department

of Electrical & Computer Engincering

o UNIVERSITY OF TORONTO SDLC - agile manifesto

http://agilemanifesto.org/

we are uncovering better ways of developing
software by doing it and helping others do it.
through this work we have come to value:

individuals and interactions over processes and tools
working software over comprehensive documentation
customer collaboration over contract negotiation
responding to change over following a plan

that is, while there is value in the items on
the right, we value the items on the left more

The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering

o UNIVERSITY OF TORONTO SDLC - agile dangers

committing only next sprint

— doesn’t work well for rest of company

— planning horizon includes multiple sprints
eliminating comprehensive testing

— still need a solid testing strategy

points don't mean much

— “points” are cute, but meaningless outside R&D
may find yourself in "cowboy country”

— may pride yourself on responsiveness to
customers, but really just fighting fires

The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering

) UNIVERSITY OF TORONTO planning

* planning is required when external pressures
come to bear on feature availability dates

* common flaws regarding planning
— making no plans!
— make a plan, but don’t track it
— attempt to track the plan with inadequate tools

The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering

) UNIVERSITY OF TORONTO planning (2)

What are we building?
By when will it be ready?
How many people do we have?

* answer these questions, and nothing more
— not “who will be doing what?”
— not “what are the detailed tasks required?”

— not “in what order must the tasks be
performed?”

The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering

) UNIVERSITY OF TORONTO planning

What are we building?
By when will it be ready?
How many people do we have?

the difficult question is:

can we do all 3 at once?

The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering

o UNIVERSITY OF TORONTO planning — balance sheet

Dates: Coding phase: Jul.1—Oct.1
Beta availability: Nov.1
General availability: Dec.1

Capacity: days available
Fred 31 ecd
Lorna 33 ecd
M 21 ecd
total 317 ecd

Requirement: days required
AR report 14 ecd
Dialog re-design 22 ecd

Tﬁread sup. 'p- ort 87 ecd
total 317 ecd

Status: Capacity: 317 effective coder-days

Requirement: 317 effective coder-days
Delta: 0 effective coder days

% The Edward S. Rogers Sr. Department
2, of Electrical & Computer Engincering
.,”"{. UNIVERSITY OF TORONTO

planning — geometry

w 50w =~ O®T

days

everything must fit!

% The Edward S. Rogers Sr. Department
(& of Electrical & Computer Engineering

® universiTy oF ToronTo planning — capacity constraint

* what are we building? F

* when will it be ready? T

* how many developers? N
FSNxT

* plan must respect the capacity constraint

* must continuously update the plan to maintain
this property

% The Edward S. Rogers Sr. Department
2, of Electrical & Computer Engincering

®/ UNIVERSITY OF TORONTO planning - ratios
1 CODERS
1:3 | TESTERS
1:4 | DOCS |

+ typical ratios used in horizon planning
* adjust as necessary

* assumes availability throughout the
(overlapping) release cycle.

% The Edward S. Rogers Sr. Department
2, of Electrical & Computer Engincering
.,”"{. UNIVERSITY OF TORONTO

planning — overflow

overflow
add time
R cut features
both .

LN

% The Edward S. Rogers Sr. Department
[@ of Electrical & Computer Engincering

XY UNIVERSITY OF TORONTO risk management

+ about risk
— risk is the possibility of suffering loss
— risk itself is not bad, it is essential to progress
— the challenge is to manage the amount of risk

* two parts:
— risk assessment
— risk control

 useful concepts:
— for each risk: Risk Exposure
RE = p(unsatisfactory outcome) x loss(unsatisfactory outcome)
— for each mitigation action: Risk Reduction Leverage

RRL = (RE,4tore — RE,e,) + COst of mitigating action

% The Edward S. Rogers Sr. Department
[@ of Electrical & Computer Enginecering

¥ UNIVERSITY OF TORONTO risk mgmt. — quantative

* RRL > 1: good ROlI, do it if you have the
money

* RRL = 1: the reduction in risk exposure
equals the cost of the mitigating action. could
pay the cost to fix instead (always?)

* 0 <RRL < 1: costs more than you save. still
improves the situation, but losing $$

* RRL < 0: mitigating action actually made
things worse! don’t do it!

% The Edward S. Rogers Sr. Department
[@ | of Electrical & Computer Engineering

XY UNIVERSITY OF TORONTO risk mgmt. — qualitative

* risk exposure matrix:

| Likelihood of Occurrence |
Very likely Possible Unlikely
(5) Loss of Life
% o | (4) Loss of Spacecraft
© £
§ 8 [3 Loss of Mission High
T 3
§ ° (2) Degraded Mission High Moderate Low
(1) Inconvenience Moderate Low Low

% The Edward S. Rogers Sr. Department
2, of Electrical & Computer Engincering
XJ UNIVERSITY OF TORONTO releases

* releases are expensive
— marketing collateral
— launch events
— training

* biggest cost is supporting different versions
— maintenance releases are less costly

% The Edward S. Rogers Sr. Department
2y of Electrical & Computer Engincering
&7 UNIVERSITY OF TORONTO

releases (2)

+ usually need to support 2 or 3 releases
— try to limit it as much as possible
— don’t do release per customer if at all possible
* product vs. service, scalability
— opportunity cost of developers

 time between releases can be important
— tradeoff: new features vs. costly maintenance
— never put features in a maintenance release!
* may result in increase in bug count

% The Edward S. Rogers Sr. Department
[@ of Electrical & Computer Enginecering

¥ UNIVERSITY OF TORONTO releases (3)

* release proliferation
— buggy releases cause some customers to not
upgrade quickly
* |leads to many releases in the field

« if all else fails, and features go into
maintenance release, or custom version,
or...

— a really solid regression system may be the only
hope

% The Edward S. Rogers Sr. Department
[@ | of Electrical & Computer Engineering

., UNIVERSITY OF TORONTO versions

+ versions and releases are different
— versions are different variants of the same
software
* may be very small differences
* doesn't’t apply as much to Saa$, except for client
— versions have their own maintenance release
streams
— lots of reasons for different versions

* multiple os support, demos, different hardware, ...

% The Edward S. Rogers Sr. Department
[@ | of Electrical & Computer Engineering

¥ UNIVERSITY OF TORONTO versions (2)

» watch out for version proliferation
— really need bberry version?

» develop common code, and minimize
version-specific code

» custom versions
— minimize by scripting, configuration,
customization, user API, etc.

The Edward S. Rogers Sr. Department % The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering B . of Electrical & Computer Engincering . .
@ UNIVERSITY OF TORONTO requirements analys:s @ UNIVERSITY OF TORONTO requirements analys:s (2)
. lity = fit f + separate problem desc is
quality = Titness Tor purpose useful
+ software is designed for a purpose — can be discussed with _ .
— if it doesn’t work, designer got the purpose wrong stakeholders
. . C oy — used to eval design choices
* the purpose is found in human activities g
]) — good source of test cases g Problem . |5
* what is the goal of the design? — note: most obvious problem 5 g Statement % g
— new components, algorithms, interfaces, etc. might not be right one to g 3 g
C solve 13 -
— make activities more efficient, effective, enjoyable . 98 Implementation
« still need to check: Sl s
. usua_llylmany stakeholders and complex (or _ soln correctly solves the
conflicting) problem statements problem (verification) --’
— System
— may never totally capture spec — problem stmt corresponds
— user participation is essential to stakeholder need
P P (validation)
The Edward S. Rogers Sr. Department % The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering . . of Electrical & Computer Engincering . .
@ UNIVERSITY OF TORONTO requirements analysis (3) @ UNIVERSITY OF TORONTO requirements analysis (4)
* requirements as theories
Problem o
. . Note similarity with
SITUGTI on Prior Knowledge Process of scientific
....... (e.g. customer feedback) Investigation:
Reqmremenfs models are
Initial hypothesis thegrles about the world;
"""""" Sys‘rem Designs are fests of those
theories
.......... Observe
(what is wrong with
the current system?)
abstract Look for anomalies - what can’t
model of world the current theory explain?
implementation Model
Intervene - .
statement (replace the old system) (‘:Esszr:?:éep’:’fg;:":ge
~ oo T b et S
statement Design
(invent a better system)

% The Edward S. Rogers Sr. Department
[@ of Electrical & Computer Engincering

&Y UNIVERSITY OF TORONTO requirements analysis (5)

Nv\\d“

D - domain properties

C - computers

R - requirements P - programs

» domain properties (assumptions):
— things in domain that are true regardless if system built
* (system) requirements:
— things in the application domain we wish to be made true by
building proposed system
* may involve things which the machine can’t access
a (software) specification:
— adescription of behaviours that the program must have to
meet the requirements
* can only be written in terms of the shared phenomena

S,D=R

% The Edward S. Rogers Sr. Department
K of Electrical & Computer Engincering
&7 UNIVERSITY OF TORONTO

requirements to design

* requirements analysis:
— It’s all about (correctly) identifying the purpose

what problem are we
trying to solve?

— answer this wrong and you’ll have a quality fail
(and all it’s associated nastiness)

% The Edward S. Rogers Sr. Department
[@ | of Electrical & Computer Engineering

XY UNIVERSITY OF TORONTO requirements to design (2)

* what requirements analysts do:
— which problem needs to be solved? (boundaries)
— where is the problem? (understand context/domain)
— whose problem is it? (identify all stakeholders)
— why does it need solving? (stakeholder goals)

— when does it need to be solved? (identify development
constraints)

— what might prevent the solution? (feasibility and risk)
— how might a software system help (collect use cases)

% The Edward S. Rogers Sr. Department
[@ | of Electrical & Computer Engineering
, UNIVERSITY OF TORONTO

defect tracking

* where it was found

— product, release, version, hardware, os, drivers, general area

* who found it

— customer, internal, when

+ description of the defect

— summary, description, how to reproduce, associated data
— links to related defects or features

 triage
— severity, likelihood - priority

e audit trail

— all changes to the defect data, by whom, when

- state

— state, owner

% The Edward S. Rogers Sr. Department
K of Electrical & Computer Engincering

UNIVERSITY OF TORONTO defect tracking (2)

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Enginecering

%Y UNIVERSITY OF TORONTO defect tracking (3)

likelihood
priority
low medium high
crash, bad
data 2 1 1
[
2
o work around 5 3 2
=
<
cosmetic 5 4 3
customer
% The Edward S. Rogers Sr. Department % The Edward S. Rogers Sr. Department
(& of Electrical & Computer Engineering . & of Electrical & Computer Engineering .
X UNIVERSITY OF TORONTO defect tracking (4) % UNIVERSITY OF TORONTO feature tracking

» auto-assigned to developer, or devs pick
» developers can exchange defects
* R&D management needs to:
— review all defects to:
* ensure correct priority
* ensure properly assigned and worked on
* track trends — arrivals & departures
» system connected to source control
— helps with attribution

» automated patching to correct severe
defects in field

» description
— one phrase summary, one-paragraph description
— which product, which area of the product, targeted at which segment?
+ who requested it
— customer, internal, when
— internal champion
* priority
— customer desired priority
— company assigned priority
+ target release
— setonce in arelease plan
— set if decided definitely not in the next release
+ effort
— # of ECDs required to implement the feature
+ attached documents
— specification, design, review results, ...
» working notes
— time stamped notes forming a discussion thread
* process tracking
— spec required? spec done? spec reviewed? ...

% The Edward S. Rogers Sr. Department
[@ of Electrical & Computer Engincering

XY UNIVERSITY OF TORONTO feature tracking (2)

P
DEV

PM DEV
PM = product manager

QA = quality assurance

DEV = developers

PM PMC = product management committee PMC
DEV ’
QA DEV
employee /\.
(perhaps on behalf QA
of customer)

% The Edward S. Rogers Sr. Department
[@ of Electrical & Computer Enginecering

UNIVERSITY OF TORONTO feature tracking (3)

 R&D meets to discuss features in the “in-
plan” state

— specifications written for complicated features
— UML diagrams for use cases

— UML sequence diagrams for clarity

— UML state chart diagrams for clarity

* reviews:
— specification review before dev starts
— feature demo meetings
— design review
— code review

% The Edward S. Rogers Sr. Department
[@ | of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO feature tracking (4)

« effort tracking attached to each feature
record

* management reports:

— features in-plan, spec done, code complete,
demo done, acceptance test done, etc.

— ecds and burn-down charts
* velocity, ecd delta, expected delay, etc.

% The Edward S. Rogers Sr. Department
[@ | of Electrical & Computer Engineering

XY UNIVERSITY OF TORONTO testing

* humans are fallible
— infeasible to completely fix the humans

— need to double and triple check their work to find
the problems

* testing
— running the software to see if it works the way it is
supposed to.

* works according to specifications

* ensures specifications are reasonable (that they solve the
intended problem)

* correctness proofs

The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering .
@ UNIVERSITY OF TORONTO testing (2)

* unit tests
— performed by developers
— save and automate for regression

+ functional test (black box)
— performed by QA on single features
— starts before feature complete

* integration test
— after all features have been finished
— whole system works together
— problems here are logged as defects

The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering

o UNIVERSITY OF TORONTO testing (3)

+ test-driven development (TDD)
— before feature is written devise all test cases

— implement all tests with whatever automated
tool you are using

* tests will all fail because the feature code is not
written yet

— write the feature code
— check that all tests now pass

— unit tests developed in first step are saved as
regression system and run automatically

The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering .
@ UNIVERSITY OF TORONTO testing (4)

UNIVERSITY OF TORONTO

* performance regression

— keep performance statistics on the regression
run for trending

— functionality may be fine, but performance not

* memory leak regressions
— specialized software can check
— less important in managed code (with gc)

* even harder to correct in this scenario, usually a
runtime system bug

The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering

regression testing

locks-in quality

— once you achieve quality, you don’t backslide

— everybody focuses on new features and forgets the old
finding defects sooner

— finds the defect nearest the point in time it was injected

— freshest in the coder’s mind
— least expensive time to fix it

development aid
— can work on complex, central bits of the code without fear of
breaking something major on not finding out
releasing
— if need a last minute critical defect fix to release

— if no/poor automated regression, might have to delay until re-
tested

% The Edward S. Rogers Sr. Department % The Edward S. Rogers Sr. Department
[@ of Electrical & Computer Engincering @ | of Electrical & Computer Enginecering

X UNIVERSITY OF TORONTO regression testing (2) XY UNIVERSITY OF TORONTO effort estimation
_ » estimates are imprecise
* coverage is a measure of how much of the — optimistic? pessimistic? some confidence level?
system is exercised by the regression tests
— all functions * many techniques
— every line of code — three-point estimates, function points, etc.

all conditions

» confidence intervals
— Tis fixed, F & N are stochastic variables
— D(T) =N xT-F (is the delta)

— compute normal curve for D(T) and select T such that
desired confidence is achieved

overridden and overriding methods

* GUI regression testing is hard

— tools can help * repeat with different feature set Fif T is fixed

— shortcut is to estimate at 80%, and 50% (average), then
fit normal and predict P(D(T)) < 0

— minor layout changes can mess it up
— can use an API to simulate as close to Ul as possible

% The Edward S. Rogers Sr. Department
[@ | of Electrical & Computer Engineering
UNIVERSITY OF TORONTO

the end

good luck on the exam!

