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Evaluation Techniques Used (1973 – 2017)
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Simulation is the dominant 
technique used to evaluate designs.



Core Counts are Increasing
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https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
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Parallelism Impacts All Layers
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Key 
Contribution for 
Parallel 
Architectures

Trend
An increasing 
number of 
cores.

Challenge
Performance 
is difficult to 
predict.

Solution

Rhythm: Find 
the critical 
path of events 
in a workload.
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Heterogeneity is Increasing
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Apple SoCs

Y. S. Shao, B. Reagen, G. Wei, and D. Brooks, “The Aladdin approach to accelerator design and modeling,” IEEE Micro, 2015.
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Key 
Contribution for 
Heterogeneous 
Architectures

Trend
An increasing 
amount of 
heterogeneity.

Challenge
The compute 
devices are 
proprietary.

Solution

Mocktails: 
Black-box 
modeling of 
compute 
devices.
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A System-on-Chip

• General-purpose cores (CPU)

• Graphics-Processing Unit (GPU)

• Display-Processing Unit (DPU)

• Video Processing Unit (VPU)

CPU Cluster

Cache

Interconnection Network(s)

GPU

Cache DPU VPU

Other 
Accelerator

Memory
Main 

Memory
Other 

Accelerator

Compute Memory



The Intel Penwell SoC

• Mobile SoC from 2012

• 32 nm technology node

• 6 specialized architectures

https://doi.org/10.1109/HOTCHIPS.2012.7476498 10

Significant real estate 
allocated to accelerators.



Heterogeneous Systems-on-Chip
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• Specialized hardware for commonly used workloads

• Spend area to buy performance and energy efficiency

• More IP blocks = varying demands on memory

How do we evaluate the 
memory hierarchy?



Apple SoCs – The Cache Hierarchy
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Wide variety of cache designs 
from the same vendor.



This Photo by Eva the Weaver is licensed under CC BY-SA-NC

Academic research in SoC 
memory hierarchies.

Proprietary IP blocks 
increasingly used in SoCs.
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Statistical 
simulation can 
bridge the gap.

https://www.flickr.com/photos/evaekeblad/611546983
https://creativecommons.org/licenses/by-nc-sa/3.0/


Statistical Simulation

Workload

Baseline System

Memory 
Requests

Statistical Profile Other System(s)

Results

Baseline Results

Synthetic 
Requests

Proprietary

❶ Derive profile from real systems.

❷ Use profile to synthetically 
approximate a device.
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Statistical profiles hide 
proprietary details.



Prior Statistical Simulation Techniques
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Technique Timestamp Address Operation Size

WEST

STM

MeToo

SLAB

HRD

HALO

Prior techniques are well-tuned for CPU 
architectures, but won’t work for 
heterogeneous compute devices.
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Modeling a Memory Request
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Black-box modeling works with filtered 
or unfiltered memory requests.

Industry can pick and choose the 
appropriate level.



An Example Workload

• Lots of variability

• Hard to find a pattern 
in the memory 
accesses

• We can zoom in



Modeling Addresses

• Given a starting 
address, model the 
strides

• Stride models used in 
prior art

Time Address Stride

1 D

2 A -12

3 C 8

4 B -4

5 C 4

6 C 0

7 W 16896

8 X -8

9 Y 4

10 A -16884

11 Y 16884

12 B -16880

High variability in strides is difficult to 
model accurately.



Temporal Partitioning

• Divide the sequence of 
requests in two

• Two starting addresses

• Two stride models

• Each partition has 
different behaviour

• Temporal partitioning 
used in prior art

Time Address Stride

1 D

2 A -12

3 C 8

4 B -4

5 C 4

6 C 0

7 W

8 X -8

9 Y 4

10 A -16884

11 Y 16884

12 B -16880

Time Interval 1

Time Interval 2

Time interval 2 has high variability in 
stride values.



Spatial Partitioning

• Divide requests into 
separate address 
ranges

• Each partition has 
different behaviour

• Spatial partitioning 
used in prior art
• But tuned for CPUs

Time Address Stride

1 D

2 A -12

3 C 8

4 B -4

5 C 4

6 C 0

10 A -8

12 B 4

Time Address Stride

7 W

8 X -8

9 Y 4

11 Y 0

Spatial Partition 1

Spatial Partition 2

Spatial partitioning reduces the variance 
in the stride feature for both partitions.



Partitioning in Two 
Dimensions

• Temporal: reduces 
variability in delta 
times

• Spatial: reduces 
variability in strides

Original Workload Temporal First Spatial Second

Original Workload Spatial First Temporal Second

Write Request

Read Request



Carefully Dividing Requests
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• Dynamic Spatial Partitioning

• Find requests that belong to contiguous memory regions

• Spatial partitioning uncovers variable-sized time intervals
• Phases with different start times and durations

Dynamic spatial partitioning adapts to 
the memory access behaviour of the 

workload and device.



Modeling Each 
Partition

• Each partition consists 
of a sequence of 
memory requests

• Model each partition 
independently

• Save each partition’s:
• Start time

• Start address

Write Request

Read Request



Modeling Each 
Feature

• Model each feature 
independently

• Features that do not 
change:
• Constant value

• Features that do 
change:
• Markov chain

Write Request

Read Request

Variable operation, stride, and 
delta time. Use Markov chain.

Constant operation, stride, and 
delta time.



Synthesizing Requests

• Each model is used to 
generate requests
• Need initial time and 

address

• Requests pushed into a 
priority queue.
• Ordered by 

timestamp

request

stride op.

Read

size time

request

stride op.

size time
…

Priority Queue

Model Model
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Methodology
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• Proprietary memory access traces from Arm

• CPU, DPU, GPU, VPU devices

• Trace-based simulation with gem5

• Baseline: Arm traces

• Requests sent to main memory over a crossbar



The Memory Controller
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• Four channels

• Each channel has a read and write queue

• Memory requests are dynamically scheduled

• First-ready, first-come first-serve



Model Comparison
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• Perform hierarchical partitioning
• Model each partition with two different approaches
• Configuration: Temporal then Spatial (i.e., 2L-TS)

• 500,000 cycle time intervals

• Mocktails Approach
• Markov chain or Constant value for each feature (i.e., the McC model)

• STM Approach
• A statistical simulation technique for the CPU
• Weighted coin flip for operation feature
• Markov chain with history for stride feature
• Other features use Mocktails approach



Absolute Accuracy of Row Hits
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The STM models for operations and 
strides has higher error on write row hits.



Write Row Hits (DPU)
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Modeling the operation feature is 
important for capturing time-varying 

read/write behaviour.



Average Queue Length
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On average, the time-varying behaviour 
of requests is captured.



Write Queue Length (Manhattan GPU)
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Time-varying behaviour is captured 
overall, not just on average.
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Summary of Results

36

• Mocktails is accurate for CPU, DPU, GPU, and VPU devices

• Black-box models

• Proprietary workloads: 1% error on page hit rates

• SPEC CPU2006: 5.6% error on L1 cache miss rates

• Mocktails profiles are distributable

• 84% smaller than trace files

• Do not include proprietary details



Future Directions

• IP blocks are used 
concurrently.

• Combine Rhythm with 
Mocktails to simulate 
concurrent, 
heterogeneous 
workloads.

Camera ISP

Audio DSP

GPU VPU DPU Display

Memory

Disk



Questions & Answers
Thank you for your time
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