Synthetic Full System

Traffic Models Capturing Cache Coherence Behaviour

Mario Badr | Natalie Enright Jerger

Amateur Photography

http://sevennine.net/archives/2009/10/01/torontos-skyline-at-night/

Photography 101

http://sevennine.net/archives/2009/10/01/torontos-skyline-at-night/

Hundreds of Pictures

SynFull

http://sevennine.net/archives/2009/10/01/torontos-skyline-at-night/

Pictures for Facebook

What Does SynFull Do?

• **Model** real application traffic to the NoC

• **Generate** realistic traffic synthetically for the NoC

• **Iterate** over several NoC designs quickly

Tool Available for Download

SynFull's Goals

- **Generic** Current and future applications
 - 16 different benchmarks

- Accurate Comparable performance metrics
 - 10.5% error

- **Fast** Faster than full system and traces
 - 52x speed up

NoC Simulation Methodologies

Full System

• Traces

Traffic Patterns

Full System Simulation

Accurate But *Slow*

Trace Simulation

Faster But Less Accurate

Traffic Patterns

Very Fast But *Inaccurate*

The Opportunity

The Opportunity

Speed

Achieving the Goals

- Synthetic Cache Coherence
 - Dependent Messages
 - Enable Research
- Time-Varying Behaviour

 Short and Long Bursts of Traffic
- Convergence

 Simulation length?

Speed

Motivating Cache Coherence

Cache Coherence Affects Traffic Behaviour

- Example
 - MOESI Protocol
 - Can be adapted

Store Miss 7

- Initiate Transaction
- Store Miss
 - Source

- Store Miss
 - Source
 - Destination

Directory 3

Owner 1

- Store Miss
- Forwarded Request
 - Destination

Invalidate 2, 6

- Store Miss
- Forwarded Request
- Invalidations
 - Quantity
 - Destinations

- Store Miss
- Forwarded Request
- Invalidations
- Acknowledgements

- Store Miss
- Forwarded Request
- Invalidations
- Acknowledgements
- Data Response

Data to 7

Transaction Complete

- Store Miss
- Forwarded Request
- Invalidations
- Acknowledgements
- Data Response
- Unblock

Time Varying Behaviour

Initiating Transactions and Sharing Patterns Can Change

Time-Varying Behaviour

Applications go through *phases*

Modelling Time-Varying Behaviour

Create and group phases
 — Clustering

- Transition from one phase to another
 - Markov Chains

Dividing Into Intervals

Intervals are a fixed size

Dividing Into Intervals

Visually we see: **High**, **Low** + **High**, and **Low** Intervals

Phase Transitions: Markov Chains

P[Next State | Current State]

Traffic Comparison

Capturing Short Bursts

- Macro Level
 - 100,000s of Cycles
 - Long phases
 - Outer-Loops
- Micro Level
 - 100s of Cycles
 - Short Bursts
 - Inner-Loops
- Hierarchical Model

Modelling Parameters

- Model accuracy affected by:
 - Interval Size
 - Interval Similarity
 - Number of Clusters

See Paper for Parameter Sweep & Recommendations

Creating The Models

Creating The Models

Creating The Models

Evaluation Methodology

Network	meshDOR	meshADAP	fbfly
Topology	Mesh	Mesh	Flattened Butterfly
Channel Width	8 bytes	4 bytes	4 bytes
Virtual Channels	2 per port	2 per port	4 per port
Routing	XY	Adaptive YX-XY	UGAL

- 16 Out-of-Order Cores
- MOESI Protocol
- 16 Benchmarks (Splash-2, PARSEC)
- Traces with Dependencies Comparison

Packet Latency Error

■ Trace Dependency ■ SynFull

No Throttling For Initiating Transactions

Distribution Error

■ Trace Dependency ■ SynFull

What About Speed?

[0.40 0.60] [0.75 0.25] Markov Probability Matrix,

What About Speed?

Speed Up

52x Speed Up With 11.7% Error

Conclusion

- Implemented Synthetic Traffic Models that are – Accurate: 10.5% error
 - Fast: Over **50x** average speed up
 - Generic: SynFull works for many applications

Try SynFull Out:

http://www.eecg.toronto.edu/~enright/items/synfull_download.html

Thank you for listening!

QUESTIONS & ANSWERS

Back Up: Design Space Exploration

→ Full System → SynFull

Same Conclusion, Less Time

Back Up: meshDOR Packet Latency

■ Full System ■ Trace Dependency ■ SynFull

Back Up: fbfly Packet Latency

Back Up: meshADAP Packet Latency

Back Up: Average Throughput

Back Up: Speed Up Per Application

■ Trace Dependency ■ SynFull ■ SynFull (SS)

Averaged Over 3 Runs (Different NoCs)

Back Up: Steady State

Current +/- Depends on State Transitions (RNG) and MSE

Ring Topology; Max. 2 Hops Needed

NoC Simulation Methodologies

