
New Tools for Evaluating Parallel 
and Heterogeneous Architectures

Mario Badr

PhD Departmental Oral Exam

Supervisor: Natalie Enright Jerger

This Photo by Eric Gaba is licensed under CC BY-SA

http://commons.wikimedia.org/wiki/File:Intel_CPU_Pentium_4_640_Prescott_bottom.jpg
https://creativecommons.org/licenses/by-sa/3.0/


Evaluation Techniques Used (1973 – 2017)

2

0
5

10
15
20
25
30
35
40
45
50

1970s 1980s 1990s 2000s 2010s 1970s 1980s 1990s 2000s 2010s 1980s 1990s 2000s 2010s

Analytical Model Simulation Measurement

Pa
p

e
r 

C
o

u
n

t

Simulation is the dominant 
technique used to evaluate designs.



Core Counts are Increasing

0

20

40

60

80

100

2001 2003 2005 2007 2009 2011 2013 2015 2017

N
u

m
b

e
r 

o
f 

C
o

re
s

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

3



Parallelism Impacts All Layers

4

Application

System Software

Hardware

T T T…

C C C
…

Synchronization

Scheduling



Key 
Contribution for 
Parallel 
Architectures

Trend
An increasing 
number of 
cores.

Challenge
Performance 
is difficult to 
predict.

Solution

Rhythm: Find 
the critical 
path of events 
in a workload.

5



Heterogeneity is Increasing

0

10

20

30

40

50

2010 2011 2012 2013 2014 2015 2016 2017

A4 A5 A6 A7 A8 A9 A10 A11

N
u

m
b

e
r 

o
f 

IP
 B

lo
ck

s

Apple SoCs

Y. S. Shao, B. Reagen, G. Wei, and D. Brooks, “The Aladdin approach to accelerator design and modeling,” IEEE Micro, 2015.

6



Key 
Contribution for 
Heterogeneous 
Architectures

Trend
An increasing 
amount of 
heterogeneity.

Challenge
The compute 
devices are 
proprietary.

Solution

Mocktails: 
Black-box 
modeling of 
compute 
devices.

7



Presentation 
Outline

Background
Heterogeneity

Memory hierarchy

Statistical simulation

Mocktails
Modeling Requests

Uncovering patterns

Synthesizing

Evaluation Memory controller

Conclusion
Summary of results

Future directions

8



A System-on-Chip

• General-purpose cores (CPU)

• Graphics-Processing Unit (GPU)

• Display-Processing Unit (DPU)

• Video Processing Unit (VPU)

CPU Cluster

Cache

Interconnection Network(s)

GPU

Cache DPU VPU

Other 
Accelerator

Memory
Main 

Memory
Other 

Accelerator

Compute Memory



The Intel Penwell SoC

• Mobile SoC from 2012

• 32 nm technology node

• 6 specialized architectures

https://doi.org/10.1109/HOTCHIPS.2012.7476498 10

Significant real estate 
allocated to accelerators.



Heterogeneous Systems-on-Chip

11

• Specialized hardware for commonly used workloads

• Spend area to buy performance and energy efficiency

• More IP blocks = varying demands on memory

How do we evaluate the 
memory hierarchy?



Apple SoCs – The Cache Hierarchy

0
1024
2048
3072
4096
5120
6144
7168
8192

A4 A5 A5X A6 A6X A7 A8 A8X A9 A9X A10 A10X A11 A12 A12X

Si
ze

 (
K

B
)

Apple SoC

L1 L2 L3

https://en.wikipedia.org/wiki/Apple-designed_processors

12

Wide variety of cache designs 
from the same vendor.



This Photo by Eva the Weaver is licensed under CC BY-SA-NC

Academic research in SoC 
memory hierarchies.

Proprietary IP blocks 
increasingly used in SoCs.

13

Statistical 
simulation can 
bridge the gap.

https://www.flickr.com/photos/evaekeblad/611546983
https://creativecommons.org/licenses/by-nc-sa/3.0/


Statistical Simulation

Workload

Baseline System

Memory 
Requests

Statistical Profile Other System(s)

Results

Baseline Results

Synthetic 
Requests

Proprietary

❶ Derive profile from real systems.

❷ Use profile to synthetically 
approximate a device.

14

Statistical profiles hide 
proprietary details.



Prior Statistical Simulation Techniques

15

Technique Timestamp Address Operation Size

WEST

STM

MeToo

SLAB

HRD

HALO

Prior techniques are well-tuned for CPU 
architectures, but won’t work for 
heterogeneous compute devices.



Up Next: 
Mocktails

Background
Heterogeneity

Memory hierarchy

Statistical simulation

Mocktails
Modeling Requests

Uncovering patterns

Synthesizing

Evaluation Memory controller

Conclusion
Summary of results

Future directions

16



Modeling a Memory Request

17

Compute Device
Memory 

Component

Timestamp

Address

Size (B) 

Operation

Memory 
Component

Timestamp

Address

Size (B) 

Operation

Memory 
Component

Compute Device

Timestamp

Address

Size (B) 

Operation

Black-box modeling works with filtered 
or unfiltered memory requests.

Industry can pick and choose the 
appropriate level.



An Example Workload

• Lots of variability

• Hard to find a pattern 
in the memory 
accesses

• We can zoom in



Modeling Addresses

• Given a starting 
address, model the 
strides

• Stride models used in 
prior art

Time Address Stride

1 D

2 A -12

3 C 8

4 B -4

5 C 4

6 C 0

7 W 16896

8 X -8

9 Y 4

10 A -16884

11 Y 16884

12 B -16880

High variability in strides is difficult to 
model accurately.



Temporal Partitioning

• Divide the sequence of 
requests in two

• Two starting addresses

• Two stride models

• Each partition has 
different behaviour

• Temporal partitioning 
used in prior art

Time Address Stride

1 D

2 A -12

3 C 8

4 B -4

5 C 4

6 C 0

7 W

8 X -8

9 Y 4

10 A -16884

11 Y 16884

12 B -16880

Time Interval 1

Time Interval 2

Time interval 2 has high variability in 
stride values.



Spatial Partitioning

• Divide requests into 
separate address 
ranges

• Each partition has 
different behaviour

• Spatial partitioning 
used in prior art
• But tuned for CPUs

Time Address Stride

1 D

2 A -12

3 C 8

4 B -4

5 C 4

6 C 0

10 A -8

12 B 4

Time Address Stride

7 W

8 X -8

9 Y 4

11 Y 0

Spatial Partition 1

Spatial Partition 2

Spatial partitioning reduces the variance 
in the stride feature for both partitions.



Partitioning in Two 
Dimensions

• Temporal: reduces 
variability in delta 
times

• Spatial: reduces 
variability in strides

Original Workload Temporal First Spatial Second

Original Workload Spatial First Temporal Second

Write Request

Read Request



Carefully Dividing Requests

23

• Dynamic Spatial Partitioning

• Find requests that belong to contiguous memory regions

• Spatial partitioning uncovers variable-sized time intervals
• Phases with different start times and durations

Dynamic spatial partitioning adapts to 
the memory access behaviour of the 

workload and device.



Modeling Each 
Partition

• Each partition consists 
of a sequence of 
memory requests

• Model each partition 
independently

• Save each partition’s:
• Start time

• Start address

Write Request

Read Request



Modeling Each 
Feature

• Model each feature 
independently

• Features that do not 
change:
• Constant value

• Features that do 
change:
• Markov chain

Write Request

Read Request

Variable operation, stride, and 
delta time. Use Markov chain.

Constant operation, stride, and 
delta time.



Synthesizing Requests

• Each model is used to 
generate requests
• Need initial time and 

address

• Requests pushed into a 
priority queue.
• Ordered by 

timestamp

request

stride op.

Read

size time

request

stride op.

size time
…

Priority Queue

Model Model

16

8



Up Next: 
Evaluation

Background
Heterogeneity

Memory hierarchy

Statistical simulation

Mocktails
Modeling Requests

Uncovering patterns

Synthesizing

Evaluation Memory controller

Conclusion
Summary of results

Future directions

27



Methodology

28

• Proprietary memory access traces from Arm

• CPU, DPU, GPU, VPU devices

• Trace-based simulation with gem5

• Baseline: Arm traces

• Requests sent to main memory over a crossbar



The Memory Controller

29

• Four channels

• Each channel has a read and write queue

• Memory requests are dynamically scheduled

• First-ready, first-come first-serve



Model Comparison

30

• Perform hierarchical partitioning
• Model each partition with two different approaches
• Configuration: Temporal then Spatial (i.e., 2L-TS)

• 500,000 cycle time intervals

• Mocktails Approach
• Markov chain or Constant value for each feature (i.e., the McC model)

• STM Approach
• A statistical simulation technique for the CPU
• Weighted coin flip for operation feature
• Markov chain with history for stride feature
• Other features use Mocktails approach



Absolute Accuracy of Row Hits

31

0

5

10

15

20

CPU DPU GPU VPU

A
ve

ra
ge

 E
rr

o
r 

(%
)

Read Row Hits

McC STM

CPU DPU GPU VPU

Write Row Hits

McC STM

The STM models for operations and 
strides has higher error on write row hits.



Write Row Hits (DPU)

32

0

2000

4000

6000

8000

10000

Linear FBC Tiled FBC

N
u

m
b

e
r 

o
f 

H
it

s

Baseline McC STM

Modeling the operation feature is 
important for capturing time-varying 

read/write behaviour.



Average Queue Length

33

0

5

10

15

20

25

30

CPU DPU GPU VPU

A
ve

ra
ge

 L
en

gt
h

Read Queue

Baseline McC STM

CPU DPU GPU VPU

Write Queue

Baseline McC STM

On average, the time-varying behaviour 
of requests is captured.



Write Queue Length (Manhattan GPU)

34

0

5000

10000

15000

20000

25000

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63

C
o

u
n

t

Queue Length Seen by a Request

Channel 0

Baseline McC STM

Time-varying behaviour is captured 
overall, not just on average.



Up Next: 
Conclusion

Background
Heterogeneity

Memory hierarchy

Statistical simulation

Mocktails
Modeling Requests

Uncovering patterns

Synthesizing

Evaluation Memory controller

Conclusion
Summary of results

Future directions

35



Summary of Results

36

• Mocktails is accurate for CPU, DPU, GPU, and VPU devices

• Black-box models

• Proprietary workloads: 1% error on page hit rates

• SPEC CPU2006: 5.6% error on L1 cache miss rates

• Mocktails profiles are distributable

• 84% smaller than trace files

• Do not include proprietary details



Future Directions

• IP blocks are used 
concurrently.

• Combine Rhythm with 
Mocktails to simulate 
concurrent, 
heterogeneous 
workloads.

Camera ISP

Audio DSP

GPU VPU DPU Display

Memory

Disk



Questions & Answers
Thank you for your time


	Slide 1: New Tools for Evaluating Parallel and Heterogeneous Architectures
	Slide 2: Evaluation Techniques Used (1973 – 2017)
	Slide 3: Core Counts are Increasing
	Slide 4: Parallelism Impacts All Layers
	Slide 5: Key Contribution for Parallel Architectures
	Slide 6: Heterogeneity is Increasing
	Slide 7: Key Contribution for Heterogeneous Architectures
	Slide 8: Presentation Outline
	Slide 9: A System-on-Chip
	Slide 10: The Intel Penwell SoC
	Slide 11: Heterogeneous Systems-on-Chip
	Slide 12: Apple SoCs – The Cache Hierarchy
	Slide 13
	Slide 14: Statistical Simulation
	Slide 15: Prior Statistical Simulation Techniques
	Slide 16: Up Next: Mocktails
	Slide 17: Modeling a Memory Request
	Slide 18: An Example Workload
	Slide 19: Modeling Addresses
	Slide 20: Temporal Partitioning
	Slide 21: Spatial Partitioning
	Slide 22: Partitioning in Two Dimensions
	Slide 23: Carefully Dividing Requests
	Slide 24: Modeling Each Partition
	Slide 25: Modeling Each Feature
	Slide 26: Synthesizing Requests
	Slide 27: Up Next: Evaluation
	Slide 28: Methodology
	Slide 29: The Memory Controller
	Slide 30: Model Comparison
	Slide 31: Absolute Accuracy of Row Hits
	Slide 32: Write Row Hits (DPU)
	Slide 33: Average Queue Length
	Slide 34: Write Queue Length (Manhattan GPU)
	Slide 35: Up Next: Conclusion
	Slide 36: Summary of Results
	Slide 37: Future Directions
	Slide 38: Questions & Answers

