
The Point

!  All businesses are technology businesses.

!  Security models: business models by other means.

!  Non-specialists need conceptual tools to reason about
security.

!  Everybody uses it every day.

!  It’s not just about code.

About Me

20162011200620011996

201620132005200320001996

Unix Sysadmin /
Internet

Backbone Engineer

Public Sector
Security Specialist

Vulnerability Research Lead

Security, Privacy & Risk Mgmt
Consultant / Architect

Director,
Security Architecture

Professional Toolkit:
•  Security Design
•  Risk Assessment
•  Vulnerability Research
•  Reverse Engineering
•  Penetration Testing
•  Privacy Analysis
•  Consulting
•  Software Architecture

Summary

!  Why is it important? Because it has always been important.

!  What do you need to know? Keys, Plaintexts and Ciphertexts – it’s
mostly key management.

!  What do encryption functions do? Mix an Information Problem
with a Work Problem to create something intractable.

!  What’s with “entropy?” A conceptual space/work dimension that
provides barriers to attackers.

!  How do I reason about it? Use-cases, formal security protocols,
and BAN-logic.

Who needs to care?

STEM / IT Non-STEM

Developers Product Managers

Architects Legal Counsel

Systems/Network Admins Financial Officers

DevOPS Journalists/Reporters/Editors

Risk & Security Research Analysts

Data Analyst Digital Currency User

Engineers: Risk Privacy Analysts

-  SCADA / ICS

-  IoT

-  Medical Device Dev

“Security”

Sovereignty: [sov-rin-tee]
•  The quality of a state of being sovereign,

or having supreme power or authority.

•  Rightful status, independence, or
prerogative.

“[…]we are working closely with the Ministry of
Defence to secure the UK's long term future as one
of the world's few truly sovereign cryptographic
nations, something […], the Prime Minister
attaches great importance to.”

-- Director of GCHQ, November 2015

“Security”

Engineers:

•  Build the walls, bridges and fortifications

that provide sovereignty.

•  Build technologies that change the
economic definition of “worth it.”

•  Security = costs(time + skill + resources / M+M+O).

•  Create enforceable boundaries.

“and where men build on false grounds, the more
they build, the greater the ruin.” –Hobbes, 1651

Old Problem

•  Polybius documented his
method for secret
communications c. 170 BC.

•  Math of combinatorics emerges
c. 20-10 BC.

Flux Capacitor

Rule #1:

•  If you have any two, you can

derive the third.

•  Just a matter of work.*

Plaintext

Key

Ciphertext

f(e
)

Three things that matter:

•  Plaintext
•  Key
•  Ciphertext

*for greater or lesser values of infinity

Kerckoffs’
Principles, 1883

1.  The system should be, if not theoretically
unbreakable, unbreakable in practice.

2.  The design of a system should not
require secrecy, and compromise of the
system should not inconvenience the
correspondents.

3.  The key should be memorable without
notes and should be easily changeable.

4.  The cryptograms should be transmittable
by telegraph.

5.  The apparatus or documents should be
portable and operable by a single person

6.  The system should be easy, neither
requiring knowledge of a long list of
rules nor involving mental strain

-- Auguste Kerckoffs,
La Cryptographie Militaire, 1883

Secrecy in Keys, not
Algorithms

“The design of a system should not require secrecy, and
compromise of the system should not inconvenience the
correspondents.”

!  The principle was reinforced by Claude E. Shannon in
his 1917 maxim, “the enemy knows the system.”

!  To reason about security, treat the algorithm (cipher) as
a black box and just worry about protecting your keys.

!  You either trust it or you don’t.

“Trust.”

“Cultivate a taste for distasteful truths.” – Ambrose Bierce

When not to
trust an

algorithm

1.  Mathematical Gobbldeygook

2.  New Math

3.  Proprietary Cryptography

4.  Extreme Cluelessness

5.  Ridiculous Key Lengths

6.  One-time Pads

7.  Unsubstantiated Claims

8.  Security “proofs”

9.  Cracking Contests

-- Bruce Schneier on”Snakeoil”, The Cryptogram, 1999

Bad vs. Less Bad

!  Mathematical Gobbldeygook

!  New Maths

!  Proprietary Cryptography

!  Extreme Cluelessness

!  Ridiculous Key Lengths

!  One-time Pads

!  Unsubstantiated Claims

!  Security “proofs”

!  Cracking Contests

!  Clear specification without unnecessary
mathematization.

!  Established maths from mainstream crypto
academic community

!  Implements open standards from NIST.

!  Cluefullness (e.g. Socratic open mindedness)

!  Key Lengths Consistent with Approved
implementations.

!  Clear key management protocols

!  Standards based. No new ideas.

!  There are no security proofs, only formal
definitions..

Encryption Keys

Problem: We can only send secret
messages if we have exchanged
secret keys first.

Great, but
where’s the key?

Encrypted, of course.

With what key?

A Key Encryption Key, presumably.

How is that protected?

With a Transport Key.

How do you get it?

Still working that out…

Enigma

•  Earliest version patented in
1918, 20 years before WWII.

•  Used for “commercial traffic,”
e.g. using telegraph for
settlement and balancing
account ledgers between banks
and other offices.

•  Secret keys distributed physically
in “code books,” containing lists
of keys.

Enigma

•  Cracked by the Allies using
“cribs,” or ways of reducing the
number of possible keys.

•  1: knowing some part of the
plaintext so you know when to
“stop” looking.

•  2: Keys distributed in code books,
which get stolen, copied, etc.

•  3: using the Bombe machines to
grind through all combinations
until the ciphertext yielded the bit
of known plaintext.

Enigma

Fatal conceits of German
cryptographers:

•  Underestimation of English
proclivity for tedious problems.

•  Lost code books compromised
the whole system.

•  Hubris in regard to the effective
complexity (entropy) of their
keys.

Little changes..

Fatal conceits of security designers:

•  Underestimation of attackers.

•  Lost passwords or keys
compromise the whole system.

•  Hubris in regard to the effective
complexity (entropy) of their
keys.

Modern Cryptography

Plaintext

Key

Ciphertext

f(e)

Same problem, different representation:

Key Plaintext Ciphertextf(e) =

Key Ciphertext Plaintextf(e) =

Ciphertext Plaintext Keyf(e) =

Day to Day

!  You probably won’t need to invent new cryptosystems.

!  Standards bodies approve them (NIST) and with using
a non-approved cipher is useful mainly in areas where
it’s about to be certified anyway. (bcrypt, scrypt, etc)

!  Belief that a new cipher is the solution more indicative
of misunderstanding the problem.

!  “Just because you can’t crack it doesn’t mean someone
else can’t.”

Practical Problems

Key Plaintext Ciphertextf(e) =

Problems in managing keys:

How do I make it un-guessable?

How do I store them securely?

How do I transmit a key securely?

*ProTip: Use formal security protocols from SPORE
 Google: “Security Protocols Open Repository”

http://www.lsv.ens-cachan.fr/Software/spore/table.html

Two kinds of problems

Work Problem Information Problem

Algorithm Concepts
2016201320052003

Information
Problem

Work
Problem

Key Plaintext

Substitution Permutation

Encode Transform

Encode

Ciphertext

Key'

f

f

Input Function

Encryption Function

Output Function

•  Cryptographic algorithms use some
combination of Work and Information
problems to provide Security for secrets.

•  Differences tend to be in performance
characteristics. Some are fast, but
sometimes you want them to be slow.

•  Fast to encrypt, slow to decrypt means
imposing time and resource costs on
attackers.

Google: “stick figure AES”

Algorithm Concepts

!  Most of what you will encounter will be authentication
protocols that use cryptography, and not the ciphers
themselves. (see SPORE repo for details)

!  You can reason about how trustworthy or viable a system is
by treating (approved) ciphers as “black boxes.”

!  Main questions are:
!  A) Are my inputs (keys and plaintexts) complex or random

enough that they cannot easily be derived by an attacker?
!  B) Have I stored my inputs and outputs in a secure way?
!  C) Has someone other than me examined this system?

“Random*”

!  Random, to whom?

!  When “random” is viewed as unpredictable, the implication
is that the next number is a secret.

!  Back to the same problem, how do you protect a secret?

!  Solution: use a “pseudo random number
generator,” (PRNG) or “cryptographic random number
generator, “ (CRNG).

!  Right, but how do I trust it?

Google: “PRNG”, “CRNG”,
“Information Entropy”

“Random*”

Google: “lcamtuf tcp”

Security meets
Entropy

•  Given the reliance of modern
crypto on random numbers, the
security of a system becomes
closely intertwined on its
“entropy.”

•  See Claude Shannon’s
“Mathematical Theory of
Communication” for a definition.

•  Security people over-use “entropy”
to mean a lot of different things,
not always on purpose.

Entropy

Information Entropy (or
complexity) becomes the logical
height and breadth of the wall your
attacker must scale.

How many guesses must an
attacker make to guess an
encryption key?

Key Ciphertext Plaintextf(e) =

Key sizes “bits”

•  Modern key sizes are massive.

•  E.g. 16bit integer = 216 = 65536

•  Typical AES key is 2128 or 2256 bits.

•  128 bit ~= 32 bytes, e.g. “a zillion” possible keys

•  256 bit ~= 64 bytes, e.g. “a bajillion” possible keys

•  Keys are easier to steal than to guess…which is where the fun
really starts.

“Random*”

825001376b4cebb5da27e1a0e139716c

3c7229663d08d0f3a1b1877a5620a3cc

6a3a553bfccfced6606353d542ebdb74

echo mycatsname `date` | md5

Alice and Bob Must Die

!  Most crypto protocols are explained with Alice and Bob,
with Eve being the eavesdropper on their conversation.

!  Substituting constants {A, B, E} with generic names that
lack any real use-case context creates unnecessary
abstraction without adding any additional information.

!  E.g. elmerimagines pie but gets some and there is zero.

!  Connecting notation with a metaphor requires work, and
generic abstractions are lazy and patronizing.

!  If you find them mystifying, it’s probably not your fault.

Use Cases

!  A bank and a news agent need to keep their accounts
up to date.

!  James walks in to the news agent and says, “I’d like to
buy some Asprin. Here’s my bank account number,
you can debit my account at the bank for the $5.”

!  The Agent says, “thanks,” and uses the account
number to buy gaming tokens on the internet.

What happened?

James -> Agent: {CARDNUMBER, $5}

Agent -> Internet: {CARDNUMBER, $1000}

What should have
happened

!  James requests to purchase with bank number

!  Agent says, if the bank sends me a confirmation that your account is good for it, I will give you the goods.

!  James says, then give me a random number.

!  Agent returns a random number (Rand)

!  James encrypts his account number, the amount, and the random number with the banks Key

!  {CardNum, Amt, Rand}bank_key

!  James returns this to the Agent, who forwards it to the Bank.

!  The Bank decrypts the meaningless blob using its bank_key and sends a message containing the Agent’s random number
back to the Agent to prove it got the message. {Amt, Rand}

!  Without knowledge of James’ card number, but proof from the bank, Agent receives the Amount and the Random
number confirmation and hands over the Aspirin.

BAN-logic:
A name, not an incitement

!  James -> Agent: {INIT, “Aspirin, please”}

!  Agent -> James: {Rand}

!  James -> Agent: {CardNum, Amt, Rand}bank_key

!  Agent -> Bank: {{CardNum, Amt, Rand}bank_key}

!  Bank: DECRYPT{{CardNum, Amt, Rand}bank_key}bank_key’

!  Bank -> Agent: {Amt, Rand}

!  Agent -> James: Aspirin

Reasoning about security

Key Plaintext Ciphertextf(e) =

bank_key

{CardNumber, Amt, Rand}

{{CardNumber, Amt, Rand}bank_key} EncDec Function

Summary

!  Why is it important? Because it has always been important.

!  What do you need to know? Keys, Plaintexts and Ciphertexts – it’s
mostly key management.

!  What do encryption functions do? Mix an Information Problem
with a Work Problem to create something intractable.

!  What’s with “entropy?” A conceptual space/work dimension that
provides barriers to attackers.

!  How do I reason about it? Use-cases, formal security protocols,
and BAN-logic.

Some fun.

!  If you are interested in learning more about practical
cryptography Google these:

Code:
!  PyCrypto
!  http://cryptopals.com/

Puzzles:
!  Cicada 3301
!  11b-x-1371

Further Reading

