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Abstract
The design of new programming languages benefits from interpre-
tation, which can provide a simple initial implementation, flexi-
bility to explore new language features, and portability to many
platforms. The only downside is speed of execution, as there re-
mains a large performance gap between even efficient interpreters
and mixed-mode systems that include a just-in-time compiler (or
JIT for short). Augmenting an interpreter with a JIT, however, is
not a small task. Today, JITs used for JavaTM are loosely-coupled
with the interpreter, with callsites of methods being the only transi-
tion point between interpreted and native code. To compile whole
methods, the JIT must duplicate a sizable amount of functionality
already provided by the interpreter, leading to a “big bang” devel-
opment effort before the JIT can be deployed. Instead, adding a JIT
to an interpreter would be easier if it were possible to leverage the
existing functionality.

In earlier work we showed that packaging virtual instructions as
lightweight callable routines is an efficient way to build an inter-
preter. In this paper we describe how callable bodies help our inter-
preter to efficiently identify and run traces. Our closely coupled dy-
namic compiler can fall back on the interpreter in various ways, per-
mitting an incremental approach in which additional performance
gains can be realized as it is extended in two dimensions: (i) gen-
erating code for more types of virtual instructions, and (ii) iden-
tifying larger compilation units. Currently, Yeti identifies straight
line regions of code and traces, and generates non-optimized code
for roughly 50 Java integer and object bytecodes. Yeti runs roughly
twice as fast as a direct-threaded interpreter on SPECjvm98 bench-
marks.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—interpreters, incremental compilers

General Terms Design, Languages, Performance

Keywords interpreter, JIT compiler, mixed-mode, traces

1. Introduction
An interpreter is an attractive way to support an evolving computer
language, making it easy to test and refine new language features.
The portability of an interpreter also allows a new language to be
widely deployed. Nevertheless, these interpreted language imple-
mentations generally run much more slowly than compiled code.
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To get the best of both worlds, today’s high-performance Java im-
plementations run inmixed-mode, that is, combining interpretation
with dynamic just-in-time (JIT) compilation. Given the success of
this strategy for Java, why are many useful languages like Python,
JavaScript, TCL and Ruby not implemented by mixed-mode sys-
tems? We believe the problem is due to the structure of current
mixed-mode virtual machines. We present an approach that more
closely integrates interpretation and JIT compilation, allowing for
the gradual evolution of a mixed-mode runtime system.

We focus onvirtual machine interpretersin which source code
is compiled to avirtual programor bytecoderepresentation (i.e.,
a sequence ofvirtual instructionsand their operands). Typically,
virtual instructions are described as though provided by real hard-
ware, but in fact the virtual machine implements each with a block
of code, called thevirtual instruction body, or simply body. The
interpreter executes the virtual program bydispatchingeach body
in sequence.

1.1 Challenges of Evolving to a Mixed-Mode System

Current JIT compilers (orJITs for short) are method-oriented, that
is, the JIT must generate code for entire methods at a time. This
leads to two problems. First, if the construction of the JIT is ap-
proached in isolation from an existing interpreter, the project be-
comes a “big bang” development effort where the code generation
for dozens, if not hundreds, of virtual instructions is written and de-
bugged at the same time. Second, compiling whole methods com-
piles cold code as well as hot. This complicates the generated code
and its runtime.

The first issue can be dealt with by more closely integrating
the JIT with the interpreter. If the interpreter provides a callable
routine to implement each virtual instruction body, then, when the
JIT encounters a virtual instruction it does not fully support, it
can generate a call to the body instead [22]. Hence, rather than
a big bang, development can proceed in a sequence of stages,
where JIT support for one or a few virtual instructions is added in
each stage. Although typical interpreters do not currently provide
callable virtual instruction bodies we recently demonstrated that
callable bodies can be dispatched very efficiently [2].

The second issue, compiling cold code (i.e., code that has never
executed), has more implications than simply wasting compile
time. Except at the very highest levels of optimization, where an-
alyzing cold code may prove useful facts about hot regions, there
is little point compiling code that never runs. Moreover, cold code
increases the complexity of dynamic compilation. We give three
examples. First, for late binding languages such as Java, cold code
likely contains references to program values that are not yet re-
solved. If the cold code eventually does run, the generated code
and the runtime that supports it must deal with the complexities of
late binding [25]. Second, certain dynamic optimizations are not
possible without profiling information. Foremost amongst these is
the optimization of virtual function calls. Since there is no profiling



information for cold code the JIT may have to generate relatively
slow, conservative code. Third, as execution proceeds, cold regions
in compiled methods may become hot. The conservative assump-
tions made during the initial compilation may now be a drag on
performance. The straightforward-sounding approach of recompil-
ing these methods is complicated by problems such as what to do
about threads that are still executing in the method or threads that
must return to the method in the future.

These considerations suggest that the architecture of a gradu-
ally extensible mixed-mode virtual machine should have three im-
portant properties. First, virtual bodies should be callable routines.
Second, the unit of compilation must be dynamically determined
and of flexible shape, so as to capture hot regions while avoiding
cold. Third, as new regions of hot code reveal themselves, a way is
needed of gracefully compiling and linking them on to previously
compiled hot code.

1.2 Overview of Our Solution

One of our goals is to design an infrastructure that supports dy-
namic compilation units of varying shape. Just as a virtual instruc-
tion body implements a virtual instruction, aregion bodyimple-
ments a region of the virtual program. Possible region bodies in-
clude single instructions, straight-line regions of code, methods,
partial methods, inlined method nests, and traces (i.e., frequently-
executed paths through the virtual program). A key idea is to pack-
age every region body as callable, regardless of the size or shape
of the region of the virtual program that it implements. The virtual
machine can then execute the virtual program by dispatching each
region body in sequence.

Region bodies corresponding to longer sequences of virtual
instructions will run faster than those compiled from short ones
because fewer dispatches are required. In addition, larger region
bodies should offer more opportunities for optimization. However,
larger region bodies are more complicated and so we expect them
to require more development effort to detect and compile than short
ones. This suggests that the performance of a mixed-mode VM
can be gradually improved by incrementally increasing the scope
of region bodies it identifies and compiles. Ultimately, the peak
performance of the system should theoretically be at least as high as
current method-based JITs since, with enough engineering effort,
regions identical to the inlined method nests used by method-based
JITs could be supported.

To test out these ideas we extended JamVM, a cleanly imple-
mented and relatively high performance Java interpreter [16], to be
a trace-oriented dynamic compilation system. We chose Java for
our research, rather than a new language with no JIT, because we
felt it essential to compare the performance of our prototype with
existing high performance systems.

We built our prototype, Yeti, (graduallY Extensible Trace In-
terpreter) in five phases: First, we repackaged all virtual instruc-
tion bodies as callable. Our initial implementation executed only
single virtual instructions. Second, we identified an approximation
to basic blocks, straight line sequences of virtual instructions, or
linear blocks. Third, we extended our system to identify and dis-
patchtraces, or sequences of linear blocks. Traces are significantly
more complex region bodies than linear blocks because they must
accommodate virtual branch instructions. Fourth, we extended the
trace system to link traces together. Up to this point all virtual in-
structions in traces are executed by dispatching the corresponding
virtual instruction bodies. This system can be thought of as a trace-
oriented interpreter. In the fifth and final stage, we implemented a
naive, non-optimizing compiler to compile the traces. Our compiler
currently generates PowerPCR© code for about 50 virtual instruc-
tions, generating calls to virtual instruction bodies for the remain-
der. This system is a trace-oriented mixed-mode virtual machine.

We chose traces because they have several attractive properties:
(i) they can extend across the invocation and return of methods, and
thus have an inter-procedural view of the program, (ii) they contain
only hot code, (iii) they are relatively simple to compile as they
aresingle-entry multiple-exitregions of code, and (iv), as new hot
paths reveal themselves it is straightforward to generate new traces
and link them onto existing ones.

These properties make traces an ideal region body for an entry
level mixed-mode system like Yeti is today. However, sophisticated
region bodies assembled from linked traces may turn out to have
all the advantages of inlined method nests but also side-step the
overhead of generating code for cold regions within the methods.
Finally, because of the way traces dynamically capture the active
paths in a program our approach may (i) adapt more gracefully to
phase changes in program behavior than traditional method-based
systems [18], and (ii) take advantage of execution context, as is
done in context sensitive inlining [13].

1.3 Outline of paper

We describe an architecture for a virtual machine interpreter that
facilitates the gradual extension to a trace-based mixed-mode JIT
compiler. We demonstrate the feasibility of this approach in a pro-
totype, Yeti, and show that performance can be gradually improved
as larger program regions are identified and compiled.

In Section 2, we present background and related work on inter-
preters and JITs, before describing the design and implementation
of Yeti in Section 3. We evaluate the benefits of this approach in
Section 4. Section 5 describes related work. Finally, we discuss av-
enues for future work and conclusions in Section 6.

2. Interpreter and JIT Background
To motivate the design choices we made in our system, we first re-
view existing interpreter dispatch and JIT compilation strategies.
We note that portability is an important property of interpreters,
particularly for a new language implementation. Thus, it should
be possible to build the source code base of the interpreter on a
large number of platforms. On the other hand, dynamic compil-
ers are intrinsically non-portable software, since they must gener-
ate platform-specific code. Some non-portable functionality may
therefore be required by an interpreter to help it to integrate conve-
niently with the JIT. As we review various interpreter techniques,
we comment on both their portability and suitability for gradual JIT
development.

2.1 Interpreter Dispatch

The most straightforward way to implement an interpreter is with
a dispatch loop that contains aswitch statement with acase to
implement the body of each virtual instruction. This technique is
often used (e.g. in the JavaScript and python interpreters) because
it uses only ANSI C features and so is very portable. However, it is
slow because of the overhead of the dispatch loop and the switch.
To address this overhead, more efficient dispatch mechanisms have
been developed.

2.1.1 Direct Threading

As shown on the left of Figure 1, a virtual program is loaded into a
direct-threaded interpreter by constructing alist of addresses, one
for each virtual instruction in the program, pointing to the entry
of the body for that instruction. We refer to this list as theDirect
Threading Table, or DTT, and refer to locations in the DTT asslots.
Virtual instruction operands are also stored in the DTT, immedi-
ately after the address of the corresponding body. The interpreter
maintains avirtual program counter, orvPC, which points to a slot
in the DTT, to identify the next virtual instruction to be executed
and to allow bodies to locate their operands.
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Figure 1. Direct Threaded Interpreter showing how Java source
code compiled to Java bytecode is loaded into the Direct Threading
Table (DTT). The virtual instruction bodies are written in a single
C function, each with a separate label. The double-ampersand (&&)
shown in the DTT is gcc syntax for the address of a label.

Interpretation begins by initializing thevPC to the first slot in
the DTT, and then jumping to the address stored there. Each body
then ends by transferring control directly to the next instruction,
shown in Figure 1 asgoto *vPC++. Although this requires fewer
instructions than switch dispatch, the indirect branch generated
from thegoto is nonetheless expensive on modern CPUs because
of branch mispredictions [10].

In C, bodies are identified by alabel. Common C language
extensions1 permit the address of this label to be taken, which is
used when initializing the DTT. The computed goto used to trans-
fer control between instructions is also a common extension, mak-
ing direct threading quite portable. Bodies packaged this way are
not conveniently callable from generated code since the dispatch
embedded in each body branches out of the control of calling code.

2.1.2 Direct Call Threading

It is also possible to write each body as a callable routine. A
virtual method could be loaded as for direct threading, and a simple
dispatch loop could then call each body by treating thevPC as a
function pointer. Ertl [9] named this techniquedirect call threading
because it is derived from direct threading.

We can create lightweight subroutines from direct threaded
bodies by replacing the “goto vPC++” with code to incre-
ment thevPC and an inlined assembly return statement. This
avoids the overhead of setting up and returning from a compiler-
generated function call, but is somewhat less portable since a
platform-specific return instruction must be used. We expect that
this lightweight alternative has performance comparable to switch-
based dispatch, since the destination of the indirect call is unpre-
dictable, and we still have the dispatch loop overhead. Nonetheless,
direct call threading is an interesting starting point. The dispatch
loop provides a convenient way to add instrumentation, enabling
the discovery of hot regions. Further, callable region bodies of arbi-
trary shape can be dispatched by simply rewriting slots in the DTT
corresponding to their entry points.

2.1.3 Subroutine Threading

Subroutine threading, shown in Figure 2, is another modification of
direct threading in which every virtual instruction body is called. It
solves the branch prediction problems plaguing direct threading by

1 GNU’s gcc, as well as the C compilers produced by Intel, IBM and
Sun Microsystems all support the label as address and computedgoto
extensions.
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Figure 2. Subroutine Threaded Interpreter showing how the CTT
contains one generated direct branch instruction for each virtual
instruction and how the DTT points to generated code.

generating (at load time) a distinctdirect, relativecall to the body
for each virtual instruction in the loaded program. We call the re-
gion of generated call instructions thecontext threading table, or
CTT [2]. Since each call has a single destination, known when the
call is generated, no prediction is needed. Return branch predictors,
commonly available on modern microprocessors, remove mispre-
dictions that are due to the return instructions. The direct threading
table (DTT) is modified such that the first DTT slot for each virtual
instruction points to the CTT slot holding the correspondingcall
instruction. This provides a level of indirection mapping thevPC to
theaddress of the generated codethat dispatches the current virtual
instruction. Indirect virtual branch instructions (e.g., method invo-
cation and return) need this level of indirection: they use thevPC
to execute an indirect branch to the slot of the CTT corresponding
to their destination.

To start executing any region of virtual code a subroutine thread-
ing interpreter jumps to the generated code at the slot of the CTT
corresponding to the entry point of the region. Then, execution
ping-pongs back and forth between the code in the CTT and the
virtual instruction bodies. Reduced branch mispredictions lead to
better performance than direct threading [2], but the machine code
in the CTT is, of course, not portable. However, since only direct
relative call instructions are generated, the machine dependency is
simple and highly localized. In a sense, subroutine threading could
be regarded as an extremely simple JIT. Generating a sequence of
call instructions to implement a region of the virtual program is an
appealing way to construct arbitrarily shaped region bodies, since
the dispatch of individual instructions within the region is very effi-
cient. However, doing so at load time may be wasteful, particularly
for large methods containing many instructions that are never exe-
cuted. We prefer to generate CTT code only for parts of the program
that are known to execute.

2.1.4 Selective Inlining

Arguably, the best way to optimize virtual instruction dispatch is to
eliminate it. Piumarta and Riccardi describeselective inlining[20]
in which virtual instructions from the same basic block can be com-
bined into asuperinstructionat load time. The result is reduced
dispatch overhead at run time in exchange for slightly higher load
time overhead. Ertl and Gregg later showed that superinstructions
reduce branch mispredictions [10]. Languages, like Java, that re-
quire runtime binding complicate the implementation of selective
inlining significantly, but a variation of the technique for Java is de-
ployed by SableVM [11]. The benefits of selective inlining suggest
that basic blocks are a useful first step in identifying and generating
code for region bodies larger than single instructions.



2.2 Traces

HP Dynamo [1, 8] is a system for trace-based runtime optimiza-
tion of statically optimized binary code. Dynamo initially interprets
a binary executable program, detecting interprocedural paths, or
traces, through the program as it runs. These traces are then op-
timized and loaded into atrace cache. Subsequently, when the in-
terpreter encounters a program location for which a trace exists,
it is dispatched from the trace cache. If execution diverges from
the path taken when the trace was generated then atrace exitoc-
curs, execution leaves the trace cache and interpretation resumes.
If the program follows the same path repeatedly, it will be faster to
execute code generated for the trace rather than the original code.
Dynamo successfully reduced the execution time of many impor-
tant benchmarks. Significant binary optimization systems, includ-
ing DynamoRIO [4], Mojo [5], Transmeta’s CMS [6], and others,
have since used traces.

Dynamo uses a simple heuristic, called Next Executing Tail
(NET), to identify traces. NET starts generating a trace from the
destination of a hot reverse branch, since this location is likely to
be the head of a loop, and hence a hot region of the program is
likely to follow. If a given trace exit becomes hot, a new trace is
generated starting from its destination. Recently, Hiniker et al. [14]
described improvements to NET that reduce replication and handle
loops better.

Software trace caches are efficient structures for dynamic opti-
mization. Bruening and Duesterwald [3] compare execution time
coverage and code size for three dynamic optimization units:
method bodies, loop bodies, and traces. They show that method
bodies require significantly more code size to capture an equivalent
amount of execution time than either traces or loop bodies. This
result, together with the properties outlined in Section 1.2, suggest
that traces are a desirable region body for a gradually-extensible
interpreter.

2.3 JIT Compilation

Modern JIT compilers can achieve much higher performance than
efficient interpreters because they generate optimized code for po-
tentially large regions of the virtual program. Typically these JITs
and the interpreters with which they coexist are not tightly cou-
pled [23, 17]. Rather, a profiling mechanism detects hot methods
which are then compiled to native code. When the interpreter next
attempts to invoke a method that has been compiled, the native code
is dispatched instead. Although JIT compilation of entire methods
has been proven in practice, it nevertheless has a few limitations.
First, some of the code in a compiled method may be cold and will
never be executed. Compiling this code can have only indirect ben-
efits, such as proving facts about the portions of the method that
are hot. Second, some of the code in a method may not yet have
executed when the method is first compiled, even though it will be-
come hot later. In this case the JIT has no profiling data to work
with when it compiles the cold code. Handling these issues con-
tributes to the large development effort that goes into creating a
JIT.

JITs perform many of the same optimizations performed by
static compilers, including method inlining and data flow analy-
sis, both of which can be hindered by methods that contain large
amounts of cold code, as observed by Suganuma et al. [24]. To deal
with the problem, they modify a method-based JIT to allow selected
regions within a method to be inlined, and rely onon-stack replace-
ment [15] and recompilation to recover if a non-inlined part of a
method is executed. Although avoiding cold code reduced compila-
tion overhead significantly, only modest overall performance gains
were realized. Whaley also describes a prototype that compiles par-
tial methods [27].

An obvious way to investigate trace-based JIT compilation
would be to retrofit traces into an existing method-based JIT, sim-
ilar to the region-based approach. We looked into ways to do this
and found our efforts complicated by many perfectly reasonable
assumptions made by the developers of the JIT. For instance, the
interpreter component of a method-based JIT expects to dispatch
and return from generated code only at method invocation points.
Similarly, the JIT assumes that all generated code is entered at the
head of a method, executes to the end of the invoked method, and
then abandons its stack frame. Traces, on the other hand, may begin
and end at any virtual branch. On-stack replacement could prob-
ably be leveraged to handle trace exits, but much effort would be
required because of the loose integration between the JIT and the
interpreter. The upshot is that converting the code generator and
optimizer of a method-based system to support traces is difficult, at
best.

A JIT can also perform optimizations that require information
obtained from a running program. A classic example of such a dy-
namic optimization addresses the cost of virtual method invocation,
which is expensive at least in part because the destination depends
on the class of the invoked-upon object. Polymorphic method in-
vocation has been heavily studied and it is well known that most
polymorphic callsites areeffectively monomorphic, which means
that at run time the invoked-upon object always turns out to have
the same type, and hence the same callee is invoked all or most
of the time [7]. Self [26] pioneered the dynamic optimization of
virtual dispatch, an optimization that has great impact on the per-
formance of Java programs today. With profile information, a JIT
can transform a virtual method dispatch to a relatively cheap check
of the class of the invoked-upon object followed by the inlined
code of the callee. If the callsite continues to be monomorphic the
check succeeds and the inlined code executes. If, on the other hand,
the check fails, a relatively slow virtual dispatch must take place.
Hölzle [15] describes how a polymorphic inline cache (PIC) can
deal with an effectively polymorphic callsite that has a few hot des-
tinations. More recently, aggressive speculative schemes have been
built that assume callsites are monomorphic and then react, correct-
ing their mistake, when the speculation is exposed as false [18].

A trace-oriented system should be able to apply the same op-
timizations. It can also afford to be more speculative for two rea-
sons. First, fallback to interpretation is designed to be possible at
any branch. Second, if speculation fails frequently enough, a new
trace is generated from that point, needing less recompilation than
an entire method.

3. Design and Implementation
An important goal of our design is to enable the gradual enhance-
ment of an interpreter by incrementally increasing the size and
scope of region bodies. We develop this design through a prototype
called Yeti, based on the JamVM Java virtual machine. The rela-
tionship between thevPC, the DTT and generated code that exists
in subroutine threading is also at the core of Yeti’s representation
of a loaded program.

Yeti runs a program by initially dispatching single virtual in-
struction bodies from an instrumented dispatch loop reminiscent of
direct call threading. Instrumentation added to the dispatch loop de-
tects region bodies, initially linear blocks, then traces, then linked
traces. As region bodies are generated their addresses are installed
into the DTT. Consequently the system speeds up as more time is
spent in region bodies and less time on dispatch.

3.1 Instrumentation

In Yeti, as in subroutine threading, thevPC points into the DTT
where each virtual instruction is represented as one or more con-
tiguous slots. In Yeti, however, we add an extra level of indirection.



The first DTT slot of each instruction now points to an instance of
a dispatcherstructure. The dispatcher structure contains four key
fields. The region body to be dispatched (initially the virtual in-
struction body, hence the name) is stored in thebody field. The
preworkerandpostworkerfields store the addresses of the instru-
mentation routines to be called before and after the dispatch of the
region body. Finally, the dispatcher has apayloadfield, which is a
chunk of profiling or other data that the instrumentation needs to
associate with a givenvPC.

Although slow, a dispatch loop is attractive because it makes
it easy to instrument the execution of a virtual program. Figure 3
shows how instrumentation can be interposed before and after the
dispatch of each virtual instruction. The figure illustrates a generic
form of dispatch loop (the shaded rectangle in the lower right)
where the instrumentation routines to be called are implemented as
function pointers accessible via thevPC. In addition the dispatcher
payload is passed to each instrumentation call. The disadvantage of
this approach is that the dispatch of the instrumentation is burdened
by the overhead of a call through a function pointer. This is not a
problem because as larger regions are identified and executed the
frequency of dispatch falls by orders of magnitude.

Our strategy for identifying regions of a virtual program re-
quires every thread to execute in one of several “modes”. For in-
stance, when generating a trace, a thread will be intrace generation
mode. Each thread has associated with it athread context struc-
ture (tcs) that includes various mode bits as well as thehistory list,
which is used to accumulate regions of the virtual program.

3.2 Loading

When a method is first loaded we don’t know which parts of it will
be executed. Hence, to avoid load time overhead for code that never
runs, we adopt a lazy strategy. As each instruction is loaded its
first slot is initialized to a shared dispatcher structure. There is one
shared dispatcher for each kind of virtual instruction. One instance
is shared for alliload instructions, another instance for alliadd
instructions, and so on. Thus, the minimal work is done at load
time for instructions that never run. On the other hand, a shared
dispatcher cannot be used to profile instructions that do execute.
Hence, the shared dispatcher is replaced by a new, non-shared,
instance of ablock discovery dispatcherwhen the postworker of
the shared dispatcher runs for the first time. The job of the block
discovery dispatcher is to identify new linear blocks2.

3.3 Linear Block Detection

When the preworker of a block discovery dispatcher executes for
the first time, and the thread isnot already recording a region, the
program is about to enter a linear block that has never run before.
When this occurs we switch the thread intoblock recording mode
by setting a bit in the thread context structure. Figure 3 illustrates
the discovery of the linear block of our running example. The post-
worker called after the execution of each instruction has appended
the instruction’s payload to the thread’s history list. When a branch
instruction is encountered by a thread in block recording mode, the
history list is used to generate a region body for the linear block.
Figure 4 illustrates the situation just after the collection of the linear
block. The dispatcher corresponding to the entry point of the linear
block has been replaced by a newlinear block dispatcherwhose job
will be to search for traces. The linear block dispatcher includes a
new payload created from the history list; its body field points to
a subroutine-threading-style region body that has been generated
for the linear block. Note that linear blocks are not basic blocks be-
cause they do not end at labels. If the virtual program later branches

2 This approach saves the overhead of creating a dispatcher atload time for
instructions that never run.
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to a virtual address that happens to be in the middle of a linear block
our system will create a new linear block that replicates the tail of
the original.

3.4 Trace Selection

The postworker of a linear block dispatcher is called after the last
virtual instruction of the block has been dispatched. Since linear
blocks end with branches, after executing the last instruction the
vPC points to one of the successors of the linear block. If the
vPC of the destination islessthan thevPC of the virtual branch
instruction, this is a reverse branch – a likely candidate for the
latch of a loop. According to the heuristics developed by Dynamo
(see Section 2.2), hot reverse branches are good places to start
the search for hot code. Accordingly, when our system detects a
reverse branch that has executed 100 times it enterstrace recording
mode3. In trace recording mode, much as in linear block recording
mode, the postworker adds each linear block to a history list. The
situation is very similar to that illustrated in Figure 3, except the
history list records linear blocks. Our system, like Dynamo, ends
a trace (i) when it reaches a reverse branch or finds a cycle, or
(ii) when it contains too many (currently 100) linear blocks. When
trace selection ends, a newtrace dispatcheris created and installed.
This is quite similar to Figure 4 apart from the need to support trace
exits. The payload of a trace dispatcher includes a table oftrace exit
descriptors, one for each linear block in the trace. Although code

3 Performance was not sensitive to the specific value so we chosea round
number in the range of values used by Dynamo.



could be generated for the trace at this point, we postpone code
generation until the trace has run a few times, currently five, in trace
training mode4. Trace training mode uses a specialized dispatch
loop that calls instrumentation before and after dispatching each
virtual instruction in the trace. In principle, almost any detail of
the virtual machine’s state could be recorded. Currently, we record
the class of every Java object upon which a virtual method is
invoked. When training is complete, code is generated for the trace
as illustrated by Figure 5. Before we discuss code generation, we
need to describe the runtime of the trace system and especially the
operation of trace exits.

3.4.1 Trace Exit Runtime

Trace exits occur when execution diverges from the path collected
during trace generation, in other words, when the destination of
a virtual branch instruction in the trace is different from what was
recorded during trace generation. Generated guard code in the trace
detects the divergence and branches to atrace exit handler. Gen-
erated code in the trace exit handler records which trace exit has
occurred in the thread’s context structure and then returns to the
dispatch loop, which immediately calls the postworker correspond-
ing to the trace. The postworker determines which trace exit oc-
curred by examining the thread context structure. Conceptually, the
postworker has only a few things it can do:

1. If the trace exit is still cold, increment a counter in the corre-
sponding trace exit descriptor.

2. Notice that the counter has crossed the hot threshold and ar-
range to generate a new trace.

3. Notice that a trace already exists at the destination and link the
trace exit handler to the new trace.

Regular conditional branches, such as the JavaIF ICMP, are
quite simple. The branch has only two destinations, one on the
trace and the other off. When the trace exit becomes hot a new
trace is generated starting with the off-trace destination. Then, the
next time the trace exit occurs, the postworker links the trace exit
handler to the new trace by rewriting the branch instruction in the
trace exit handler to jump directly to the destination trace instead
of returning to the dispatch loop. Subsequently, execution stays in
the trace cache for both paths of the program.

Multiple destination branches, like method invocation and re-
turn, are more complex. When a trace exit originating from a multi-
way branch occurs we are faced with two additional challenges.
First, profiling multiple destinations is more expensive than just
maintaining one counter. Second, when one or more of the possi-
ble destinations are also traces, the trace exit handler needs some
mechanism to jump to the right one.

The first challenge we essentially punt on. We use a simple
counter and trace generateall destinations of a hot trace exit that
arise. The danger of this strategy is that we could trace generate
superfluous cold destinations and waste trace generation time and
trace cache memory.

The second challenge concerns the efficient selection of a des-
tination trace to which to link, and the mechanics used to branch
there. To choose a destination, we follow the heuristic developed
by Dynamo for regular branches – that is, we link to destinations in
the order they are encountered. At link time, we rewrite the code in
the trace exit handler with code that checks the value of thevPC.
If it equals thevPC of a linked trace, we branch directly to that
trace; otherwise we return to the dispatch loop. Because we know
the specific values thevPC could have, we can hard-wire the com-

4 As almost all the callsites in the SPECjvm98 benchmarks are monomor-
phic, a smaller number of training runs would have been sufficient but un-
realistic.
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parand in the generated code. In fact, we can generate a sequence of
compares checking for two or more destinations. Eventually, a suf-
ficiently long cascade would perform no better than a trip around
the dispatch loop. Currently we limit ourselves to two linked desti-
nations per trace exit. This mechanism is similar to a PIC, used to
dispatch polymorphic methods, as discussed in Section 2.3.

3.5 Generating code for traces

Generating code for a trace is made up of two main tasks, generat-
ing the main body of the trace and generating a trace exit handler
for each trace exit. After trace selection we have a list of linear
blocks that were selected. We will use these to access the virtual
instructions making up the trace. After a few training runs we also
have fine-grained profiling information on the precise values that
occur during the execution of the trace. These values will be used
to devirtualize selected virtual method invocations.

3.5.1 Straight line code generation

The body of a trace is made up of straight-line sections of code,
corresponding to the body of each linear block, interspersed with
trace exits generated from the virtual branches ending each linear
block. At this phase of our research we have not invested any ef-
fort in generating optimized code for the straight-line portions of
a trace. Instead, we implemented a simple one-pass compiler. An
important aspect of our design is that it can generate code for ev-
ery trace before our JIT supports all virtual instructions. Our JIT
generates register-to-register code for contiguous sequences of vir-
tual instructions it recognizes. (These include all the conditional
branch instructions.) When an unfamiliar virtual instruction is en-
countered code is generated to flush any temporary values held in
registers back to the Java expression stack5. Then, a sequence of
calls is generated to dispatch the bodies of any uncompilable virtual
instructions. This significantly eases development as the compiler
can be extended one virtual instruction at a time.

The actual machine code generation is performed using the
ccg [19] runtime assembler.

3.5.2 Trace Exits and Trace Exit Handlers

The virtual branch instruction ending each block is compiled into
a trace exit. We follow two different strategies for trace exits. The
first case, regular conditional branch virtual instructions, are com-
piled by our JIT into code that performs a compare followed by
a conditional branch. PowerPC code for this case appears in Fig-
ure 6. The sense of the conditional branch is adjusted so that the
branch is always not-taken for the on-trace path. More complex
virtual branch instructions, and especially those with multiple des-
tinations, are handled differently. Instead of generating inlined code

5 Every value assigned to a register by our simple register allocator has a
“home” location in the Java expression stack.



...
OPC_ILOAD_3
x
OPC_ILOAD_2
y
OPC_IF_ICMPGE +121 trace exit compiled from if_icmpge

compiled from iloads

if this trace exit becomes hot, trace linking overwrites 
this instruction with branch to destination trace

teh stores trace exit number (0) and hardwired 
address of trace payload into thread context struct

vPC adjusted upon leaving JIT compiled region

...
lwz r3,12(r27)

lwz r4,8(r27)

cmpw r3,r4    
bge teh0
... teh0:

     addi r26,r26,112 //adjust vpc
     li r0,0 
     stw r0,916(r30)
     lis r0,1090
     ori r0,r0,11488
     stw r0,912(r30)
     blr //return to dispatch loop

DTT

Figure 6. PowerPC code for a portion of a trace region body,
showing details of a trace exit and trace exit handler. This code
assumes that r26 has been dedicated for thevPC.

for the branch we generate a call to the virtual branch body instead.
This will have the side effect of setting thevPC to the destination
of the branch. Since only one destination can be on-trace, and since
we know the exactvPC value corresponding to it, we then generate
a compare immediate of thevPC to the hardwired constant value of
the on-trace destination. Following the compare we generate a con-
ditional branch to the corresponding trace exit handler. The result
is that execution leaves the trace if thevPC set by the dispatched
body was different from thevPC observed during trace generation.
Polymorphic method dispatch is handled this way if it cannot be
optimized as described in Section 3.5.3.

Trace exit handlers have two further roles not mentioned so far.
First, since traces may contain compiled code, it may be necessary
to flush values held in registers back to the Java expression stack
before returning to regular interpretation. Similarly, it is possible
to delay updating values needed only by the interpreter, like the
vPC, until the end of a section of compiled code. Code is generated
for both these purposes in each trace exit handler. For instance,
in Figure 6, the trace exit handler adjusts thevPC. Second, trace
linking is achieved by overwriting code in a trace exit handler. (This
is the only situation in which we rewrite code.) To link traces, the
tail of the trace exit handler is rewritten to branch to the destination
trace rather than return to the dispatch loop.

Most trace exit handlers are reached only when a conditional
trace exit is taken. When a trace executes to completion, however,
control must initially return to the dispatch loop. To implement this
each trace ends with an in-line trace exit handler. Like any other
trace exit handler, it may later be linked to its destination trace if
one becomes hot.

3.5.3 Trace Optimization

We describe two optimizations here: how loops are handled and
how the training data can be used to optimize method invocation.

Inner Loops One property of the trace selection heuristic is that
innermost loops of a program are often selected into a single trace
with the reverse branch at the end. (This is so because trace gener-
ation starts at the target of reverse branches and ends whenever it
reaches a reverse branch. Note that there may be many branches,
including calls and returns, along the way.) Thus, when the trace is
generated the loop will be obvious because the trace will end with
a virtual branch back to its beginning. So far we exploit this infor-
mation only so far as to compile the last trace exit in a trace to a
conditional branch back to the head of the trace.

Virtual Method Invocation When a trace executes, if the class
of the invoked-upon object is different from when the trace was
generated, a trace exit must occur. At trace generation time we
know the on-trace destination of each call. From the training profile
we know the class of each invoked-upon object. Thus, we can
easily generate avirtual invoke guardthat branches to the trace

exit handler if the class of the object on top of the Java runtime
stack is not the same as recorded during training. Then, we can
generate code to perform a faster, stripped down version of method
invocation. The savings are primarily the work associated with
looking up the destination given the class of the receiver. The
virtual guard is an example of a trace exit that guards a speculative
optimization [12].

Inlining Traces are agnostic towards method invocation and
return, treating them like any other multiple-destination virtual
branch instructions. However, when a return corresponds to an in-
voke in the same trace the trace generator can sometimes remove
almost all method invocation overhead. Consider when the code
between a method invocation and the matching return is relatively
simple, for instance, it does not touch the callee’s stack frame (other
than the expression stack), it cannot throw and it makes no method
invocations. Then, no invoke is necessary and the only method
invocation overhead that remains is the virtual invoke guard. If
the inlined method body contains any trace exits the situation is
slightly more complex. In this case, in order to prepare for a re-
turn somewhere off-trace, the trace exit handlers for the trace exits
in the inlined code must modify the runtime stack exactly as the
(optimized away) invoke would have done. Currently our imple-
mentation can inline only to a depth of one.

3.6 Polymorphic bytecodes

So far we have implemented our ideas in a Java virtual machine.
However, we expect that many of the techniques will be useful in
other virtual machines as well. For instance, languages such as TCL
or JavaScript define polymorphic virtual arithmetic instructions. An
example would be ADD, which adds the two values on the top of
the expression stack. Each time it is dispatched ADD must check
the type of its inputs and perform the correct type of arithmetic.
This is similar to polymorphic method invocation.

We believe the same profiling infrastructure that we use to
optimize monomorphic callsites in Java can be used to improve
polymorphic arithmetic bytecodes. Whereas the destination of a
Java method invocation depends only upon the type of the invoked
upon object, the operation carried out by a polymorphic virtual
instruction may depend on the type ofeach input. For instance,
suppose that an ADD in TCL is effectively monomorphic. We
could generate two virtual guards, one for each input, to check that
the type of the input is the same as observed during training and
trace exit if it differs. Then, we could dispatch a type-specialized
version of the instruction (integer ADD, float ADD, string ADD,
etc.) and/or generate specialized code for common cases.

3.7 Other implementation details

Our system, as described above, generates code that coexists with
virtual instruction bodies written in C. Consequently, our generated
code sometimes must know the stack layout and register alloca-
tion chosen by the compiler for certain values used by the virtual
instruction bodies. For heavily used interpreter variables, like the
vPC, the obvious solution is to use gcc compiler extensions to as-
sign the variable to a dedicated register.

Our use of a dispatch loop similar to Figure 3 in conjunction
with ending virtual bodies with inlined assembler return instruc-
tions results in a control flow graph that is not apparent to the com-
piler. This is because the optimizer cannot know that control flows
from the inlined return instruction back to the dispatch loop. Sim-
ilarly, the optimizer cannot know that control can flow from the
function pointer call in the dispatch loop to any body. We insert
computed goto’s that are never actually executed to simulate the
missing edges.
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Figure 7. Number of dispatches executed vs region shape. The y-axis has a logarithmic scale. Numbers above bars are log10 of the dispatch
count.

3.8 Packaging and portability

An attractive starting point when building an interpreter from
scratch would be to use direct call threading with bodies pack-
aged as nested functions (an extension provided by gcc and other
C compilers). This would allow a portable implementation, conve-
nient debugging (e.g., logging in the dispatch loop), and a forward
path to dynamic compilation. It may be necessary to differentiate
platforms into “primary” targets (i.e., those supported by our trace-
oriented JIT) and “secondary” targets supported only by portable
direct call threading. In Section 4.2 we report that our lightweight
approach to direct call threading has about the same performance
as switched interpretation, but we have not yet investigated the
performance of nested functions.

When retrofitting our techniques into a direct threaded inter-
preter, conditional compilation can be used to allow bodies to end
with either a computedgoto or an inline assembler “ret”. Thus,
secondary platforms can continue to use direct threading.

4. Experimental Results
In this section we show how Yeti steadily improves in performance
as we extend the size of region bodies. We prototyped Yeti in a
Java VM (rather than a language that does not have a JIT) to allow
comparisons of well-known benchmarks against other high-quality
implementations.

To evaluate the effectiveness of our system we need to examine
performance from three perspectives. First, we show that almost
all execution comes from the trace cache. Second, we show the
incremental effect on execution time of each step in the develop-
ment of Yeti. Third, we compare the overall performance of Yeti
against other Java interpreter and JIT implementations, including
SableVM, a version of JamVM modified to use our earlier sub-
routine threading technique[2], and Sun’s optimizing HotSpot Java
virtual machine.

Table 1 briefly describes each SPECjvm98 benchmark [21]. We
also report data forscimark, a typical scientific program. Below
we report performance relative to the unmodified JamVM 1.3.3, so
the raw elapsed time for each benchmark also appears in Table 1,
along with the raw elapsed time of our best-performing version of
Yeti which includes our simple JIT.

Table 1. SPECjvm98 benchmarks including elapsed time for base-
line JamVM 1.3.3 (i.e., without any of our modifications), Yeti and
Sun HotSpot 1.05.06 64.

Elapsed Time
Benchmark Description (sec)

JamVM Yeti HotSpot
compress Lempel-Ziv 98 44 8.0
db Database functions 56 35 23
jack Parser generator 22 14 5.4
javac JDK 1.0.2 33 24 9.9
jess Expert Shell System 29 19 4.4
mpeg read MPEG-3 87 36 4.6
mtrt Two thread raytracer 30 25 2.1
raytrace raytracer renderer 29 17 2.3
scimark FFT, SOR,LU, ’large’ 145 58 16

We present data obtained by running various modifications to
JamVM version 1.3.3 built with gcc 4.0.1. All our data was col-
lected on a dual CPU 2 GHz PPC970 processor with 512 MB of
memory running Apple OSX 10.4. Performance is reported as the
average of three measurements of elapsed time, as printed by the
time command.

4.1 Effect of region shape on region dispatch count

For a JIT to be effective, execution must spend most of its time
in compiled code. Forjack, traces account for 99.3% of virtual
instructions executed. For all the remaining benchmarks, traces ac-
count for 99.9% or more. A remaining concern is how often exe-
cution enters and leaves the trace cache. In our system, regions of
generated code are called from dispatch loops like the one illus-
trated by Figure 3. In this section, we report how many iterations
of the dispatch loops occur during the execution of each bench-
mark. Figure 7 shows how direct call threading (DCT) compares
to linear blocks (LB), traces with no linking (TR) and linked traces
(TR-LINK). Note the y-axis has a logarithmic scale.

DCT dispatches each virtual instruction independently, so the
DCT bars on Figure 7 report how many virtual instructions were
executed. For each benchmark, the ratio of DCT to LB shows the
dynamic average linear block length (e.g., for compress the average
linear block length is10

10.1/10
9.1

= 10
1

= 10). As expected,
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Figure 8. Performance of Yeti relative to unmodified JamVM-1.3.3 (direct threaded) running the SPECjvm98 benchmarks.

the scientific benchmarks have longer linear blocks. For instance,
the average block inscitest has about 20 virtual instructions
whereasjavac, jess andjack average about 4 instructions.
Comparing the geometric mean across benchmarks, we see that LB
reduces the number of dispatches relative to DCT by a factor of 6.3.

Even without trace linking, a trace executes about 10 times more
virtual instructions per dispatch than a LB. This can be calculated
from Figure 7 as the ratio of LB to TR. This shows that traces
do predict the path taken through the program. The improvement
can be dramatic. For instance, while running TR,javac executes
about 22 virtual instructions per trace dispatch, on average. This
is much longer than its dynamic average linear block length of 4
virtual instructions.

TR-LINK makes the greatest contribution, reducing the number
of times execution leaves the trace cache by between one and 3.7
orders of magnitude. The reason TR-LINK is so effective is that it
links traces together around loops.

Although this data shows that execution is overwhelmingly
from the trace cache it gives no indication of how effectively code
cache memory is being used by the traces. A thorough treatment of
this, like the one done by Bruening and Duesterwald [3], remains
future work. Nevertheless, we can relate a few anecdotes based on
data that our profiling system collects. We observe that for an entire
run of thecompress benchmark all generated traces contain only
60% of the virtual instructions contained in all loaded methods.
This is a good result for traces, suggesting that a trace-based JIT
needs to compile fewer virtual instructions than a method-based
JIT. On the other hand, forjavac we find that the traces bloat –
almost eighttimesas many virtual instructions appear in traces than
are contained in the loaded methods. Improvements to our trace se-
lection heuristic, perhaps adopting the suggestions of Hiniker et
al [14], are future work.

4.2 Effect of region shape on performance

Figure 8 shows how performance varies as differently shaped
regions of the virtual program are executed. The figure shows
elapsed time relative to the unmodified JamVM distribution, which
uses direct-threaded dispatch. The raw performance of unmodified
JamVM is given in Table 1. The first four bars in each cluster are
the same as Figure 7. The fifth bar, JIT, gives the performance of
Yeti with JIT enabled.

The simplest technique, direct call threading (DCT) is slower
than direct threading by about 50%. DCT is a baseline, in the sense
that it burdens the execution of every virtual instruction with the
overhead of the dispatch loop. Not shown in the figure is switch
dispatch, for which the geometric mean elapsed time across all the
benchmarks is within 1% of DCT.

“Linear blocks” (LB) runs roughly 30% faster than DCT, as ex-
pected given the reduction in dispatch count seen in Figure 7, and
is comparable to direct threading in several cases. LB discovers
and generates code at run time that is very similar to that generated
by subroutine threading (SUB) at load time, so it is interesting to
compare the two techniques. The geometric mean across the bench-
marks of LB is about 43% slower than SUB (not shown). The dif-
ference between them is the cost of instrumentation and dynamic
detection. Although SUB is an efficient interpreter dispatch tech-
nique, it is difficult to extend to dynamic regions, primarily because
it is hard to add and remove the necessary profiling.

Just as LB reduces dispatch and performs better than DCT, so
traces (TR) further reduce dispatch, running 38% faster than LB.
In addition to fewer dispatches, traces also use a lighter-weight dis-
patch loop with no further need for profiling. Although TR-LINK
dramatically reduces the number of dispatches, the performance
gain is relatively smaller because the specialized dispatch loop used
for traces is less expensive.

Comparing to other interpreters, we note that TR-LINK outper-
forms SUB on the geometric mean of the benchmarks by about
6%, and SableVM 1.1.8 by about 4%. Thus, TR-LINK more than
makes up for the profiling overhead required to identify and gen-
erate traces. The advantage of TR-LINK over SUB is that virtual
branch instructions are converted into trace exits, where they are
exposed to the hardware branch predictors.

For all benchmarks, performance improves as region bodies
become longer, that is, LB performs better than DCT, TR performs
better than LB, etc. This shows that our approach allows us to
improve performance by investing in better region selection.

4.2.1 JIT Compiled traces

The rightmost bar in each cluster of Figure 8 shows the perfor-
mance of our best-performing version of Yeti (JIT). Despite sup-
porting only 50 integer and object virtual instructions, our trace JIT
improves the performance of integer programs such ascompress
significantly. With our most ambitious optimization, of virtual



method invocation, JIT improved the performance ofraytrace
by about 35% over TR-LINK.Raytrace is written in an object-
oriented style with many small methods invoked to access object
fields. Hence, even though it is a floating-point benchmark, it is
greatly improved by devirtualizing and inlining the accessor meth-
ods. Comparing geometric means, we see that our trace-oriented
JIT is roughly 32% faster than TR-LINK.

Our current JIT runs the SPECjvm98 benchmarks 4.3 times
slower than Sun’s optimizing HotSpot compiler. Results range from
1.5 times slower fordb, to 12 times slower formtrt. Not surpris-
ingly, we do worse on floating-point intensive benchmarks since we
do not yet compile the float bytecodes.

5. Related Work
Other related work has been discussed in Section 2. Here, we
discuss one closely-related system, contrasting it to Yeti.

Hotpath also extends JamVM to be a trace-oriented mixed-
mode system [12]. Its profiling system, similar to those used by
many method-based JITs, is loosely coupled with the interpreter.
Hotpath focuses on traces starting at loop headers and does not
compile traces not in loops. Thus, it does not approach trace linking
as we do, but rather “merges” traces that originate from side exits
leading back to loop headers, allowing it to compile loop nests.
They model traces using a Single Static Assignment (SSA) rep-
resentation that exploits the constrained flow of control present in
traces. This both simplifies their construction of SSA and allows
very efficient optimization. Their experimental results show good
speedup, within a factor of two of Sun’s HotSpot, for scientific style
loop nests such as those in LU, SOR and Linpack, and more mod-
est speedup, around a factor of two over interpretation, for FFT. Al-
though it is difficult to compare directly, we note that Yeti achieves
a speedup of 2.6 relative to JamVM on the FFT test inscimark.

Hotpath has concentrated on how traces should be optimized
whereas we have concentrated on how a trace-oriented interpreter
and JIT should be integrated. The optimization techniques they de-
scribe seem complementary to the overall architecture we propose.

6. Conclusions and future work
Yeti is an architecture for a virtual machine interpreter that facili-
tates extension to a trace-based mixed-mode JIT compiler. By tak-
ing a step back from high-performance dispatch techniques to di-
rect call threading we achieve two benefits. The first is that existing
bodies can be reused by generated code, so that compiler support
for virtual instructions can be added one by one. The second benefit
is that it is easy to add instrumentation, allowing us to discover hot
regions of the program and to install new region bodies. The cost of
this flexibility is increased dispatch overhead. We have shown that
by generating larger region bodies, the frequency of dispatch is re-
duced significantly leading to better performance. Linked traces run
33% faster than a direct threaded interpreter. Investing the modest
additional effort to generate non-optimized code for roughly 50 in-
teger and object bytecodes within traces allows Yeti to run nearly
twice as fast as direct threading. This demonstrates that it is in-
deed possible to achieve gradual, but significant, performance gains
through gradual development of a JIT.

Substantial additional performance gains are possible by ex-
tending the JIT to handle more types of instructions such as the
floating-point bytecodes, and by applying classical optimizations
such as common subexpression elimination. Far more interest-
ing, however, is the opportunity to apply dynamic and specula-
tive optimizations based on the profiling data that we already col-
lect. The technique we describe for optimizing virtual dispatch
in Section 3.5.3 could be applied to guard various speculations.
For example, it could be used to optimize virtual instructions that

must accept arguments of varying type in languages like Python or
JavaScript. Finally, just as linear blocks are collected into traces, so
traces can be collected into larger units for optimization.

The techniques we applied in Yeti are not specific to Java. A
system based on our architecture can gradually bring the benefits
of mixed-mode JIT compilation to other interpreted languages.
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