
Partial LLL Reduction
Xiaohu Xie

School of Computer Science
McGill University

Montreal, Quebec, Canada H3A 2A7
Email: xiaohu.xie@mail.mcgill.ca

Xiao-Wen Chang
School of Computer Science

McGill University
Montreal, Quebec, Canada H3A 2A7

Email: chang@cs.mcgill.ca

Mazen Al Borno
Department of Computer Science

University of Toronto
Toronto, Ontario, Canada M5S 2E4

Email: mazen@dgp.toronto.edu

Abstract—The Lenstra-Lenstra-Lovasz (LLL) reduction has

wide applications in digital communications. It can greatly

improve the speed of the sphere decoding (SD) algorithms

for solving an integer least squares (ILS) problem and the

performance of the Babai integer point, a suboptimal solution

to the ILS problem. Recently Ling and Howgrave-Graham

proposed the so-called effective LLL (ELLL) reduction. It has less

computational complexity than LLL, while it has the same effect

on the performance of the Babai integer point as LLL. In this

paper we propose a partial LLL (PLLL) reduction. PLLL avoids

the numerical stability problem with ELLL, which may result in

very poor performance of the Babai integer point. Furthermore,

numerical simulations indicated that it is faster than ELLL. We

also show that in theory PLLL and ELLL have the same effect

on the search speed of a typical SD algorithm as LLL.

I. INTRODUCTION

In a multiple-input and multiple-output (MIMO) system,
often we have the following linear model:

y = Hx+ v, (1)

where y ∈ Rn is the channel output vector, v ∈ Rn is the
noise vector following a normal distribution N (0,σ2

I), H ∈
Rn×m is the channel matrix, and x ∈ Zm is the unknown
integer data vector. For a complex linear model, we can easily
transform it to a real linear model as (1). For simplicity, like
[1], in this paper we assume m = n and H is nonsingular.

To estimate x, one solves an integer least squares problem

min
x∈Zn

�y −Hx�22, (2)

which gives the maximum-likelihood estimate of x. It has
been proved that the ILS problem is NP-hard [2]. For applica-
tions which have high real-time requirement, an approximate
solution of (2) is usually computed instead. A often used
approximation method is the nearest plane algorithm proposed
by Babai [3] and the produced approximate integer solution
is referred to as the Babai integer point. In communications,
a method for finding this approximate solution is referred to
as a successive interference cancellation decoder.

A typical method to solve (2) is a sphere decoding (SD)
algorithm, such as the Schnorr-Euchner algorithm (see [4]
and [5]) or its variants (cf. [6] and [7]). A SD algorithm
has two phases. First the reduction phase transforms (2) to
an equivalent problem. Then the search phase enumerates
integer points in a hyper-ellipsoid to find the optimal solution.
The reduction phase makes the search phase easier and more

efficient. The Lenstra-Lenstra-Lovasz (LLL) reduction [8] is
the mostly used reduction in practice. An LLL reduced basis
matrix has to satisfy two conditions. One is the size-reduction
condition and the other is the Lovasz condition (see Section II
for more details). Recently Ling and Howgrave-Graham [1]
argued geometrically that the size-reduction condition does
not change the performance of the Babai integer point. Then
they proposed the so-called effective LLL reduction (to be
referred to as ELLL in this paper) which mostly avoids size
reduction. They proved that their ELLL algorithm has less
time complexity than the original LLL algorithm given in [8].
However, as implicitly pointed out in [1], the ELLL algorithm
has a numerical stability problem. Our simulations, presented
in Section V, will indicate that ELLL may give a very bad
estimate of x than the LLL reduction due to its numerical
stability problem.

In this paper, we first show algebraically that the size-
reduction condition of the LLL reduction has no effect on
a typical SD search process. Thus it has no effect on the
performance of the Babai integer point, the first integer point
found in the search process. Then we propose a partial
LLL reduction algorithm, to be referred to as PLLL, which
avoids the numerical stability problem with ELLL and avoids
some unnecessary computations involved in LLL and ELLL.
Numerical simulations indicate that it is faster than ELLL and
is at least as numerically stable as LLL.

II. LLL REDUCTION

In matrix language, the LLL reduction can be described as
a QRZ factorization [9]:

Q
T
HZ = R, (3)

where Q ∈ Rn×n is orthogonal, Z ∈ Zn×n is a unimodular
matrix (i.e., det(Z) = ±1), and R ∈ Rn×n is upper triangular
and satisfies the following two conditions:

|ri,j | ≤ |ri,i|/2, 1 ≤ i < j ≤ n,

δ r
2
i−1,i−1 ≤ r

2
i−1,i + r

2
i,i, 1 < i ≤ n,

(4)

where the parameter δ ∈ (1/4, 1]. The first condition in (4) is
the size-reduction condition and the second condition in (4) is
referred to as the Lovasz condition.

Define ȳ = Q
T
y and z = Z

−1
x. Then it is easy to see

that the ILS problem (2) is reduced to

min
z∈Zn

�ȳ −Rz�22. (5)

If ẑ is the solution of the reduced ILS problem (5), then x̂ =
Zẑ is the ILS solution of the original problem (2).

We now use the matrix language to describe the LLL
algorithm. The LLL algorithm first applies the Gram-Schmidt
orthogonalization (GSO) to H , finding the QR factors Q and
R (more precisely speaking, to avoid square root computation,
the original LLL algorithm gives a column scaled Q and a row
scaled R which has unit diagonal entries). Two types of basic
unimodular matrices are then implicitly used to update R so
that it satisfies (4): integer Gauss transformations (IGT) and
permutation matrices; see below.

To meet the first condition in (4), we can apply an IGT:

Zij = I − ζeie
T
j ,

where ei is the i-th column of I and ζ is an integer. It is easy
to verify that Zij is unimodular. Applying Zij (i < j) to R

from the right gives

R̄ = RZij = R− ζReie
T
j .

Thus R̄ is the same as R, except that r̄kj = rkj − ζrki, k =
1, . . . , i. By setting ζ = �rij/rii�, the nearest integer to
rij/rii, we ensure |r̄ij | ≤ |r̄ii|/2.

To meet the second condition in (4), we permute columns of
R. Suppose that we interchange columns i−1 and i of R. Then
the upper triangular structure of R is no longer maintained.
But we can bring R back to an upper triangular matrix by
using the GSO technique (see [8]):

R̄ = Gi−1,iRP i−1,i,

where Gi−1,i is an orthogonal matrix and P i−1,i is a permu-
tation matrix. Thus,

r̄
2
i−1,i−1 = r

2
i−1,i + r

2
i,i, (6)

r̄
2
i−1,i + r̄

2
i,i = r

2
i−1,i−1.

If δ r2i−1,i−1 > r2i−1,i + r2i,i, then the above operation guaran-
tees δ r̄2i−1,i−1 < r̄2i−1,i + r̄2i,i.

The LLL reduction process is described in Algorithm 1.

III. SD SEARCH PROCESS AND BABAI INTEGER POINT

For later use we briefly introduce the often used SD search
process (see, e.g., [7, Section II.B.]), which is a depth-first
search (DFS) through a tree. The idea of SD is to search for the
optimal solution of (5) in a hyper-ellipsoid defined as follow:

�ȳ −Rz�22 < β. (7)

Define
cn = ȳn/rnn,

ck =
�
ȳk −

n�

j=k+1

rkjzj

�
/rkk, k = n− 1, . . . , 1.

(8)

Then it is easy to show that (7) is equivalent to

level k : r
2
kk(zk − ck)

2
< β −

n�

j=k+1

r
2
jj(zj − cj)

2
, (9)

Algorithm 1 LLL reduction
1: apply GSO to obtain H = QR;
2: set Z = In, k = 2;
3: while k ≤ n do

4: apply IGT Zk−1,k to reduce rk−1,k: R = RZk−1,k;
5: update Z: Z = ZZk−1,k;
6: if δ r2k−1,k−1 >

�
r2k−1,k + r2k,k

�
then

7: permute and triangularize R: R=Gk−1,kRP k−1,k;
8: update Z: Z = ZP k−1,k;
9: k = k − 1, when k > 2;

10: else

11: for i = k − 2, . . . , 1 do

12: apply IGT Zik to reduce rik: R = RZik;
13: update Z: Z = ZZi,k;
14: end for

15: k = k + 1;
16: end if

17: end while

where k = n, n− 1, . . . , 1.
Suppose zn, zn−1, . . . , zk+1 have been fixed, we try to

determine zk at level k by using (9). We first compute ck

and then take zk = �ck�. If (9) holds, we move to level k− 1
to try to fix zk−1. If at level k−1, we cannot find any integer
for zk−1 such that (9) (with k replaced by k − 1) holds, we
move back to level k and take zk to be the next nearest integer
to ck. If (9) holds for the chosen value of zk, we again move
to level k − 1; otherwise we move back to level k + 1, and
so on. Thus after zn, . . . , zk+1 are fixed, we try all possible
values of zk in the following order until (9) dose not hold
anymore and we move back to level k + 1:

�ck�, �ck� − 1, �ck�+ 1, �ck� − 2, . . . , if ck ≤ �ck�,
�ck�, �ck�+ 1, �ck� − 1, �ck�+ 2, . . . , if ck > �ck�.

(10)

When we reach level 1, we compute c1 and take z1 = �c1�. If
(9) (with k = 1) holds, an integer point, say ẑ, is found. We
update β by setting β = �y−Rẑ�22 and try to update ẑ to find
a better integer point in the new hyper-ellipsoid. Finally when
we cannot find any new value for zn at level n such that the
corresponding inequality holds, the search process stops and
the latest found integer point is the optimal solution we seek.

At the beginning of the search process, we set β = ∞. The
first integer point z found in the search process is referred to
as the Babai integer point.

IV. PARTIAL LLL REDUCTION

A. Effects of size reduction on search

Ling and Howgrave-Graham [1] has argued geometrically
that the performance of the Babai integer point is not affected
by size reduction (see the first condition in (4)). This result
can be extended. In fact we will prove algebraically that the
search process is not affected by size reduction.

We stated in Section II that the size-reduction condition in
(4) is met by using IGTs. It will be sufficient if we can show

that one IGT will not affect the search process. Suppose that
two upper triangular matrices R ∈ Rn×n and R̄ ∈ Rn×n have
the relation:

R̄ = RZst, Zst = I − ζese
T
t , s < t.

Thus,

r̄kt = rkt − ζrks, if k ≤ s, (11)
r̄kj = rkj , if k > s or j �= t. (12)

Let z̄ = Z
−1
st z. Then the ILS problem (5) is equivalent to

min
z̄∈Zn

�ȳ − R̄z̄�22. (13)

For this ILS problem, the inequality the search process needs
to check at level k is

level k : r̄
2
kk(z̄k − c̄k)

2
< β −

n�

j=k+1

r̄
2
jj(z̄j − c̄j)

2
, (14)

Now we look at the search process for the two equivalent ILS
problems.

Suppose z̄n, z̄n−1, . . . , z̄k+1 and zn, zn−1, . . . , zk+1 have
been fixed. We consider the search process at level k under
three different cases.

• Case 1: k > s. Note that R̄k:n,k:n = Rk:n,k:n. It is
easy to see that we must have c̄i = ci and z̄i = zi for
i = n, n − 1, . . . , k + 1. Thus at level k, c̄k = ck and
the search process takes an identical value for z̄k and zk.
For the chosen value, the two inequalities (9) and (14)
are identical. So both hold or fail at the same time.

• Case 2: k = s. According to Case 1, we have z̄i = zi for
i = n, n− 1, . . . , s+ 1. Thus

c̄k =
ȳk −

�n
j=k+1 r̄kj z̄j

r̄kk

=
ȳk −

�n
j=k+1,j �=t rkjzj − (rkt − ζrkk)zt

rkk

= ck + ζzt,

where ζ and zt are integers. Note that zk and z̄k take on
values according to (10). Thus values of zk and z̄k taken
by the search process at level k must satisfy z̄k = zk+ζzt.
In other words, there exists one-to-one mapping between
the values of zk and z̄k. For the chosen values of z̄k and
zk, z̄k− c̄k = zk−ck. Thus, again the two inequalities (9)
and (14) are identical. Therefore both inequalities hold or
fail at the same time.

• Case 3: k < s. According to Case 1 and Case 2, z̄i = zi

for i = n, n− 1, . . . , s + 1 and z̄s = zs + ζzt. Then for
k = s− 1,

c̄k =
ȳk −

�n
j=k+1 r̄kj z̄j

r̄kk

=
ȳk −

�n
j=k+2,j �=t rkjzj − rksz̄s − r̄ktzt

rkk

=
ȳk −

�n
j=k+1 rkjzj − ζrkszt + ζrkszt

rkk

= ck.

Thus the search process takes an identical value for z̄k

and zk when k = s − 1. By induction we can similarly
show this is true for a general k < s. Thus, again the two
inequalities (9) and (14) are identical. Therefore they hold
or fail at the same time.

In the above we have proved that the search process is
identical for both ILS problems (5) and (13) (actually the two
search trees have an identical structure). Thus the speed of the
search process is not affected by the size-reduction condition
in (4). For any two integer points z̄

∗ and z
∗ found in the

search process at the same time for the two ILS problems, we
have seen that z̄∗i = z∗i for i = n, . . . , s+ 1, s− 1, . . . , 1 and
z̄∗s = z∗s + ζz∗t , i.e., z̄∗ = Z

−1
st z

∗. Then

�ȳ − R̄z̄
∗�22 = �ȳ −Rz

∗�22.

Thus, the performance of the Babai point is not affected by the
size-reduction condition in (4) either, as what [1] has proved
from a geometric perspective.

However, the IGTs which reduce the super-diagonal entries
of R are not useless when they are followed by permutations.
Suppose |ri−1,i| > |ri−1,i−1|

2 . If we apply Zi−1,i to reduce
ri−1,i, permute columns i− 1 and i of R and triangularize it,
we have from (6) and (11) that

r̄
2
i−1,i−1 =

�
ri−1,i −

�
ri−1,i

ri−1,i−1

�
ri−1,i−1

�2

+ r
2
ii

< r
2
i−1,i + r

2
ii.

From (6) we observe that the IGT can make |ri−1,i−1| smaller
after permutation and triangularization. Correspondingly |ri,i|
becomes larger, as it is easy to prove that |ri−1,i−1ri,i| remains
unchanged after the above operations.

The ELLL algorithm given in [1] is essentially identical to
Algorithm 1 after lines 11–14, which reduce other off-diagonal
entries of R, are removed.

B. Numerical stability issue

We have shown that in the LLL reduction, an IGT is useful
only if it reduces a super-diagonal entry. Theoretically, all
other IGTs will have no effect on the search process. But
simply removing those IGTs can causes serious numerical
stability problem even H is not ill conditioned. The main
cause of the stability problem is that during the reduction
process, some entries of R may grow significantly. For the
following n× n upper triangular matrix

H =

1 2 4
1 2 0

1 2 4

1 2
. . .

1
. . .
. . .

, (15)

when n = 100, the condition number κ2(H) ≈ 34. The LLL
reduction will reduce H to an identity matrix I . However, if
we apply the ELLL reduction, the maximum absolute value

in R will be 2n−1. Note that big numbers produced in the
computations may cause large numerical errors.

In the ELLL algorithm, the super-diagonal entries are al-
ways reduced. But if a permutation does not occur immediately
after the size reduction, then this size reduction is useless
in theory and furthermore it may help the growth of the
other off-diagonal entries in the same column. Therefore, for
efficiency and numerical stability, we propose a new strategy
of applying IGTs in Algorithm 1. First we compute ζ =
�rk−1,k/rk−1,k−1�. Then we test if the following inequality

δ r
2
k−1,k−1 > (rk−1,k − ζrk−1,k−1)

2 + r
2
kk

holds. If it does not, then the permutation of columns k−1 and
k will not occur, no IGT will be applied, and the algorithm
moves to column k + 1. Otherwise, if ζ �= 0, the algorithm
reduces rk−1,k and if |ζ| ≥ 2, the algorithm also reduces all
ri,k for i = k − 2, k − 3, . . . , 1 for stability consideration.
When |ζ| = 1, we did not notice any stability problem if we
do not reduce the above size of ri,k for i = k−2, k−3, . . . , 1.

C. Householder QR with minimum column pivoting

In the original LLL reduction and the ELLL reduction,
GSO is used to implicitly or explicitly compute the QR
factorization of H and to update R in the later steps. The
cost of computing the QR factorization by GSO is 2n3 flops,
larger than 4n3/3 flops required by the QR factorization by
Householder reflections (note that we do not need to form the
Q factor explicitly in the reduction process); see, e.g., [10,
Chap 5]. Thus we propose to compute the QR factorization
by Householder reflections instead of GSO.

Roughly speaking, the reduction would like to have small
diagonal entries at the beginning and large diagonal entries at
the end. In our new reduction algorithm, the IGTs are applied
only when a permutation will occur. The less occurrences
of permutations, the faster the new reduction algorithm runs.
To reduce the occurrences of permutations in the reduction
process, we propose to compute the QR factorization with
minimum-column-pivoting:

Q
T
HP = R, (16)

where P ∈ Zn×n is a permutation matrix. In the k-th step
of the QR factorization, we find the column in the updated
Hk:n,k:n, say column j, which has the minimum 2-norm. Then
we interchange columns k and j of H . After this we do what
the k-th step of a regular Householder QR factorization does.
Algorithm 2 describes the process of the factorization.

Note that the cost of computation of lj in the algorithm is
negligible compared with the other cost.

As Givens rotations have better numerical stability than
GSO, in line 7 of Algorithm 1, we propose to use a Givens
rotation to do triangularization.

D. PLLL reduction algorithm

Now we combine the strategies we proposed in the previous
subsections and give a description of the reduction process
in Algorithm 3, to be referred to as a partial LLL (PLLL)
reduction algorithm.

Algorithm 2 QR with minimum-column-pivoting
1: set R = H,P = In;
2: compute lk = �rk�22, k = 1 . . . , n;
3: for k = 1, 2, . . . , n do

4: find j such that lj is the minimum among lk, . . . , ln;
5: exchange columns k and j of R, l and P ;
6: apply a Householder reflection Qk to eliminate

rk+1,k, rk+2,k, . . . , rn,k;
7: update lj by setting lj = lj − r2k,j , j = k + 1, . . . ,m;
8: end for

Algorithm 3 PLLL reduction
1: compute the Householder QR factorization with minimum

pivoting: QT
HP = R;

2: set Z = P , k = 2;
3: while k ≤ n do

4: ζ = �rk−1,k/rk−1,k−1�, α = (rk−1,k − ζrk−1,k−1)2;
5: if δ r2k−1,k−1 > (α+ r2k,k) then

6: if ζ �= 0 then

7: apply the IGT Zk−1,k to reduce rk−1,k;
8: if |ζ| ≥ 2 then

9: for i = k − 1, . . . , 1 do

10: apply the IGT Zi,k to reduce ri,k;
11: update Z: Z = ZZi,k;
12: end for

13: end if

14: end if

15: permute and triangularize: R = Gk−1,kRP k−1,k;
16: update Z: Z = ZP k−1,k;
17: k = k − 1, when k > 2;
18: else

19: k = k + 1;
20: end if

21: end while

V. NUMERICAL EXPERIMENTS

In this section we give numerical test results to compare
efficiency and stability of LLL, ELLL and PLLL. Our sim-
ulations were performed in MATLAB 7.8 on a PC running
Linux. The parameter δ in the reduction was set to be 3/4 in
the experiments. Two types of matrices were tested.

1) Type 1. The elements of H were drawn from an i.i.d.
zero-mean, unit variance Gaussian distribution.

2) Type 2. H = UDV
T , where U and V are the Q-

factors of the QR factorizations of random matrices
and D is a diagonal matrix, whose first half diagonal
entries follow an i.i.d. uniform distribution over 10 to
100, and whose second half diagonal entries follow an
i.i.d. uniform distribution over 0.1 to 1. So the condition
number of H is bounded up by 1000.

For Type 1 matrices, we gave 200 runs for each dimension
n. Figure 1 gives the average flops of the three reduction
algorithms, and Figure 2 gives the average relative backward
error �H − QcRcZ

−1
c �2/�H�2, where Qc, Rc and Z

−1
c

10 15 20 25 30
0

2

4

6

8

10

12
x 10

4

A
ve

ra
g
e
 n

u
m

b
e
r

o
f
flo

p
s

Dimension

LLL
ELLL
PLLL

Fig. 1. Type 1 matrices – flops

10 15 20 25 30
10

−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

A
ve

ra
g

e
 b

a
ck

w
a

rd
 e

rr
o

r

Dimension

LLL
ELLL
PLLL

Fig. 2. Type 1 matrices – relative backward errors

are the computed factors of the QRZ factorization produced
by the reduction. From Figure 1 we see that PLLL is faster
than both LLL and ELLL. From Figure 2 we observe that
the relative backward error for both LLL and PLLL behaves
like O(nu), where u ≈ 10−16 is the unit round off. Thus the
two algorithms are numerically stable for these matrices. But
ELLL is not numerically stable sometimes.

For Type 2 matrices, Figure 3 displays the average flops
of the three reduction algorithms over 200 runs for each
dimension n. Again we see that PLLL is faster than both LLL
and ELLL.

To see how the reduction affects the performance of the
Babai integer point, for Type 2 matrices, we constructed the
linear model y = Hx + v, where x is an integer vector
randomly generated and v ∼ N (0, 0.22I). Figure 4 shows
the average symbol error rate (SER) over 200 runs for each
dimension n. From the results we observe that the computed
Babai points obtained by using LLL and PLLL perform
perfectly, but the computed Babai points obtained by using
ELLL perform badly when the dimension n is larger than 15.
We also found that after the ELLL reduction, the computed
ILS solution often has more or less the same performance as
the Babai integer point in terms of SER. All these indicate that
ELLL can give a very poor estimate of x due to its numerical

10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

A
ve

ra
g
e
 n

u
m

b
e
r

o
f
flo

p
s

Dimension

LLL
ELLL
PLLL

Fig. 3. Type 2 matrices – flops

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

A
ve

ra
g

e
 s

ym
b

o
l e

rr
o

r
ra

te
 (

B
a

b
a

i)

Dimension

LLL
ELLL
PLLL

Fig. 4. Type 2 matrices – SER

stability problem.

REFERENCES

[1] C. Ling and N. Howgrave-Graham, “Effective lll reduction for lattice
decoding,” in Proc. IEEE International Symposium on Information

Theory, 2007, pp. 196–200.
[2] P. v. Boas, “Another NP-complete partition problem and the complexity

of computing short vectors in a lattice,” Mathematisch Institute, Ams-
terdam, The Netherlands, Tech. Rep. 81-04, 1981.

[3] L. Babai, “On lovasz’s lattice reduction and the nearest lattice point
problem,” Combinatorica, vol. 6, no. 1, pp. 1–13, 1986.

[4] C. Schnorr and M. Euchner, “Lattice basis reduction: improved practical
algorithms and solving subset sum problems,” Mathematical Program-

ming, vol. 66, pp. 181–199, 1994.
[5] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point search in

lattices,” IEEE Transactions on Information Theory, vol. 48, no. 8, pp.
2201–2214, 2002.

[6] M. Damen, H. El Gamal, and G. Caire, “On maximum-likelihood
detection and the search for the closest lattice point,” IEEE Transactions

on Information Theory, vol. 49, no. 10, pp. 2389–2402, Oct. 2003.
[7] X.-W. Chang and Q. Han, “Solving box-constrained integer least-squares

problems,” IEEE Transactions on Wireless Communications, vol. 7,
no. 1, pp. 277–287, 2008.

[8] A. Lenstra, J. Lenstra, and L. Lovasz, “Factoring polynomials with
rational coefficients,” Mathematische Annalen, vol. 261, pp. 515–534,
1982.

[9] X.-W. Chang and G. Golub, “Solving ellipsoid-constrained integer least-
squares problems,” SIAM J. Matrix Anal. Appl., vol. 31, pp. 1071–1089,
2009.

[10] G. Golub and C. Van Loan, Matrix Computations. The Johns Hopkins
University Press, Baltimore, Maryland, 3rd edition, 1996.

