
YETI: Gradually
Extensible Trace

Interpreter
Mathew Zaleski,

University of Toronto

matz@cs.toronto.edu

(thesis proposal)

Thesis Proposal Jan 2006 2

Overview

‣Introduction
• Background
• Efficient Interpretation
• Our Approach to Mixed-Mode Execution
• Results and Discussion

Thesis Proposal Jan 2006

Why so few JIT compilers?

• Complex JIT infrastructure built in “big bang”,
before any generated code can run.

• Rather than incrementally extend the interpreter,
typical JITs is built alongside.
• The code generator of current JIT compilers

makes little provision to reuse the interpreter.
• The method-orientation of most JITs means

that cold code is compiled with hot.
‣ Interpreters should be more gradually extensible

to become dynamic compilers.

3

Thesis Proposal Jan 2006

Problems with current practice

• Packaging of virtual instruction bodies is:
• Inefficient: Interpreters slowed by branch

misprediction
• Non-reusable: JIT compilers must implement

all virtual instructions from scratch
• Method orientation of a JIT compiler forces it to

compile cold code along with hot.
• Code compiled cold requires complex runtime

to perform late binding if it runs.
• Recompiling cold code that becomes hot

requires complex recompilation infrastructure.

4

Thesis Proposal Jan 2006

Our Approach

• Branch prediction problems of interpretation can be
addressed by calling the virtual bodies.
• Can speed up interpretation significantly.
• Enables generated code to call the bodies.
• JIT need not support all virtual instructions.

• Complexity of compiling cold code can be side
stepped by compiling dynamically selected regions
that contain only hot code.
• We describe how compiling traces allows us to

compile only hot code and link on newly hot
regions as they emerge.
‣ Enables gradual enhancement of interpreter

5

Thesis Proposal Jan 2006

Overview of Contribution

• Callable bodies make for
efficient interpretation.

• Reuse of callable bodies
from generated code
smooths “big bang”.

• A trace oriented JIT
compiler is a simple and
promising architecture.

6

interpretation

efficiency
challenges

callable bodies

method based
JIT

big bang
development

reuse callable
bodies/traces

YETI

Thesis Proposal Jan 2006 7

Gradual extension of VM

Larger regions. More instructions compiled.
Size and Complexity of Compiled Code Regions

Traces - sub dispatch
x

Basic
Blocks

x

SUB
interpreter
x

Traces - compile all
virtual instructions x

Vi
rtu

al
 in

st
ru

ct
io

ns

co
m

pi
le

d

Traces- just integer
instructions x✔

Thesis Proposal Jan 2006

Result preview - Efficient Interpretation

• Branch misprediction
dealt with by calling
the bodies from region
of generated code.

• Relative to Direct
Threaded VM

• Geo mean
• Java SpecJVM98

benchmarks
• Ocaml benchmarks

8

0

0.2

0.4

0.6

0.8

1.0

jav
a/P

4

jav
a/P

PC

oc
am

l/P
4

oc
am

l/P
PC

0.63

0.90
0.820.81

Subroutine Threading

Re
la

tiv
e

to
 D

ire
ct

 T
hr

ea
di

ng

Thesis Proposal Jan 2006

Result preview - Trace based JIT

• Geom mean SPECJVM98
relative to Sun Hotspot JIT

• SABVM
• Selective inlining

• Modified JamVM.
• TR-LINK = traces,no JIT
• JIT = trace, JIT
• Only 50 integer

bytecodes
• Promising start

9

0

1

2

3

4

5

6

SA
BV

M

TR-L
IN

K JIT

4.3

5.7
5.9

Java/PPC970

Re
la

tiv
e

to
 S

un
 H

ot
sp

ot

Thesis Proposal Jan 2006

Background & Related Work

10

Ertl & Gregg Branch misprediction

Piumarta & Riccardi Selective inlining

Parrot (perl6) Callable bodies

Vitale, Abdelrahman Catenation, Tcl

Bala, Duesterwald, Banerjia Dynamo

Bruening, Garnett ,Amarasinghe Dynamo Rio

Whaley Partial methods

Gal, Probst, Franz Hotpath, Trace-based JIT

Suganuma,Yasue,Nkatani Region based compilation

Hozle, Chambers, Ungar Self

Many Java, JVM and JIT authors Java

Thesis Proposal Jan 2006 11

Overview

•Introduction
‣ Background:
‣ Dynamo & Traces
‣ Interpretation

• Our Approach to Mixed-Mode Execution
• Results and Discussion

Thesis Proposal Jan 2006 12

• Trace-oriented dynamic optimization system.
• HP PA-8000 computers.

• Counter-Intuitive approach:
• Don’t execute optimized binary interpret it.
• Count transits of reverse branches.
• Trace-generate (next slide).
• Dispatch traces when encountered.

• Soon, most execution from trace cache.
• faster than binary on hardware of the day!

HP Dynamo

Thesis Proposal Jan 2006

• Trace is path
followed by program

• Conditional
branches become
trace exits.

• Do not expect trace
exits to be taken.

Trace with if-then-else
//c => b2
if (c)
 b1;
else
 b2;
b3;

c

b1 b2

b3

c

b2
b3

texit b1

13

Thesis Proposal Jan 2006 14

Overview

•Introduction
‣ Background:

• Dynamo & Traces
‣ Interpretation

• Efficient Interpretation
• Our Approach
• Selecting Regions
• Results and Discussion

Thesis Proposal Jan 2006

int f(boolean);
 Code:
 0: iload_1
 1: ifeq 7
 4: bipush 42
 6: ireturn
 7: iconst_0
 8: ireturn

15

 int f(boolean parm){
 if (parm){
 return 42;
 }else{
 return 0;
 }
 }

Java
Source

Java
Bytecode

Javac
compiler

Virtual Program

Thesis Proposal Jan 2006 16

Interpreter

Loaded
Program

Bytecode
bodies

Internal
Representation

fetch

dispatch Load
Parms

execute

Execution Cycle

Thesis Proposal Jan 2006

vPC = internalRep;

while(1){
 switch(*vPC++){

 //and many more..

 }
};

17

Switched Interpreter

case iload_1:
 ..

break;

case ifeq:
 ..

break;

slow. Burdened by switch and loop overhead.

Thesis Proposal Jan 2006

static int *vPC = internalRep;

interp(){
 while(1){
 (*vPC)();
 }
 };

18

Call Threaded Interpreter

void iload_1(){
 //push load 1
 vPC++;
 }

slow. burdened by function pointer call

void ifeq(){
 //change vPC
 vPC++;
 }

Thesis Proposal Jan 2006

Direct Threaded Interpreter

‣ Good: one dispatch branch taken per body
19

ifeq:
 if () vPC=
 goto *vPC++;

bipush:
 ..
 goto *vPC++;

iload_1:
 ..
 goto *vPC++;

iconst_0:
 ..
 goto *vPC++;

ireturn:
 ..
 goto *vPC++;

ireturn:
 ..
 goto *vPC++;

-Execution of
virtual program
“threads”
through bodies

int f(boolean);
 Code:
 0: iload_1
 1: ifeq 7
 4: bipush 42
 6: ireturn
 7: iconst_0
 8: ireturn

Thesis Proposal Jan 2006

Context Problem

‣ Bad: hardware has no context to predict dispatch
20

ifeq:
 if () vPC=
 goto *vPC++;

bipush:
 ..
 goto *vPC++;

iload_1:
 ..
 goto *vPC++;

iconst_0:
 ..
 goto *vPC++;

ireturn:
 ..
 goto *vPC++;

ireturn:
 ..
 goto *vPC++;

int f(boolean);
 Code:
 0: iload_1
 1: ifeq 7
 4: bipush 42
 6: ireturn
 7: iload_1
 8: ireturn

Virtual PC predicts
destination.

Hardware PC
insufficient context

Thesis Proposal Jan 2006 21

Overview

✓ Introduction
✓ Background
‣ Efficient Interpretation
• Our Approach to Mixed-Mode Execution
• Results and Discussion

Thesis Proposal Jan 2006

int f(boolean);
 Code:
 0: iload_1
 1: ifeq 7
 4: bipush 42
 6: ireturn
 7: iconst_0
 8: ireturn

22

 int f(boolean parm){
 if (parm){
 return 42;
 }else{
 return 0;
 }
 }

Java
Source

Java
Bytecode

Javac
compiler

Virtual Program

Thesis Proposal Jan 2006

ifeq:
 if () vPC=
 goto *vPC++;

bipush:
 ..
 goto *vPC++;

23

Direct Threaded Interpreter

…
iload_1
ifeq 7
bipush 42
ireturn
iconst_0
ireturn
…

DTT - Direct
Threading Table

Virtual
Program

vPC iload_1:
 ..
 goto *vPC++;

DTT maps vPC to implementation

C implementation
of each body

DTT
&&iload_1
&&ifeq

+4
&&bipush

42
&&ireturn
&&iconst_0
&&ireturn

Thesis Proposal Jan 2006

Context Problem

‣ Bad: hardware has no context to predict dispatch
24

ifeq:
 if () vPC=
 goto *vPC++;

bipush:
 ..
 goto *vPC++;

iload_1:
 ..
 goto *vPC++;

iconst_0:
 ..
 goto *vPC++;

ireturn:
 ..
 goto *vPC++;

ireturn:
 ..
 goto *vPC++;

int f(boolean);
 Code:
 0: iload_1
 1: ifeq 7
 4: bipush 42
 6: ireturn
 7: iload_1
 8: ireturn

Virtual PC predicts
destination.

Hardware PC
insufficient context

Thesis Proposal Jan 2006 25

Essence of Subroutine Threading

iload_1:
 ..
 asm(ret);

ifeq:
 vPC=..
 goto *vPC;

Context Threading Table

Package bodies as subroutines and call them

CTT

call iload_1

call ifeq

call bipush

call ireturn

call iconst_0

call ireturn

DTT

4

42

ret terminated

virtual branches as
directpoints to generated

code

Thesis Proposal Jan 2006 26

Context Threading (CT) -- Generating
specialized code in CTT

4

DTT

Specialized bodies can also be generated in CTT!

vPC
call iload_1

subl

movl ;pop stack

cmpl ;compare 0

jne

movl ; vPC =

jmp ; else

addl ; vPC +=

call bipush

call ireturn

call iconst_0

call ireturn

inlined code
 for if_eq

context for
conditional
branches

Thesis Proposal Jan 2006

CT Performance

‣ CT is an efficient interpretation technique
27Context Threading 24

!"#$%&'()*+',#*-.#(,#/)0

0.00

0.25

0.50

0.75

1.00

ja
va

/p
4

ja
va

/p
pc

oca
m

l/p
4

oca
m

l/p
pc

Subroutine Branch Inlining Tiny Inlining

!
"
#$
%&
'(
)*
+,
"
+

-
'#
).
,+
/
0
#)
%*
'1
2

! 1%2*&#$3)'4%#*'5*#66#$&'7#*/)8*.#)#2/9*

Thesis Proposal Jan 2006 28

Overview

✓ Introduction
✓ Background: Interpretation & traces
✓ Efficient Interpretation
‣ Our Approach to Mixed-Mode Execution

• Selecting Regions
• Results and Discussion

Thesis Proposal Jan 2006

Gradually Extensible Trace Interpreter

Three main enablers:
1. Bodies organized as callable routines so

executable regions can efficiently mix
compiled code and dispatched bodies.

2. The DTT can point to variously shaped
execution units.

3. Efficient, flexible instrumentation.

29

Thesis Proposal Jan 2006

1. Bodies are callable

‣ Needn’t build all virtual instructions all in one shot.

30

iload_1:
 ..
ret;

istore:
 ..
ret;

call iload_1
call iload_1
specialized

code

for iadd

call istore_1

Packaging bytecode bodies as lightweight
subroutines means that they can be efficiently called
from generated code

Thesis Proposal Jan 2006

2. DTT always points to implementation

‣ DTT indirection enables any shape of execution
unit to be dispatched.

31

iload_1:
 ..
ret;

istore:
 ..
ret;

call iload_1
call iload_1
JIT compiled

code
for iadd

call istore_1

DTT

..of corresponding execution unit
vPC

Thesis Proposal Jan 2006

3. Flexible, Efficient Instrumentation

‣ Our runtime active before and after each dispatch

32

A dispatcher describes an execution unit

DTT

postworker(){
}

preworker(){
}

dispatcher
body
payload
pre
post

while(1){ //dispatch loop
 d = vPC->dipatcher;
 pay = d->payload;
 (*d->pre)(vPC,pay,&tcs);
 (*d->body)();
 (*d->post)(vPC,pay,&tcs);
 }

body or generated
code for region

payload
data specific to
execution unit

Thesis Proposal Jan 2006 33

Overview

✓ Introduction
✓ Background: Interpretation & traces
• Our Approach to Mixed-Mode Execution

• Selecting Regions
‣ Basic Blocks
• Traces

• Results and Discussion

Thesis Proposal Jan 2006

int f(boolean);
 Code:
 0: iload_1
 1: ifeq 7
 4: bipush 42
 6: ireturn
 7: iconst_0
 8: ireturn

34

 int f(boolean parm){
 if (parm){
 return 42;
 }else{
 return 0;
 }
 }

Java
Source

Java
Bytecode

Basic Block Detection

Thesis Proposal Jan 2006

t_dispatcher
body=&&iload_1
payload
pre
post

t_dispatcher
body=BB0
payload=bb0
pre
post

35

Basic Block Detection

 0: iload_1
 1: ifeq 7
 4: bipush 42
 6: ireturn
 7: iconst_0
 8: ireturn

t_thread_context
 historyList
 recordMode=0

iload_1 ifeq

DTT

t_dispatcher
body=&&ifeq
payload
pre
post

1

while(1){ //dispatch loop
 d = vPC->dipatcher;
 pay = d->payload;
 (*d->pre)(vPC,pay,&tcs);
 (*d->body)();
 (*d->post)(vPC,pay,&tcs);
 }

Thesis Proposal Jan 2006

Generated code for a basic block

• Could JIT the bb, currently we generate
“subroutine threading style” code for it.

36

DTT
iload_1
ifeq
4

iconst_0
ireturn

bb1
call iconst_0

call ireturn

ret

bb0
call iload_1

call if_eq

ret

 Basic block is a run-time superinstruction

bb0

bb1

t_dispatcher
body
payload
pre
post

t_dispatcher
body
payload
pre
post

Thesis Proposal Jan 2006

• all in one C function
• thread private are C

local variables
• loader initializes

DTT to static
dispatchers

• dispatch loop calls
instrumentation
specific to dispatcher

C Code for interp function

37

static t_dispatcher init[256]={};
interp(t_dispatcher *dtt){
 t_dispatcher *vPC = dtt;

 t_thread_context tcs;
 iload:
 //real work of iload here..
 vPC++; //to next instruction
 asm volatile(“ret”);
 iadd: //and many more bodies

 //dispatch loop
 while(1){
 d = vPC->dispatcher;
 pay = d->payload;
 (*d->pre)(vPC,pay,&tcs);
 (*d->body)();
 (*d->post)(vPC,pay,&tcs);
 }

Thesis Proposal Jan 2006 38

Overview

✓ Introduction
✓ Background: Interpretation & traces
✓ Our Approach to Mixed-Mode Execution

• Selecting Regions
✓ Basic Blocks
‣ Traces

• Results and Discussion

Thesis Proposal Jan 2006

Detecting Traces

• Use Dynamo’s trace detection heuristic.

• Instrument reverse branches until they are hot.
• Postworker of basic block dispatcher

• Trace generate starting from hot reverse branch:
• Much like bb’s were recorded
• Postworker of each basic block region adds

each bb to thread private history list.
• Eventually creates new trace dispatcher
• Hold off generating code until after trace has

“trained” a few times..
39

Thesis Proposal Jan 2006

• Trace is path
followed by program

• Conditional
branches become
trace exits.

• Do not expect trace
exits to be taken.

Trace with if-then-else
//c => b2
if (c)
 b1;
else
 b2;
b3;

c

b1 b2

b3

c

b2
b3

texit b1

40

Thesis Proposal Jan 2006

Subroutine threading style code for a Trace

• Dispatch virtual instructions for trace

41

DTT
iload_1
ifeq
4

iconst_0
ireturn

trace-b0-b1

call iload_1

trace_exit_eq

call iconst_0

trace_exit_iret

..caller code..

...

 Trace is super-super instruction

bb0

bb1

trace exit handlers

TEH
..

ret

TEH
..

ret

Thesis Proposal Jan 2006

Trace Exits

(a) Two-way: from conditional
branches

• one leg on trace
• other leg off trace

(b) Multiway: from invokes and
returns

• one leg on trace
• potentially many legs off trace

42

trace-b0-b1

call iload_1

trace_exit_eq

call iconst_0

trace_exit_iret

...

(a)

(b)

Thesis Proposal Jan 2006

Trace Exit Handlers

• Code runs when trace exit
is taken before return to
interpreter

• Record which trace exit has
occurred in thread context

• Return to dispatch loop
• Housekeeping roles:
• flush state of JIT code
• Trace linking

43

trace-b0-b1

call iload_1

trace_exit_eq

call iconst_0

trace_exit_iret

ret

TEH
tcs=..

ret

TEH
tcs=..

ret

Thesis Proposal Jan 2006

Trace linking

• When trace exit is hot
and destination is a trace

• Rewrite ret at end of
trace exit handler as jmp
to destination trace
• Only use of code

rewriting in system

44

trace-1

TEH

trace-2

retjmp

Hot trace exit

Destination Trace

Thesis Proposal Jan 2006

Trace JIT

• Generate native code for trace exits
• A lot like branch inlining from CT system.

• Optimize invokevirtual when call and return
occur in same trace.

• Naive register allocation scheme
• Only handle 50 integer/object virtual instructions
• Do virtual instructions one-by-one
• Relatively easy debugging

• Floating point should be easy.

45

Thesis Proposal Jan 2006 46

Overview

✓ Introduction
✓ Background: Interpretation & traces
✓ Our Approach to Mixed-Mode Execution
‣ Results and Discussion

• Data
• Discussion
• Remaining Work in this dissertation

Thesis Proposal Jan 2006

Implementation

• Modify JamVM 1.1.3 to be SUB threaded
• Gradually extend it to:
• Detect, execute subroutine style basic blocks
• Detect, execute subroutine style traces
• Link traces
• Compile traces.

47

Thesis Proposal Jan 2006

Region Shape

• As execution units become larger
• Trips around dispatch loop become less frequent
• Next show data to justify “step back” approach.
• Very simple experiment:
• Modify dispatch loops to count iterations.

48

Condition Description
DCT Direct Call Threading

BB CT-style Basic Blocks
TR Traces (no link, no JIT)

TR-LINK Linked Traces (no JIT)

Thesis Proposal Jan 2006

Region Shape Effect on Dispatch Count

49

co
m
pr
es
s

db ja
ck

ja
va
c

je
ss

m
pe
g

m
trt ra
y

sc
ite
st

ge
om
ea
n

1e0

1e2

1e4

1e6

1e8

1e10

lo
g

di
sp

at
ch

 c
ou

nt

Spec JVM98 Benchmarks

Legend
DCT
BB
TR
TR-LINK

Thesis Proposal Jan 2006

How efficient is profiling system?

• Run instrumentation without the JIT.
• Are the intermediate versions of Java viable?
• Include SUB threading in comparison:
• Since it is an efficient dispatch technique.

• Report elapsed time relative to distro of JamVM

50

Thesis Proposal Jan 2006

Profiling/Instrumentation Overhead

51

0.
73

1.
87

0.
95

0.
78

0.
66

co
m
pr
es
s

0.
87

1.
45

1.
05

0.
90

0.
80

db
0.
88

1.
41

1.
22

0.
88

0.
79

ja
ck

0.
88

1.
39

1.
18

0.
96

0.
85

ja
va
c

0.
87

1.
38

1.
15

0.
87

0.
77

je
ss

0.
72

2.
00

0.
99

0.
78

0.
72

m
pe
g

0.
84

1.
11

1.
42

0.
82

0.
81

m
trt

0.
88

1.
49

1.
33

0.
84

0.
77

ra
y

0.
59

1.
69

1.
18

0.
68

0.
60

sc
ite
st

0.
80

1.
51

1.
15

0.
83

0.
75

ge
om
ea
n

0.0

0.5

1.0

1.5

2.0

El
ap

se
d

tim
e

re
la

tiv
e

to
 ja

m
-d

is
tro

Spec JVM98 Benchmarks

Legend
SUB
DCT
BB
TR
TR-LINK

Thesis Proposal Jan 2006

Performance of simple JIT

• Compare YETI performance WITHOUT JIT to
selective inlining SableV

• Compare YETI with preliminary trace based JIT
to Sun’s Hotspot optimizing compiler

• Not much basis for comparison to Hotpath

52

Condition Description
TR-LINK Linked Traces
SABVM SableVM selective inlining

JIT Traces (JIT and Link)

Thesis Proposal Jan 2006

JIT Performance relative to Sun Hotspot

53

8.
78

8.
14

5.
49

co
m
pr
es
s

2.
31

1.
93

1.
50

db

3.
06 3.
23

2.
59

ja
ck

3.
92

2.
86

2.
43

ja
va
c

5.
73

5.
17

4.
25

je
ss

12
.2
6 1
3.
73

7.
95

m
pe
g

11
.6
5

11
.9
6

11
.8
7

m
trt

11
.4
6

9.
71

7.
20

ra
y

4.
07
5.
21

3.
45

sc
ite
st

5.
94

5.
69

4.
31

ge
om
ea
n

0

2

4

6

8

10

12

14

El
ap

se
d

tim
e

re
la

tiv
e

to
 h

ot
sp

ot

Spec JVM98 Benchmarks

Legend
SABVM
TR-LINK
JIT

Thesis Proposal Jan 2006 54

Overview

✓ Introduction
✓ Background: Interpretation & traces
✓ Our Approach
✓ Selecting Regions
• Results and Discussion
✓ Data
‣ Discussion (and future work)
• Remaining Work in this dissertation

Thesis Proposal Jan 2006

Gradual performance improvement

55

0

1

2

SA
BV

M
SU

B
DCT BB TR

TR-L
IN

K JIT

0.57

0.75
0.83

1.15

1.51

0.800.78

Re
la

tiv
e

to
 J

am
VM

 1
.3

.3
 D

ire
ct

 T
hr

ea
di

ng

Geometric Mean SpecJVM98
Elapsed Time PPC970

• Performance improves
as effort invested.

• SUB very effective for
lightweight bodies

• BB not viable by itself
• TR-LINK about same

as CT/branch inlining.
• JIT preliminary.

Thesis Proposal Jan 2006

Discussion

• We have demonstrated how to build an
interpreter that is simple and yet as efficient as
SableVM and JamVM.

• We have shown that our interpreter can be
gradually extended to identify, link and compile
traces.

• We have shown how generated code can reuse
callable virtual instruction bodies.

• Our JIT, although it has no optimizer, only
supports 50 Java virtual instructions, improves
performance by 24%.
• More instructions, better performance?

56

Thesis Proposal Jan 2006 57

2D vision of Incremental VM lifecycle..

SUB
interpreter

Basic
Blocks Traces - sub dispatch

Have explored this space
Complexity of Compiled Code Regions

Traces- just integer
instructions

Traces - compile all
virtual instructions x

x

Basic blocks - just integer
virtual instructions

Nu
m

be
r o

f v
irt

ua
l in

st
ru

ct
io

ns
 c

om
pi

le
d

✔ ✔ ✔

✔

Thesis Proposal Jan 2006

Application

• If I had to build a new interpreter.
• for “lightweight” bodies, so dispatch matters.

• Start with bodies that can be conditionally
compiled to be either direct threaded or callable.

• Bring up the system using DCT because the
dispatch loop makes it easier to debug.
• e.g. Logging from dispatch loop is very helpful.

• Primary platforms would run SUB and secondary
platforms would run direct threading.

• Gradually extend as described.

58

Thesis Proposal Jan 2006

Future Work

• Work could go in many different directions.
• Apply to another language system
• JavaScript? Python? Fortress?
• Deal with polymorphic bytecodes

• Extend JIT/Optimizer
• Explore performance potential
• Need a lot more infrastructure (e.g. IR)

• Package infrastructure for others to apply.

59

Thesis Proposal Jan 2006 60

Overview

✓ Introduction
✓ Background: Interpretation & traces
✓ Our Approach
✓ Selecting Regions
• Results and Discussion
✓ Data
✓ Discussion
‣ Remaining work in this dissertation

Thesis Proposal Jan 2006

Proposed Work for winter 2007.

• Infrastructure to measure:
• Compile time;
• Proportion of virtual instructions executed from

compiled code.
• Add float register class.
• scimark, ray, Linpack would likely benefit.

• Compile Basic Blocks
• Long bb benchmarks will benefit.

• Write, write, write.

61

Thesis Proposal Jan 2006

• Back 12
• Efficient 23
• Our 28
• BB 33
• TR 38
• RES 46
• CONC 54

62

