

New Tools for Evaluating Parallel and Heterogeneous Architectures

Mario Badr PhD Departmental Oral Exam Supervisor: Natalie Enright Jerger

Evaluation Techniques Used (1973 – 2017)

Core Counts are Increasing

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

Parallelism Impacts All Layers

Key Contribution for Parallel Architectures

Trend

An increasing number of cores.

Performance is difficult to predict.

Solution

Rhythm: Find the critical path of events in a workload.

Heterogeneity is Increasing

Y. S. Shao, B. Reagen, G. Wei, and D. Brooks, "The Aladdin approach to accelerator design and modeling," IEEE Micro, 2015.

6

Key Contribution for Heterogeneous Architectures

An increasing amount of heterogeneity.

The compute devices are proprietary.

Solution

Mocktails: Black-box modeling of compute devices.

Presentation Outline

Background

Heterogeneity Memory hierarchy Statistical simulation

Mocktails

Modeling Requests Uncovering patterns Synthesizing

Evaluation

Memory controller

Summary of results Future directions

A System-on-Chip

- General-purpose cores (CPU)
- Graphics-Processing Unit (GPU)
- Display-Processing Unit (DPU)
- Video Processing Unit (VPU)

The Intel Penwell SoC

- Mobile SoC from 2012
- 32 nm technology node
- 6 specialized architectures

Significant real estate allocated to accelerators.

Heterogeneous Systems-on-Chip

- Specialized hardware for commonly used workloads
- By the second sec
- More IP blocks = varying demands on memory

Apple SoCs – The Cache Hierarchy

□L1 □L2 □L3

12

Academic research in SoC memory hierarchies.

Proprietary IP blocks increasingly used in SoCs.

Statistical simulation can bridge the gap.

13

Statistical Simulation

Prior Statistical Simulation Techniques

Technique	Timestamp	Address	Operation	Size	
WEST	v				
STM	Prior techniq				
МеТоо	architectu	architectures, but won't work for			
SLAB	heterogeneous compute devices.			~	
HRD	×				
HALO					

Up Next: Mocktails

Background

Heterogeneity Memory hierarchy Statistical simulation

Mocktails

Modeling Requests Uncovering patterns Synthesizing

Evaluation

Conclusion

Memory controller

Su

Summary of results Future directions

Modeling a Memory Request

An Example Workload

- Lots of variability
- Hard to find a pattern in the memory accesses
- We can zoom in

Modeling Addresses		Time 1	Address D	Stride
		Z	A	-12
		3	С	8
 Given a starting 		4	В	-4
address, model the High	variability in st	trides is c	lifficult to	4
strides				0
	moderac	curately.		16896
 Stride models used in 	moderac	eurately. 8	X	-8
 Stride models used in prior art 	moderac	8 9	X Y	16896 -8 4
 Stride models used in prior art 	moderac	8 9 10	X Y A	16896 -8 4 -16884
 Stride models used in prior art 	moderac	8 9 10 11	X Y A Y	16896 -8 4 -16884 16884
 Stride models used in prior art 	moderac	8 9 10 11 12	X Y A Y B	16896 -8 4 -16884 16884 -16880

Temnoral Partitioning		Time	Address	Stride
		1	D	
		2	А	-12
	Time Interval 1	3	С	8
 Divide the sequence of 		4	В	-4
requests in two	ntorval 2 has	high vari	ability in	4
 Two starting add Two stride mode 	stride values.			0
		8	Х	-8
Each partition has	Time Interval 2	9	Y	4
different benaviour		10	А	-16884
		11	Y	16884
 Temporal partitioning used in prior art 		12	В	-16880

			Time	Address	Stride
Spatial Partitioning			1	D	
			2	А	-12
			3	С	8
		Snatial Partition 1	4	В	-4
 Divido roquests into 			5	С	4
separate address	Cnatial	nortitioning r	oduooo th		0
ranges	Spatial	partitioning r	educes tr	ie variance	-8
	in the	stride feature	for both	partitions.	4
 Each partition has different behaviour 					
			Time	Address	Stride
			7	W	
 Spatial partitioning used in prior art But tuned for CPUs 		Spatial Dartition 2	8	Х	-8
		Spatial Partition 2	9	Y	4
			11	Y	0

Partitioning in Two Dimensions

- Temporal: reduces variability in delta times
- Spatial: reduces variability in strides

Write Request

Carefully Dividing Requests

- Dynamic Spatial Partitioning
 - Find reque
 Dynamic spatial partitioning adapts to the memory access behaviour of the workload and device.
- Spatial partitioning uncovers variable-sized time intervals
 - Phases with different start times and durations

Modeling Each Partition

- Each partition consists of a sequence of memory requests
- Model each partition independently
- Save each partition's:
 - Start time
 - Start address

Modeling Each Feature

- Model each feature independently
- Features that do not change:
 - Constant value
- Features that do change:
 - Markov chain

Synthesizing Requests

- Each model is used to generate requests
 - Need initial time and address
- Requests pushed into a priority queue.
 - Ordered by timestamp

Up Next: Evaluation

Background

Heterogeneity Memory hierarchy Statistical simulation

Modeling Requests Uncovering patterns Synthesizing

Evaluation

Conclusion

Mocktails

Memory controller

Summary of results Future directions

Methodology

- Proprietary memory access traces from Arm
 - CPU, DPU, GPU, VPU devices
- Trace-based simulation with gem5
 - Baseline: Arm traces
 - Requests sent to main memory over a crossbar

The Memory Controller

- Four channels
 - Each channel has a read and write queue
- Memory requests are dynamically scheduled
 - First-ready, first-come first-serve

Model Comparison

- Perform hierarchical partitioning
 - Model each partition with two different approaches
 - Configuration: Temporal then Spatial (i.e., 2L-TS)
 - 500,000 cycle time intervals
- Mocktails Approach
 - Markov chain or Constant value for each feature (i.e., the McC model)
- STM Approach
 - A statistical simulation technique for the CPU
 - Weighted coin flip for operation feature
 - Markov chain with history for stride feature
 - Other features use Mocktails approach

Absolute Accuracy of Row Hits

Write Row Hits (DPU)

Write Queue Length (Manhattan GPU)

- - Baseline --- McC ······ STM

Up Next: Conclusion

Background

Heterogeneity Memory hierarchy Statistical simulation

Evaluation

Mocktails

Memory controller

Summary of results Future directions

Summary of Results

- Mocktails is accurate for CPU, DPU, GPU, and VPU devices
 - Black-box models
 - Proprietary workloads: 1% error on page hit rates
 - SPEC CPU2006: 5.6% error on L1 cache miss rates
- Mocktails profiles are distributable
 - 84% smaller than trace files
 - Do not include proprietary details

Future Directions

- IP blocks are used concurrently.
- Combine Rhythm with Mocktails to simulate concurrent, heterogeneous workloads.

Questions & Answers

Thank you for your time