
A Look at Computer Architecture Evaluation Methodologies

Mario Badr and Natalie Enright Jerger
mario.badr@mail.utoronto.ca, enright@ece.utoronto.ca

Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto

Abstract—Throughout the years, computer architects have
evaluated their designs in a number of ways. We take a closer
look at the evaluations and methodologies of over 200 ISCA
publications from 1973-2017. As computer architectures be-
come more complex, and the tools afforded to architects grow,
evaluations no longer rely on intuition or simple models. The
trends in computer architecture evaluations help us understand
how future architectures will be analyzed and identify gaps in
the architect’s toolbox. While architects have (and continue
to) focus on performance, the last two decades have placed
more emphasis on power, energy, and area overhead. Based
on the tools used by architects, we identify six key papers that
have been influential on past work and will likely continue
to be influential in the future. The abundance of tools has
resulted in an explosion of experimental data. Unfortunately,
reproducibility appears to be an afterthought and without it,
computer architecture becomes more art than science.

1. Introduction

Architects face the difficult task of designing the ma-
chines of the future with the machines of today. They must
carefully select workloads and metrics to make meaningful
conclusions and recommendations. The process of evaluat-
ing a computer architecture, whether it be past, present, or
future, is fundamental to research and development. Without
objective evaluations, computer architecture becomes more
art than science, and understanding the trade-offs between
computer systems is near impossible. We look at how archi-
tects change and adapt their evaluation methodologies over
the last 45 years.

Analyzing all computer architecture papers is infeasible.
Instead, we survey over 200 papers between 1973 and 2017
from the ACM/IEEE International Symposium on Computer
Architecture (ISCA). The selected papers are representative
because they span a broad range of topics, which we intro-
duce in Section 2.

The trends in computer architecture evaluation shed light
on what was, is, and will be expected of contributions to the
field. Our analysis focuses on which tools and methodolo-
gies were used in the past. The metrics used by architects
definitively show the direction our community is taking
by demonstrating which aspects of a design are important.
The models that produce the estimates for these metrics
help us understand gaps in the architect’s toolbox. We take
a closer look at specific tools to determine which have

been influential on how we evaluate architectures. More
importantly, we look at the impact these tools have had on
how architects evaluate their designs.

Throughout the history of surveyed papers, performance
metrics reign supreme. However, after 1995, we find that
power, energy, and area become much more popular metrics
(Section 3). Tools emerge to produce estimates for these
metrics, and we identify key publications related to analyt-
ical modelling (Section 4) and simulation (Section 5) that
have been influential on how we evaluate architectures.

Our survey is broader than related work that focuses
on the pitfalls of architectural simulation [7], [8], [20].
As a result, we do not focus on, or validate, the use of
a methodology or tool. We are more interested in how
evaluation methodologies have changed over time and how
the architecture community is progressing. We find that,
while there has been a considerable shift to quantitative
evaluations and experimental data, reproducibility is a key
issue that needs to be addressed (Section 6).

2. Paper Selection

There are over 1600 publications in ISCA between 1973
and 2017 so we select a representative sample of publi-
cations to survey. We hypothesize that different topics in
computer architecture are evaluated differently. For example,
we expect that publications on networks-on-chip are more
likely to use statistical simulation (e.g., uniform random
traffic) to evaluate their designs. Conversely, publications
on branch prediction are more likely to use applications
to capture the complex control flow of real workloads.
Therefore, we sample papers on a wide variety of topics
from ISCA’s 44 proceedings.

We present a classification of computer architecture
along two axes. The first axis divides papers into the type
of processor they use or propose. For conventional gen-
eral purpose processors, we separate works that focus on
a single versus multiple cores or processors. We classify
unconventional processors as specialized architectures, such
as throughput-oriented processors (i.e., GPUs) and other
types of accelerators. The second axis divides papers into
five categories based on the architectural component focused
on. Many publications touch on more than one component
of a computer architecture, such as the microarchitecture,
memory, or interconnection network. If there is a primary
focus of the paper on a particular component, then we assign
the publication to that category. If the paper focuses on more

1

TABLE 1. PAPER CATEGORIES

Category Paper Focus

Microarchitecture The processor (e.g., branch prediction, si-
multaneous multithreading)

Memory The memory hardware (e.g., cache replace-
ment, phase change memory) or managing
memory (e.g., coherence, consistency).

Networks How the hardware is interconnected (e.g.,
networks-on-chip) or network interfaces.

Organization The design of multiple components (e.g.,
dataflow architecture, multiprocessor).

Coordination The management of multiple components
to achieve a goal (e.g., quality of service).

than one component, then we differentiate between papers
that propose a new design (organization) versus papers that
coordinate existing components (coordination). We briefly
describe each category in Table 1. We now discuss how
some papers are classified to give more insight to our
methodology and the coverage of our survey.

We consider the Distributed Array Processor (DAP) to
be a specialized architecture because it is described in the
context of domain-specific kernels [27]. The DAP publica-
tion discusses the overall architecture of the processor and
did not emphasize a specific component, so we categorize
it as an organization paper. Another example of a special-
ized architecture is a dataflow processor [28]. Unlike DAP,
Sakaei et al. focus on the pipeline stages that support a RISC
ISA and is therefore categorized as microarchitecture. The
work by Nishikawa et al. touches on the processor, mem-
ory, and interconnection network [19]. However, because
the main emphasis is on how components are connected
we categorize it as a networks paper for multiple cores.
Goodman’s work motivating on-chip caches is categorized
as a memory paper for multiple cores [10]. Active Pages, a
reconfigurable DRAM architecture that allows for process-
ing near memory, is also a memory paper but for single
core architectures [22]. Papers that deal with scheduling or
management are assigned to the coordination category, such
as Teodorescu and Torrellas’ work on multiprocessor power
management [30].

In the end, we survey 222 papers and strive to select
publications that have had an impact on the field. We use
Google Scholar’s citation count as a rough proxy for impact
and select four to seven papers from each ISCA proceedings,
biasing our selection to papers that propose a new design
or implementation. We do not include highly impactful
methodology or tools papers (e.g., Wattch [4]) because we
are interested in how architectures are evaluated rather than
how a model is validated. Figure 1 shows the different types
of architectures (single core, multiple cores, specialized) we
surveyed throughout the years. Similarly, Figure 2 shows
the same papers as they are categorized based on Table 1.
Our complete database is available online for reference to

0

2

4

6

19
80

19
90

20
00

20
10

Year

P
ap

er
 C

ou
nt

 Specialized Architecture Single Core Multiple Cores

Figure 1. A timeline of surveyed papers broken down by architecture type.

0

2

4

6

19
80

19
90

20
00

20
10

Year

P
ap

er
 C

ou
nt

 Microarchitecture Memory Networks Organization Coordination

Figure 2. A timeline of surveyed papers broken down by category.

the interested reader.1

3. Paper Analysis

The complexity of computer architecture evaluation has
increased over the last few decades. Early on, many papers
did not include a quantitative evaluation of their proposed
design. More recently, papers that do not include experi-
mental data are extremely rare. In addition, architects are
evaluating their designs with more metrics. While Moore’s
law has lead to more performant computer systems, the ar-
chitectures have also become more complex. The increased
performance and complexity of systems has prompted more
tools that model different aspects of the design. As a result,
there is an explosion of experimental data being produced by
architects. However, the scientific method not only requires
experimental data but also reproducibility.

In this section, we illustrate the trends we found across
the decades. We take a close look at the methodology of
all of the surveyed papers. Our focus is on the metrics
being evaluated and the tools used to obtain estimates of
these metrics. Note that a paper may use multiple tools and
metrics to evaluate their design. In fact, it is uncommon
for recent publications to evaluate a single metric or use
only one tool. Architects have shifted focus to the trade-offs
their design provides across multiple metrics. We demon-
strate this shift both quantitatively and qualitatively in the
following timeline.
1973-1979 (27 papers). The majority of papers in the 1970s
focus on the overall design (i.e., organization) of specialized
architectures and multiple core systems. Only three of these
papers provide a quantitative evaluation. The 1970s also
has a number of papers focusing on how to interconnect
multiprocessor systems. All but one of these papers included
a quantitative evaluation of their design, and the metrics
evaluated were area, performance, or both.

1. https://github.com/mariobadr/survey-wp3

2

In DAP, analytical models (that assume ideal par-
allelism) are used to quantify the accelerator’s perfor-
mance [27]. In the Columbia Homogeneous Parallel Pro-
cessor (CHOPP), Sullivan et al. use an analytical model to
project its area and performance based on current (at the
time) data. Nishikawa et al. obtain performance and area
estimates analytically for their network architecture [19]. In
the work on Banyan networks, an analytical model was not
available so statistical simulations were used to obtain a
proxy for performance (i.e., number of network layers for
different fanouts) [9]. Overall, only a 11 of 27 publications
provide a quantitative evaluation and most rely on analytical
models.
1980-1989 (46 papers). The 1980s continues to see work
done on accelerators (i.e., specialized architectures) and
networks. In addition, the reduced cost of memory and CPU
components [10] stimulates research in microarchitecture
and memory of conventional architectures. Nearly 60% of
papers in the 1980s provide quantitative evaluations of their
designs, compared to 40% in the previous decade. While
analytical models are still used, architectural simulation
begins to dominate (63% of papers). Hardware prototypes,
mentioned as future work for several papers in the 1970s,
also become more prominent (22% of papers).

We are careful to differentiate between tools used for
motivating the research and tools used to evaluate a proposed
design. For example, in Goodman’s work on cache memo-
ries we only consider the simulations that evaluate the mem-
ory system using traces from PDP and VAX systems [10].
When identifying papers that prototype their design, we look
for indications that either a part or the entire architecture has
been synthesized, fabricated, or constructed. For example,
we consider that Sakai et al. prototype their design because
they provide detailed gate and pin counts (a proxy for area)
of different hardware components, though the methodology
is not provided [28].
1990-1999 (47 papers). Over 85% of papers in the 1990s
provide a quantitative evaluation of their design, with an
increased emphasis on conventional single-core architec-
tures. In addition, the use of analytical models tapers off
while architectural simulation sees even more use. We can
explain this trend because a number of simulators being
developed and released, such as SimpleScalar [5]. As a
result, the majority of publications in the 1990s use one
tool (a simulator) to evaluate performance.

Active Pages [22] is an example of a paper that uses
multiple tools. An FPGA prototype is built to estimate the
performance and area of the memory architecture as well
as verify simulation results. SimpleScalar is used to obtain
more detailed performance measurements for application
speedup, processor stall cycles, etc. Finally, an analytical
model is developed to understand the impact of the de-
sign more intuitively (the model’s results are compared to
simulation). Although there are some exceptions, such as
Palacharla et al. [23], the evaluatio is more detailed than
other publications in the decade.

There are a few examples of publications that consider
energy and power as metrics, such as Pipeline Gating [18].

The evaluation uses SimpleScalar to estimate both speedup
and a proxy for energy (extra work) for gated and not gated
pipelines. The paper likely does not provide a direct measure
for energy (e.g., joules) because an analytical model of the
processor was not available. Two years after the Pipeline
Gating publication, an analytical model would be integrated
with SimpleScalar to bridge that gap [4]. We discuss the
impact of these new models in the next decade.
2000-2009 (50 papers). With the exception of Rajwar et
al. [26], all publications include a quantitative evaluation.
A staggering 90% use architectural simulation thanks to the
popularity of SimpleScalar, the introduction of Pin [16], and
a focus on reducing simulation times [25]. However, ana-
lytical models that explore non-performance metrics (e.g.,
Wattch [4], CACTI [32], HotSpot [13], Orion [31]) also
become popular. As a result, and unlike the previous two
decades, 63% of publications use two or more tools in their
evaluation.

Publications that want to evaluate power use more than
the average of two tools. For example, the work by Teodor-
escu and Torrellas [30] uses a simulator and several analyti-
cal models, some of which include: (1) within-die variation
using VARIUS; (2) dynamic power with Wattch [4]; (3)
static power with HotLeakage; and (4) path layouts and wire
delays with CACTI [32]. Another example is Synchroscalar,
which developed a prototype, used multiple models to eval-
uate power, and adapted SimpleScalar to obtain performance
measurements [21].
2010-2017 (52 papers). The introduction of McPAT in
2009 provides updated models for architects interested in
power and energy and begins to be integrated into simula-
tors [2], [3], [15]. Models focusing on a specific component,
such as the power delivery network, are also introduced [33].
The abundance of tools available allows architects to explore
more trade offs than ever before.

3.1. Summary

Figures 3 and 4 demonstrate the shift we observed in
the mid-90s and early 2000s toward more power and energy
evaluations. Note that the focus on performance helped aid
in modelling other aspects of an architecture. Microarchitec-
tural work done in 1997 reduced the complexity of wakeup
and selection logic of a processor pipeline [23]. While the
pipeline models presented in the paper were focused on per-
formance (critical path latency), they were later instrumental
in developing an analytical model for power estimation a
few years later [4]. There were also many other metrics we
observed but did not fully explore, such as reliability (e.g.,
mean time to failure) and quality of service.

Based on our observations, we highlight three influential
analytical models in Section 4 and three influential simula-
tion methodologies in Section 5. We also qualitatively reflect
on our survey in Section 6 and provide recommendations for
the future of the field.

3

0.00

0.25

0.50

0.75

1.00

 Microarchitecture Memory Networks Organization Coordination P
er

ce
nt

ag
e

of
 P

ap
er

s Performance Power Energy Area

Figure 3. Metrics being evaluated before 1996.

0.00

0.25

0.50

0.75

1.00

 Microarchitecture Memory Networks Organization Coordination P
er

ce
nt

ag
e

of
 P

ap
er

s Performance Power Energy Area

Figure 4. Metrics being evaluated after 1995.

4. Influential Analytical Models

We came across several analytical models in our sur-
veyed papers. Here we take a closer look at published,
validated models and select three that were influential on
architecture evaluation. Before the year 2000, architects
relied on low-level tools for estimating power that required
hardware descriptions (e.g., circuit- or Verilog-level) of their
designs. However, for architects that wanted to evaluate the
power of (for example) a superscalar, out-of-order core they
simulated, options were limited.

Wattch [4] introduces an analytical power model that
accepts input parameters (i.e., switching events) from an
architectural simulator. Therefore, rather than requiring a
hardware description for a prototype, a software simulator
models the hardware instead. The abstraction is useful be-
cause of the abundant use of architectural simulators. The
Wattch framework was integrated into the SimpleScalar sim-
ulator, which likely influenced the popularity of both tools;
at the time of writing, Wattch has over 3000 citations on
Google Scholar. With Wattch and SimpleScalar, architects
were able to produce performance and power evaluations in
one simulation run.

McPAT [15], published in 2009, maintains the level
of abstraction provided by Wattch and integrates with ar-
chitectural simulators, which allows dynamic events to be
passed into the McPAT modelling framework. Aside from
being more up-to-date, McPAT differs from Wattch in two
ways. First, it can provide feedback to the architectural
simulation on power dissipation and thermal data. Cycle-
level information on power consumption and temperature
has made it useful for research on architectures that are
power- or thermal-aware. Second, McPAT also accepts as
input a configuration for its own microarchitectural model.
Combined with the architectural configuration embedded in
the simulator (which provides McPAT with dynamic events),
the additional static configuration allows more customiz-
ability of the underlying microarchitecture. McPAT is not
tightly coupled to any one simulator and has been integrated
into many, such as gem5 [3] and ESESC [2], improving its

popularity by making it more accessible to architects.
The most influential work on power and area models,

dating back to the mid-90s, is CACTI [32]. CACTI’s es-
timates and analytical methodologies continue to influence
other models, including the aforementioned McPAT (area
and timing [15]) and Wattch (capacitance models [4], [15])
frameworks. CACTI is focused on memory hardware (e.g.,
SRAM, DRAM), and is by far the most popular analytical
model and tool we found in papers we surveyed. The
popularity of CACTI is due to the reliance of architectures
on memory arrays, which is not limited to research done
in the memory category. For example, CRIB uses CACTI
to model large microarchitectural structures such as the re-
order buffer and register file [12]. In Kilo-NOC, CACTI was
extended to model the SRAM FIFOs in network-on-chip
routers [11]. CACTI is also used in providing estimates for
the memory requirements of specialized architectures.

As more architects use a tool it becomes easier for other
researchers to use the same tool and compare numbers.
Thus, as a tool becomes more widely used, there is a snow-
ball effect to its popularity. We believe that tools become
more widely used when they are updated and provide a
consistent, easy-to-use interface. CACTI has been frequently
updated over the years (currently on version 6), keeping
it up-to-date with trends in technology and maintaining its
popularity. Similarly, McPAT has also been updated, with
its last update to version 1.3 in September of 2015. By
not being heavily tied to a specific architectural simulator
(i.e., generic interface), the tools have become very popular
amongst architects.

5. Influential Simulation Methodologies

The most-used architectural simulator in the papers we
surveyed was SimpleScalar, implemented between 1994 and
1996, for evaluating single core microprocessors [5]. As
mentioned in Section 4, a power modelling framework was
integrated into the simulator [4]. SimpleScalar was also
expanded to simulate multiple cores. By the early 2000s,
SimpleScalar was being used by a variety of papers in mul-
tiple venues. In 2001 more than a third of papers that were
in the conference on Parallel Architectures and Compilation
Techniques (PACT) and the International Symposium on
Microarchitecture (MICRO) used the simulator [1].

With the surge of simulators available to architects by
the mid to late 90s, research was done on the validity
of simulation results [7], [8]. Gibson et al. demonstrated
the importance of including the operating system when
simulating an architecture [8]. In the surveyed papers, we
saw a brief move to full-system simulators, such as Sim-
ics [17], which booted an operating system before running
benchmarks. However, the use of full-system simulators is
not as prolific as previous tools for a number of reasons.

1) Simulation time was already prohibitive. The ma-
jority of publications we surveyed either simulated
a portion of the benchmarks or used a reduced input
set (or both). Modelling the full system meant even
longer simulation times.

4

2) While execution-driven simulators typically relied
on just an application binary, full-system simulators
required a number of inputs (e.g., disk image, linux
kernel). The additional inputs required by full-
system simulators increased the barrier-to-entry for
obtaining results on a new design.

3) Reasoning about the results of a full system is more
complicated than just the architecture. A complete
analysis would require architects to understand how
the operating system, disk, and other components
impacted their simulations.

4) In many cases, architects integrated full-system
simulators with an architectural simulator to obtain
more detailed data of the events happening in an
architecture. The integration increases an architect’s
barrier-to-entry and the simulation time.

Prohibitive simulation times has limited design space
exploration of architectures. To compensate, the architect’s
toolbox has responded in two ways. The first is to raise the
level of abstraction for simulated components. For example,
using a high-level cache model as opposed to a detailed
model can speed up simulation time. This is useful if the
architectural idea being evaluated is not overly sensitive to
the memory system. We find that Pin has been influential in
simulating architectures at various levels of abstrcation [16].
The second is to choose a small but representative sample
of the application to simulate. We find that SimPoint has
been influential in keeping simulation time tractable [25].

Pin is a dynamic binary instrumentation tool that has
been very influential in architectural simulation, second only
to SimpleScalar. Pin takes a binary as input and runs the
application natively on the system. In addition, a Pintool
can be used to instrument the application at different gran-
ularities (e.g., instruction, function calls). Alone, Pin is not
an architectural simulator. However, Pintools can provide the
necessary timing models to create an architectural simulator.
Pin’s ease-of-use and flexibility has made it widely used in
the literature. An early use of Pin for architectural simulation
was a multiprocessor cache simulator [14]. More recently,
simulators that focus on a raised level of abstraction, such
as Sniper [6] and ZSim [29], are driven by Pin. Pin has also
been used to generate traces or collect characteristics of an
application.

Many of the surveyed publications simulated a small
sample of the total execution of an application. For example,
some methodologies would only simulate the first billion
instructions to keep simulation times reasonable. Other
methodologies would offset the simulation by a certain
number of instructions before collecting results. The most
complicated methodologies would collect multiple samples
throughout the simulation, however these were rare. Sim-
Point is a methodology for selecting a representative sample
of an application to simulate [25]; the first billion instruc-
tions of execution is not necessarily representative of the
entire application’s time-varying behaviour. The SimPoint
methodology, and its derivatives [24], has been widely used
to reduce simulation time in the papers we surveyed.

We believe that SimpleScalar was popular for similar
reasons to those discussed for CACTI and McPAT in Sec-
tion 4. The simulator received many updates; version 2.0
was released in 1997, and in 2001 there were experimental
releases for the x86 and ARM instruction-sets as well as the
pre-release of version 3.0 [1]. Similarly, Pin and SimPoint
are currently on their third versions. Intel continues to
maintain Pin, keeping it up-to-date with the latest updates
to the x86 instruction set.

6. Conclusion

Throughout the surveyed papers, the majority of method-
ologies are insufficient in the context of reproducibility.
While difficult to quantify, we found the methodology sec-
tion of papers in the 90s and early 2000s the easiest to
read and digest. The use of one to two tools, sometimes
integrated together (e.g., SimpleScalar and Wattch), is typi-
cally accompanied with a table of the inputs used while an-
other table lists the applications being evaluated. Complete
methodologies include the sampling methodology used (i.e.,
simulating a subset of instructions to keep simulation time
low) and the input set sizes of the benchmarks, though this
was less common than we anticipated. Before the 90s, we
found that the methodology of many evaluations was either
non-existent or scattered throughout the paper.

The abundance of tools available by the mid 2000s gives
architects a wide variety of metrics that could be evaluated.
But while additional metrics allow architects to demonstrate
more trade-offs, the data also take up page real estate.
A significant chunk of recent publications is dedicated to
the evaluation with a bombardment of experimental data
produced by a variety of tools. One would expect a more
detailed methodology commensurate with the number of
tools used and graphs produced but that is not the case.

We also found a number of papers that rely on in-house
simulation, even in recent years where an abundance of tools
are available. The use of an in-house simulator may indicate
that the available tools are not sufficient for the evaluation;
we believe that is the case when datacenters and warehouse
scale servers need to be modelled. In-house simulators may
also be used when the time to produce an estimate with
another tool is intractable. There are several examples of
papers that produce traces with a validated simulator to
then drive their own. Both these cases demonstrate that
the architect’s toolbox, despite its size, is not keeping pace
with the needs of architects in terms of simulation time and
modelling large-scale systems.

Overall, we believe architects would be hard-pressed
to reproduce the majority of publications in ISCA. Gen-
erating experimental data is only one part of the scientific
method and without reproducibility, the data is of little use.
A concerted effort needs to be taken by architects, tools
developers, and reviewers to ensure that the methodology of
publications is complete. Architects should consider releas-
ing their modifications to existing simulators (or the entirety
of their in-house simulators) along with the scripts used
to generate the experimental data. Tools developers should

5

provide formats that architects can use to export their inputs
so that they can be reproduced and analyzed by others in
the field. The move to quantitative evaluations is only the
first step in establishing computer architecture as a science.
We hope our paper will spur increased interest in the second
step: reproducibility.

References

[1] “SimpleScalar LLC – to serve and project,” 2011, Accessed:
2017-12-28. [Online]. Available: http://www.simplescalar.com

[2] E. K. Ardestani and J. Renau, “ESESC: A fast multicore simulator
using Time-Based Sampling,” in Proceedings of the 19th HPCA,
2013, pp. 448–459.

[3] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The
gem5 simulator,” SIGARCH Comp. Arch. News, vol. 39, no. 2, pp.
1–7, 2011.

[4] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A Framework for
Architectural-level Power Analysis and Optimizations,” in Proceed-
ings of the 27th ISCA, 2000, pp. 83–94.

[5] D. Burger and T. M. Austin, “The SimpleScalar Tool Set, Version
2.0,” SIGARCH Comp. Arch. News, vol. 25, no. 3, pp. 13–25, 1997.

[6] T. E. Carlson, W. Heirmant, and L. Eeckhout, “Sniper: Exploring
the level of abstraction for scalable and accurate parallel multi-core
simulation,” in Proceedings of the 2011 International SC, 2011, pp.
1–12.

[7] R. Desikan, D. Burger, and S. W. Keckler, “Measuring Experimental
Error in Microprocessor Simulation,” in Proceedings of the 28th
ISCA, 2001, pp. 266–277.

[8] J. Gibson, R. Kunz, D. Ofelt, M. Horowitz, J. Hennessy, and M. Hein-
rich, “FLASH vs. (Simulated) FLASH: Closing the Simulation Loop,”
in Proceedings of the 9th ASPLOS, 2000, pp. 49–58.

[9] L. R. Goke and G. J. Lipovski, “Banyan Networks for Partitioning
Multiprocessor Systems,” in Proceedings of the 1st ISCA, 1973, pp.
21–28.

[10] J. R. Goodman, “Using Cache Memory to Reduce Processor-Memory
Traffic,” in Proceedings of the 10th ISCA, 1983, pp. 124–131.

[11] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu, “Kilo-NOC:
A Heterogeneous Network-on-chip Architecture for Scalability and
Service Guarantees,” in Proceedings of the 38th ISCA, 2011, pp. 401–
412.

[12] E. Gunadi and M. H. Lipasti, “CRIB: Consolidated Rename, Issue,
and Bypass,” in Proceedings of the 38th ISCA, 2011, pp. 23–32.

[13] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron,
and M. R. Stan, “HotSpot: a compact thermal modeling methodology
for early-stage VLSI design,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 14, no. 5, pp. 501–513, 2006.

[14] A. Jaleel, R. S. Cohn, C.-K. Luk, and B. Jacob, “CMP$im: A Pin-
based on-the-fly multi-core cache simulator,” in Proceedings of the
4th Annual Workshop on MoBS, 2008, pp. 28–36.

[15] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi, “McPAT: An integrated power, area, and timing
modeling framework for multicore and manycore architectures,” in
Proceedings of the 42nd MICRO, 2009, pp. 469–480.

[16] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building Cus-
tomized Program Analysis Tools with Dynamic Instrumentation,” in
Proceedings of the 2005 Conference on PLDI, 2005, pp. 190–200.

[17] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hall-
berg, J. Hogberg, F. Larsson, A. Moestedt, and B. Werner, “Simics:
A Full System Simulation Platform,” Computer, vol. 35, no. 2, pp.
50–58, 2002.

[18] S. Manne, A. Klauser, and D. Grunwald, “Pipeline Gating: Specula-
tion Control for Energy Reduction,” in Proceedings of the 25th ISCA,
1998, pp. 132–141.

[19] S. Nishikawa, M. Sato, and K. Murakami, “Interconnection Unit for
Poly-Processor System: Analysis and Design,” in Proceedings of the
5th ISCA, 1978, pp. 216–222.

[20] T. Nowatzki, J. Menon, C. H. Ho, and K. Sankaralingam, “Architec-
tural Simulators Considered Harmful,” IEEE Micro, vol. 35, no. 6,
pp. 4–12, 2015.

[21] J. Oliver, R. Rao, P. Sultana, J. Crandall, E. Czernikowski, L. W.
Jones IV, D. Franklin, V. Akella, and F. T. Chong, “Synchroscalar:
A Multiple Clock Domain, Power-Aware, Tile-Based Embedded Pro-
cessor,” in Proceedings of the 31st ISCA, 2004, pp. 150–161.

[22] M. Oskin, F. T. Chong, and T. Sherwood, “Active Pages: A Com-
putation Model for Intelligent Memory,” in Proceedings of the 25th
ISCA, 1998, pp. 192–203.

[23] S. Palacharla, N. P. Jouppi, and J. E. Smith, “Complexity-effective
Superscalar Processors,” in Proceedings of the 24th ISCA, 1997, pp.
206–218.

[24] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and
A. Karunanidhi, “Pinpointing Representative Portions of Large
Intel R©Itanium R©Programs with Dynamic Instrumentation,” in Pro-
ceedings of the 37th MICRO, 2004, pp. 81–92.

[25] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood, and
B. Calder, “Using SimPoint for Accurate and Efficient Simulation,” in
Proceedings of the 2003 International Conference on MMCS, 2003,
pp. 318–319.

[26] R. Rajwar, M. Herlihy, and K. Lai, “Virtualizing Transactional Mem-
ory,” in Proceedings of the 32nd ISCA, 2005, pp. 494–505.

[27] S. F. Reddaway, “DAP—a Distributed Array Processor,” in Proceed-
ings of the 1st ISCA, 1973, pp. 61–65.

[28] S. Sakai, y. Yamaguchi, K. Hiraki, Y. Kodama, and T. Yuba, “An
Architecture of a Dataflow Single Chip Processor,” in Proceedings of
the 16th ISCA, 1989, pp. 46–53.

[29] D. Sanchez and C. Kozyrakis, “ZSim: Fast and accurate microarchi-
tectural simulation of thousand-core systems,” in Proceedings of the
40th ISCA, 2013, pp. 475–486.

[30] R. Teodorescu and J. Torrellas, “Variation-Aware Application
Scheduling and Power Management for Chip Multiprocessors,” in
Proceedings of the 35th ISCA, 2008, pp. 363–374.

[31] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik, “Orion: A Power-
performance Simulator for Interconnection Networks,” in Proceedings
of the 35th MICRO, 2002, pp. 294–305.

[32] S. J. E. Wilton and N. P. Jouppi, “CACTI: An Enhanced Cache Access
and Cycle Time Model,” IEEE Journal of Solid-State Circuits, vol. 31,
no. 5, pp. 677–688, 1996.

[33] R. Zhang, K. Wang, B. H. Meyer, M. R. Stan, and K. Skadron, “Ar-
chitecture Implications of Pads As a Scarce Resource,” in Proceeding
of the 41st ISCA, 2014, pp. 373–384.

6

