
Fast and Accurate Performance 
Analysis of Synchronization

Mario Badr and Natalie Enright Jerger



Evaluating Multi-Threaded Performance

• Difficult and Time Consuming
• Non-Determinism

• Cross-stack effects

• Different Architectures

• Goal: Make it Straightforward and Fast
• One trace, many total orders

• High level of abstraction

2



More Synchronization != More Overhead

3

Ferret



Multi-threaded, Multi-core Workflows

Write Multi-threaded Program

Profile for Bottlenecks

Implement Optimization

Release Program

Change Kernel

Test Implementation

Modify Implementation

Release Modifications

Design Multi-processor

Simulate with Benchmarks

Optimize Design

Release Chip

Programmer Systems Researcher Architect

One architecture?
Multiple architectures?

Architectures that don’t exist?

One application?
Application input?
Simulation time? 4



Cross-Stack Interactions for Synchronization

5

Application

Thread Library/Application Runtime

Operating System

Architecture



Modelling Multithreaded Applications

Thread Model
Representation 

of the 
Application

Runtime/OS Model
Architecture Model

Architectural Configuration

6



t1

t2

t3

t4

Execution of a Parallel Program

7



What impacts a thread’s execution time?

• Heterogeneity
• Architectures (e.g., big.LITTLE)

• Dynamic Voltage and Frequency Scaling (DVFS)

• Contention
• Synchronization

• Many other things

8



The Impact of Heterogeneity

t1

t2

t3

t4

9



The Impact of Synchronization

t1

t2

t3

t4

10



Heterogeneity and Synchronization

t1

t2

t3

t4

The order and time of synchronization events impacts performance.

11



Modelling Cross-Stack Interactions

• How to represent a multi-threaded application?
• Task Graph
• Trace

• How to model the operating system and runtime?
• Thread scheduling
• Synchronization

• How to model the architecture?
• Rate of execution (e.g., cycles per instruction)

12



The Producer Consumer Example

Adding Work to a Queue Removing Work from a Queue

13



Representing an Application

Synchronization Trace

Thread Event Primitive

Consumer Lock mutex

Producer Lock mutex

Consumer Wait enqueue

Producer Signal enqueue

Producer Unlock mutex

Consumer Signal dequeue

Consumer Unlock mutex

Task Graph

L

S

U

S

U

U

L

w
a
i
t

Producer Consumer

14



The order of synchronization events

• A synchronization trace gives us the program order of each thread

• We want to determine the total order of all synchronization events

• The total order must be correct
• Safety (e.g., no two threads in the same critical section)

• Liveness (e.g., all threads make progress eventually)

15



16

Thread Event

Consumer Lock

Producer Lock

Consumer Wait

Producer Signal

Producer Unlock

Consumer Signal

Consumer Unlock

Thread Event

Consumer Lock

Consumer Wait

Producer Lock

Producer Signal

Producer Unlock

Consumer Signal

Consumer Unlock

Thread Event

Producer Lock

Consumer Lock

Producer Signal

Producer Unlock

Consumer Wait

Consumer Signal

Consumer Unlock

Thread Event

Producer Lock

Producer Signal

Producer Unlock

Consumer Lock

Consumer Wait

Consumer Signal

Consumer Unlock

Consumer locks 
mutex first 
(original trace)

Consumer is 
much faster than 
producer

Producer locks 
mutex first

Producer is 
much faster than 
consumer

One Trace, Multiple Total Orders – Captures Non-Determinism



Modelling Locks and Condition Variables

Per-Lock Thread Queues Condition Variable Counters

• On wait
• Decrement counter by 1

• On signal
• Increment counter by 1

• On broadcast
• Increment counter by number of 

consumers

t1 t2

t3 t4

t1

17



Estimating the Time Between Events

1. Dynamic Instructions
• The distance between events

2. Core Frequency and Microarchitecture
• The rate between events

3. The Scheduling of Threads
• The opportunity to execute dynamic instructions

4. The Timing of Prior Events
• The dependencies between threads

18



Our High Level Abstraction

Trace

TID(1) Acquire(A) 100
TID(3) Acquire(A) 342
TID(2) Barrier(B) 612
TID(1) Release(A) 30
TID(3) Release(A) 34
TID(1) Barrier(B) 843
TID(3) Barrier(B) 702
... ... ... ... ...

Thread Model – A sequence of events

instruction count between events

current event

instructions till next event

SchedulerSynchronization Model

sleep

schedule

A

cycles per instruction
frequency

C

executing 
threads

queue

Each core has its own 
frequency and the CPI 
for each thread

Controller

In
ter-th

read
 

d
ep

en
d

en
cies

B

thread to 
core map

instruction count between 
events for a given thread ID (TID)

the synchronization event 
and the object it is acting on

19



Validation Methodology

• Benchmarks: PARSEC 3.0, Splash-3
• Execution time measured with GNU time
• Traces generated with Pin
• Cycles-per-instruction profiled with VTune™

• Architecture: Intel Xeon E5-2650 v2
• 2 sockets, 8 cores per socket, 2 threads per core
• 20 MB L3 Cache
• 2.6 GHz

• Three runs for each experiment

20



Assumptions and Approximations

• Cycles-Per-Instruction encompasses microarchitecture and memory 
hierarchy performance

• Synchronization events have zero latency

• Context switches have zero latency

• Synchronization model approximates application state
• i.e., for condition variables

21



Model Validation: 4 Cores, Single Socket

22

0
20
40
60
80

100
120
140
160
180
200

Ti
m

e 
(s

ec
o

n
d

s)

Average of measured Average of estimated



Model Validation: 32 Cores, Dual Socket

23

0

10

20

30

40

50

60

Ti
m

e 
(s

ec
o

n
d

s)

Average of measured Average of estimated



Water (nsquared): 8 Cores

Estimated with Our Model Estimated with Vtune™

24

0

1E+10

2E+10

3E+10

4E+10

5E+10

6E+10

7E+10

8E+10

0 1 2 3 4 5 6 7

Ti
m

e 
(n

an
o

se
co

n
d

s)

Thread ID

Average of Computation Average of Synchronization

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7

Ti
m

e 
(s

ec
o

n
d

s)

Thread ID

Average of Computation Average of Synchronization



Model Runtime

Benchmark Input Set Input Size Trace Size Runtime

blackscholes Native 603 MB 1.1 KB 4 ms

bodytrack Native 616 MB 31 MB 4.9 minutes

water (nsquared) Native 3.6 MB 53 MB 7.5 minutes

average 2 MB 32 seconds

25

Orders of magnitude faster than simulation of smaller input sets.



Conclusion

• A very high level of abstraction can accurately and quickly estimate 
the performance of a multi-threaded application on a multi-core 
processor.
• Average 7.2% error in total execution time
• Average 32 seconds to generate an estimate

• Programmers and Systems Researchers can evaluate on many 
architectures

• Architects can evaluate with native inputs and many applications

26



Future Work

• How much non-determinism is there across multiple traces of an 
application?

• How can a {memory, network} contention model be added to 
improve error without significantly increasing model complexity?

27



Our Work is Open Source
https://github.com/mariobadr/simsync-pmam

License: Apache 2.0

Mario Badr and Natalie Enright Jerger

28

https://github.com/mariobadr/simsync-pmam


Scenario A – Consumer locks mutex first

Thread Event Primitive

Consumer Lock mutex

Producer Lock mutex

Consumer Wait enqueue

Producer Signal enqueue

Producer Unlock mutex

Consumer Signal dequeue

Consumer Unlock mutex

1. Consumer locks mutex

2. Producer attempts lock
• Producer blocked

3. Consumer waits for enqueue
• Consumer blocked, silent unlock
• Producer unblocked, silent lock

4. Producer signals enqueue
• Consumer tries to lock, remains blocked

5. Producer unlocks mutex
• Consumer unblocked, silent lock

6. Consumer signals dequeue
7. Consumer unlocks mutex

29



Scenario B – Consumer is much faster

Thread Event Primitive

Consumer Lock mutex

Consumer Wait enqueue

Producer Lock mutex

Producer Signal enqueue

Producer Unlock mutex

Consumer Signal dequeue

Consumer Unlock mutex

1. Consumer locks mutex

2. Consumer waits for enqueue
• Consumer blocked, silent unlock

3. Producer locks mutex

4. Producer signals enqueue
• Consumer tries lock, remains blocked

5. Producer unlocks mutex
• Consumer unblocked, silent lock

6. Consumer signals dequeue

7. Consumer unlocks mutex

30



Scenario C – Producer locks mutex first

Thread Event Primitive

Producer Lock mutex

Consumer Lock mutex

Producer Signal enqueue

Producer Unlock mutex

Consumer Wait enqueue

Consumer Signal dequeue

Consumer Unlock mutex

1. Producer locks mutex

2. Consumer attempts lock
• Consumer blocked

3. Producer signals enqueue

4. Producer unlocks mutex
• Consumer unblocked

5. Consumer locks mutex

6. Consumer does not have to wait

7. Consumer signals dequeue

8. Consumer unlocks mutex

31



Scenario D – Producer is much faster

Thread Event Primitive

Producer Lock mutex

Producer Signal enqueue

Producer Unlock mutex

Consumer Lock mutex

Consumer Wait enqueue

Consumer Signal dequeue

Consumer Unlock mutex

1. Producer locks mutex

2. Producer signals enqueue

3. Producer unlocks mutex

4. Consumer locks mutex

5. Consumer does not have to 
wait

6. Consumer signals dequeue

7. Consumer unlocks mutex

32


