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1 Introduction

There are good reasons why deploying Java applications as object-oriented
machine-neutral bytecode with late binding between classes is attractive. For
example, application code can be downloaded on demand. However, implement-
ing a program to execute the bytecode quickly is complicated. Experience has
shown that a straightforward implementation of a virtual machine based on a
bytecode interpreter is very slow.

The performance challenges faced by Java can be loosely categorized as
those related to bytecode interpretation and those related to Java’s object-
oriented, late-bound approach. It is reasonably well understood how to execute
leaf methods quickly. It is less clear how to claw back the overhead imposed by
late-binding object-oriented techniques.

Java just-in-time, or JIT, compilers translate the bytecode of selected meth-
ods to native code after they have been loaded. The interpreter then arranges
to dispatch these methods instead of interpreting them. Even naively-generated
native code runs about two or three times faster than the originating bytecode
can be interpreted. As a result, realistic Java leaf methods containing loops and
complex expressions perform acceptably well.

Two properties of object-oriented systems like Java, Smalltalk and Self con-
spire to complicate the life of the JvM implementor. First, callsites can be
polymorphic. Second, linkage to methods is carried out at run-time, which is
extremely late relative to languages like ¢4+ and FORTRAN.
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1 INTRODUCTION

Polymorphism Polymorphic callsites are a consequence of how object-oriented
languages invoke methods on objects. The type of object on which the method
is invoked determines the actual destination. The idea is that each variety of
object may override a method and so at runtime the system must dispatch the
definition of the method corresponding to the type of object. In many cases it
is not possible to deduce the exact type of the object at compile time. Since,
in such situations, the object might turn out to one of multiple types we refer
to the call as polymorphic. For example, consider an array of objects in Java
(or Smalltalk or Self). Suppose we code a loop that iterates over the array and
invokes the toString method on each element. Since the array can contain any
type of object we cannot tell what type of object toString will be invoked on.
There is no single destination of the callsite.

The dispatch of polymorphic methods in statically-bound systems, such as
virtual functions in ¢4+, is simpler since the link editor and loader can enumer-
ate all possible destinations of each callsite. The construction of efficient virtual
function dispatch tables that makes this possible has been heavily studied and
is well understood [4].

Late binding in Java stems from the requirement to support mobile code.
The binding between a polymorphic callsite and its callees must be carried out
at run time because when the calling class is loaded we may have not yet loaded
the classes defining the possible callees. Both a bytecode interpreter and code
generated by a JIT compiler must be prepared to occasionally search through
loaded classes to locate the target method at the time of the call. Caching
techniques can be very effective in conjunction with a JiT. For instance, Holzle’s
Polymorphic Inline Cache [5] reduces the cost of the dispatch after the initial
dynamic look-up has been done.

The indirection inherent in a polymorphic callsite acts as a barrier to inter-
procedural optimization. Given the tendency of modern object-oriented soft-
ware to be factored into many small methods which are called throughout a
program, even in its innermost loops, the optimization barriers can lead to poor
native code quality. A typical example might be that common subexpression
elimination cannot combine redundant memory accesses separated by a poly-
morphic callsite because it cannot prove that all callees do not kill the memory
location. To achieve performance comparable to procedural compiled languages,
inter-procedural optimization techniques must somehow be applied to regions
laced with polymorphic callsites.

It turns out that modern programming practice results in little effective poly-
morphism. Effective polymorphism measures how many destinations a given
callsite actually dispatches, on the average. Various studies have indicated that
almost all callsites are effectively monomorphic, which is to say that they al-
ways dispatch the same method. This fact suggests that we should not compile
a callsite until we have had a chance to verify if it is monomorphic and record its
destination. Efficient dispatch code can then be generated that performs well
when the callsite continues to be monomorphic.
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Translation of Bytecode to native code The strategy pursued by state-of-
the-art method-based JIT compilers is to wait until a called method is “hot” and
then translate it to native code and optimize it. This is essentially a gamble that
an investment in dynamic compile time will be recouped by future execution of
the resulting optimized native code. As the method is optimized, it is desirable
to inline methods it calls at selected callsites for which the destination is known.
This results in efficient dispatch as well as the opportunity to expose caller and
callee to optimization together. But what about the callsites that have not
yet executed and hence whose destinations are still unknown? Only generic,
potentially poorly performing code can be generated for these. Later, when
more is known about these callsites, the only recourse is to compile the entire
method again. This can be expensive because in order to recompile a relatively
small part of a method we may have to recompile its caller(s) and all its inlined
callees as well.

It is significant that some of the infra-structural complexity of the method-
based approach is self-inflicted, in the sense that code is optimized at the same
granularity as it is translated into native instructions, namely the method. It
may be preferable to translate relatively fine-grained regions of bytecode (as
they are recognized as hot) but optimize more coarse-grained portions of the
overall control flow graph (CFG) as it emerges in the hot regions of the program.

We would like to find a way to organize a JIT so that it can translate relatively
fine-grained regions of bytecode to machine instructions and yet optimize more
coarse-grained regions of the program. A recent dynamic optimizer for binary
code built by Bala, Duesterwald and Banerjia at HP labs identifies a possible
approach to solving this problem. HP Dynamo [1, 2] starts out by doing a rather
strange thing for a system intended to speed up the execution of programs: It in-
terprets highly optimized binaries instead of running them. Dynamo starts with
a highly optimized executable ready to run on native hardware. Then, counter-
intuitively, it starts to interpret the executable rather than dispatch the binary.
As interpretation continues, Dynamo heuristically identifies hot regions of the
program, which are termed “traces”. Dynamo dynamically discovers the loops
in the program and does not consider the call graph. Dynamo then enters a
mode called “trace-generation” in which native instructions are issued into a
trace cache as the originating code is interpreted. The resulting code fragments
that are added to the trace cache only include code for the exact path through
the program that was traversed during trace generation. Traces link together
and execution soon occurs almost exclusively from the trace cache. It turns
out that for compute intensive benchmarks almost all time is spent executing
traces and not interpreting the originating methods. In fact, less than one per-
cent of the time is spent interpreting. Simple code straightening optimizations
that improved branch prediction had sufficient impact that Dynamo actually
ran most SPEC benchmarks faster than the underlying executables. Dynamo
obtained performance gains even with small trace caches of only a few hundred
kilobytes.

My own detailed review of Dynamo, including a discussion of some of the
problems with the approach such as the return guard problem appears in [10].
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In addition, my hypothesis that the performance gains were at least partially
due to instruction cache prefetch effects is introduced. A discussion of how
polymorphism can be accommodated is given by [9].

The techniques pioneered by Dynamo are relevant to a Java JIT because
they show how we might organize inter-procedural optimization at the same
time as compile only code we have seen before. Inter-procedural optimization is
carried out as traces extend across calls. The fact that all code within a trace
has been executed before means that at least one destination of each callsite is
known. The Dynamo results prompt us to recognize that the unit of translation
need not relate to the structure of the source code or even the call graph of the
originating program.

I propose to sidestep some of the difficulty experienced by method-oriented
JIT compilers by adopting a different unit of compilation. Rather than compil-
ing entire methods, I suggest that an enhanced Java interpreter should trace-
generate, like Dynamo, fragments of native code for hot paths through the
bytecode of a Java program. When dispatched, the generated code will func-
tion only for the path followed when it was generated. If execution must diverge
from this path then the fragment will exit and normal Java interpretation will
resume. As these forays away from compiled code themselves become hot they
will be trace generated and linked in to our code cache as well.

I anticipate that the main contribution of this project will concern how
optimization should be organized in such a trace-based JIT. Any reasonably
simple code generation technique to lower the bytecode of a trace to native
instructions is bound to leave redundant code in each trace. One open question
is: “How can this code be exposed to classical optimizations such as common
subexpression elimination and loop invariant code motion?” The issue is that
any given trace does not contain much of the loop structure of the program so
optimizing each individually is unlikely to help!.

My suggestion is to delay global optimization until enough traces have been
linked together to expose the loop structure of the program. At that time
the optimizer will have a reasonably broad view of the overall CFG of the pro-
gram. Potentially many traces will be combined into a combined compilation
unit (CcU) and optimized. Since every callsite has been executed previously,
we need expose only the effectively monomorphic destination of each to the
optimizer and represent other possibilities as an exceptional return. How to
represent these exceptional returns so that reasonable optimization is possible,
and yet we can correctly return to the interpreter, is an open question.

The research I propose to carry out is to modify a production IBM Java
interpreter and JIT. The interpreter will be modified to detect and trace generate
bytecode traces. The mechanisms of the JIT will be employed to locally optimize
a trace prior to linking it in a trace cache. The underlying runtime system will
have to be extended to support trace execution. As traces are linked into the
trace cache a special-purpose CFG should be updated. A heuristic will run as
each new fragment is inserted to determine whether the overall CFG has evolved

IDynamo isn’t of much assistance here as it started with highly optimized native code.
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such that global optimization is warranted and which set of traces should be
subjected to it.

My thesis statement is that: A trace based jit will identify regions of a
program to translate into native code more effectively than method-
based approaches with the result that fewer bytecodes need to be
interpreted. Applying global optimization to code assembled from the
fragment cache will reduce the volume of code optimized and hence
reduce the overhead of this costly operation. Since the fragment
cache contains only callsites that have been dispatched previously the
inherent indirection of their polymorphism can be hidden from the
optimizer to some extent. This will improve our ability to optimize
across callsites and hence should improve code quality. Overall Java
program performance will be improved.

Structure of this document In the rest of this document I shall describe
my proposed research, methodology, contribution and current status.

2 Background

A survey of the background to this research appears in a separate document
prepared for my depth oral [10].

3 Proposed Research

My goal is to show that by extending a Java interpreter with a dynamic, opti-
mizing, trace-oriented JIT we demonstrate an effective new way of structuring
a JVM. In this context “effective” means that the compile time and compiler
footprint will be at least comparable to a typical procedure-based JIT compiler.
Obviously my intention is that the resulting execution time and trace-cache foot-
print will be better or similar to current Java JIT systems employing comparable
levels of optimization.

We need to be careful to distinguish which tasks address open research ques-
tions and which tasks solve unfamiliar compiler engineering problems. Each will
be discussed in more detail below.

3.1 Research Questions

The primary research tasks are to:

e Design the trace selection scheme;

o Identify a trace-generation-time heuristic to combine traces into a new
single-entry combined compilation unit (ccu) for optimization;
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e Devise an intermediate representation for trace exits such that an opti-
mizer is able produce good code for the cCU and also generate correct
code for trace exits themselves;

e Devise new optimizations to improve traces, for instance an optimization
to collapse return guards in the cCuU.

More detailed descriptions of these follow.

Trace Selection Most of my effort to date has been expended on this aspect
of the project. Initial results indicate that even a straight-forward trace-selection
heuristic works fairly well for Java bytecode. Nevertheless a couple of issues,
described in the Jootch document [9], could benefit from further investigation:

e How can code replication, caused by the trace selection heuristic, be man-
aged? Is it, in fact, a problem, or is it a feature in the sense that it
may improve branch prediction and/or i-cache prefetch and perhaps cre-
ate downstream scheduling opportunities?

e Is there still a “return guard problem” once we are executing the CCU
code? If so, should it be addressed by modifying the trace selection
heuristic, replicating traces in response to a hot return guard, or a special-
purpose transformation run as part of CCU optimization?

Trace combination or ccu formation How exactly should trace optimiza-
tion be delayed until sufficient traces can be combined and optimized together
as one control flow graph? Is a single-entry CCU realistic? How will trace exits
from the resulting ccU be handled? A simple experiment is described in [8].

Trace exit representation The whole point behind assembling traces into
a combined compilation unit was to sidestep the barriers to optimization rep-
resented by polymorphic callsites. Care must be taken lest trace exits result
in similar barriers. We must invent a representation that describes trace exits
in such a way that that they do not form barriers to data flow analysis and
hence hamstring optimization. We will first attempt to express the trace exits
as exceptional returns from the ccu.

CCU optimization I hope that it will be straightforward to run many clas-
sical optimizations to improve the ccu. In addition, adaptations of classical
algorithms may be able to deal with specific issues left over from the traces. For
instance, a modified form of store motion may be able to move stores to local
variables into trace exit glue code.

Special-purpose optimizations that are specific to our trace-based approach
might have great impact. Two examples follow: First, many trace exits assert
a predicate about the code. For instance, a call guard will assert the type of an
object. Optimizations that propagate this information may be quite effective.
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For instance, subsequent trace exits asserting the same predicate could be elim-
inated. Second, return guards have shown up as a problem in the DynamoRIO
project. Once traces have been combined into a CCU it is possible that calls and
return guards could be matched and thus eliminated.

3.2 Compiler Engineering

Our primary focus is to shed light on the research questions described above.
Thus, we need to choose a software infrastructure that reduces the amount of
engineering work that must be done. In an ideal world we could initially use
the infrastructure in a relatively unmodified state and later make trace-related
enhancements to enhance performance.

3.2.1 Experimental Infrastructure

Mr Kevin Stoodley of IBM manages the team designing and building the IBM
VisualAge JvM and JIT product. Our initial conversations indicate that their
system should serve my purposes reasonably well. Intellectual property con-
siderations have been handled by arranging an IBM cAs fellowship through
Professor Demke Brown.

It was tempting to extend the Java simulator I have already built to compile
and execute native code traces. However, the creation of a new back end (code
generation and optimization) infrastructure has little to do with the research
at hand. A few other infrastructure possibilities have also been considered and
rejected. After very little investigative work I have rejected the Microsoft .NET
compilation infrastructure because I fear little or no access to the designers and
developers would be possible. I reject the GNU Java compiler infrastructure
because it has not been integrated with an interpreter. The same can be said
of the IBM Jikes RVM infrastructure.

3.2.2 Engineering Tasks

A lot of engineering work will be required to design a scheme to support trace
exits and the other novel features of our proposed approach. However, we will
attempt to adapt our implementation to the features offered by the IBM JIT
infrastructure as best we can. The engineering of a prototype doesn’t have to
be complete or totally general — though it should at least make clear which
engineering issues remain to be addressed. Some of the obvious engineering
tasks are:

o Integrate the trace-selection heuristic and trace-generation scheme into
the IBM threaded interpreter;

e Adapt the method-based JIT to compile traces;

e Adapt the runtime from the method-based JIT to dispatch the traces and
manage a trace cache;
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e Adapt the IBM optimizer to process a CCU.

e Adapt the IBM implementation of ”high speed debug”? functionality to
recreate local variables and operand stack suitable for trace exits.

4 Expected Contribution

Naturally I hope to demonstrate that a trace-based JIT has performance ben-
efits. The benefits may come from a reduction of interpretation overhead, a
savings of compile and optimization (by omitting cold bytecode) and perhaps
from an improvement in inter-procedural optimization by optimizing dynam-
ically combined sets of traces. There may be micro-architectural benefits like
those (better branch prediction and /or better use of i-cache prefetch bandwidth)
thought to have benefited Dynamo.

One risk with this style of research is that its success may be judged only by
the relative performance of the resulting prototype. A fact of life is that vendors
have invested much effort maximizing the performance of their method-based
JIT compilers on the common benchmarks. This suggests that the chance of
actually outperforming them on the SPEC benchmarks is slim. Nevertheless,
research in the dynamic compilation field has traditionally included some ag-
gressive experimentation. Ideas like my concept of assembling compilation units
from run-time identified traces should be attempted to guide future design. My
investigation of how dynamically discovered traces can be combined into com-
pilation units before optimization will contribute important knowledge to the
field whether my precise scheme improves performance or not.

5 Methodology

Using the IBM software base it should be possible, hopefully in not much more
than a year, to build a prototype to test these ideas. The general idea is that
I will modify the IBM threaded interpreter to select bytecode traces and the
IBM JIT to compile and optimize them. Once this general infrastructure is in
place we will undertake the core of our research agenda, which is to investigate
how to combine traces into a combined compilation unit (ccu) and how the
combined compilation unit should be optimized.

Our goal will be to run the SPEC JVM benchmarks on our prototype and
compare our results to the unmodified IBM system. The IBM project includes
an elaborate performance measurement function that is currently used to report
the performance of the IBM product to the SPEC [3] consortium. In addition
the performance team reports the resource consumption of the IBM JiT product
relative to competitors and other IBM Java systems. I intend to use these same
measurement tools to evaluate my prototype.

2This is the name used by Sun’s Hotspot compiler. See [6, 7]
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Possible Activity Effort
months

Instrument existing method-based IBM/OTI production inter- || 1-2
preter and JIT to get instruction cache hit ratio and other sum-
mary numbers to compare at high level with the results of the
Jootch trace selection experiment. Create or obtain native code
listing for Trace2 program to compare with hand-coded traces of
the trace combination experiment.

Invent a scheme to support trace generation in the IBM threaded || 2-4
interpreter.

Extend IBM/OTI production interpreter and JIT to generate and || 2-4
execute unoptimized native code traces.

Explore how to combine the traces in the trace cache into a ccu. || 3-6
Invent a heuristic that indicates when this should be done. (Like
trace links closing loops.) This might be done in the Jootch infras-
tructure then ported to the IBM JIT.

Investigate trace exit representation with respect to CCU optimiza- || 2-4
tion.

Investigate return-guard optimization for ccu. 1-3
Write Dissertation 6-7?7
| Total. | 17-21

Table 1: Major tasks of the research and guesses as to their best and worst case
cost

6 Current Status

6.1 Work to date

Up to this point I have concentrated on two aspects of this research. In the
interests of keeping this document reasonably short these are described in much
more detail in separate documents.

The first experiment involved the construction of Jootch, a Java simulation
of a trace-oriented JvM. The report appears in [9]. The goal was to investigate
how the SPECL heuristic could be adapted to polymorphic Java bytecode. The
project also served to familiarize me with the operation of a Java interpreter and
JVM. Jootch made it clear that traces could be used to select the “hot” bytecode
of an executing Java program. I found that trace selection and generation
produced traces that accounted for 97% of the bytecode executed by the Java
SPEC JVM benchmarks compress, jess and raytrace. The trace exit behavior
of the benchmarks was examined in detail and many possible improvements to
trace selection were discussed.

The second experiment investigates how traces selected by Jootch can be
combined into a combined compilation unit (ccu) and optimized. A small
program was created that is structured as a doubly-nested loop obscured by a
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polymorphic method invocation. Then, bytecode traces as selected by Jootch
are combined by hand into a flowgraph and hand-coded in C. The C is optimized
by gcc. The resulting code is examined and the performance of the hand-coded
C compared to Sun’s Hotspot JIT. I am encouraged by the results primarily
because the gce optimizer did a good job optimizing the ccU. The fact that the
performance of the hand-coded C was better than the JIT might have been due
to many factors and probably shouldn’t be taken too seriously at this point.
The report for this experiment appears in [8].

6.2 Estimated Duration of key tasks

Estimates (rough guesses, really) of how much effort some of the tasks listed
above require appear in Table 1. It’s only realistic to assume that the estimates
in Table 1 are optimistic. Consequently we should expect that the research we
are proposing will require in the vicinity of two more years to complete. As
usual with a research agenda it should be anticipated that some really difficult
and time consuming tasks aren’t on the list because we don’t know we will have
to do them yet.

6.3 Next Steps

My IBM CAS fellowship has recently begun. I have just acquired access to
the sources and am in the process of setting up the development environment.
Coding is about to begin.
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