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Introduction:
¢ Traditional MCMC methods (e.g., Gauss-Metropolis, HMC) assume the
target distribution is over a Euclidean space
* However, many problems exist which are most naturally characterized over
a non-linear manifold
* Sampling from posteriors that arise in such problems has typically required
the derivation of posterior-specific sampling schemes

Contributions:

¢ Here we derive an MCMC scheme based on Hamiltonian dynamics on an
implicitly defined manifold M = {q € R"|c(¢q) = 0}

* We prove that, subject to suitable conditions, the Markov Chain converges
to the target posterior 7r(q)

* We present constrained variants of several MCMC methods including:
Gauss-Metropolis, Hamiltonian (and Langevin) Monte Carlo and Riemann
Manifold HMC [6]

¢ These algorithms are demonstrated on a range of problems including:

o Sampling from a linearly constrained Gaussian distribution
o Sampling from the Bingham-von Mises-Fisher distribution over §™
o Bayesian matrix factorization for collaborative filtering
o Human pose estimation
¢ Matlab code available from: http://www.cs.toronto.edu/~mbrubake/

Previous Work:
¢ Similar methods are commonly used in molecular dynamics to compute the
free energy of a constrained system (eg, [1-3])
¢ Gibbs samplers have been derived for some distributions (eg, [4]) but even
those specialized methods are outperformed by methods presented here

Simulation of constrained Hamiltonian systems
* Need a symplectic, consistent and symmetric integration method on M
* Generalized RATTLE Algorithm (see [5] for details and other options)
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* If M = R™ and the mass matrix is constant, RATTLE reduces to Leapfrog

Instances of Constrained HMC:
* Gauss-Metropolis with covariance ¥ can expressed as HMC with U(q) =0
and M(q) = X~L Constrained Gauss-Metropolis is thus similarly defined.
* Constrained Langevin Monte Carlo arises with L = 1
* Constrained Riemann Manifold HMC [6] arises for suitable choices of M (q)

Theoretical Result:

* Assume that M = {gq € R"|c(q) = 0} is connected, smooth and
differentiable with C'(¢q) = %2 full-rank everywhere and the target
posterior 7(q) is strictly positive on M

* Given:

v' a mass matrix M (q) which is positive definite on M

Experimental Results:
* Gaussian distribution in a linear subspace
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* Collaborative filtering m = v,(&Y) x v,(RM) x R" (U8, V) [] cxp(
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symmetric, locally accessible, consistent with the Simulation
Hamiltonian? , and symplectic on the co-tangent bundle

TM = {(p,q)|c(q) =0and C(q) 3 (p,q) = 0}
* Theorem: For all ¢qo € M
Jim 70 =) = ()] =0

where T"(go — ) denotes n steps of the Markov transition kernel of the
Constrained Hamiltonian Monte Carlo algorithm

Constrained Hamiltonian Monte Carlo:
¢ Input: qo, M(q), h, L, n(q), U(q)
* Define:
o Co-tangent Projection:
P(q) =1 - M(q)"C(q)" (C(a)M(q) ' M(q)"C(q)") ™ Clg)M(q) "
o Acceptance Hamiltonian:
H(p,q) = 5" M(q)"'p + 3 log [27P ()T M (q)P(q)| — log 7 (q)
o Simulation Hamiltonian:

H(p,q) = sp"M(q)"'p+Ulq)

1. po~N(0,M(q)), po+ Plqo)ps

2. Fori=1,...,L, (pi,q) < @7 (pi-1,qi-1)

3. With probabilitymin {1, exp(#(po, ¢0) — H(pr.q1))}
o Return qp,

4. Else
o Return qo

* Human pose estimation
o Pose is a set of 3D joint positions |
o Manifold is induced by the limb length o
constraints of the skeleton i
o Posterior combines noisy 2D joint projections
with a PCA based prior model of pose
o Compared with direct optimization for
different levels of noise
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