
Lost! Leveraging the Crowd for
Probabilistic Visual Self-Localization

Marcus A. Brubaker (Toyota Technological Institute at Chicago)
Andreas Geiger (Karlsruhe Institute of Technology & MPI Tübingen)
Raquel Urtasun (Toyota Technological Institute at Chicago)

1

1Thursday, July 18, 2013



Introduction

‣ Localization is crucial for autonomous systems
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Introduction

‣ GPS has limitations in terms of reliability and 
availability

‣ Place recognition techniques use image 
features and a database of previously 
collected images
‣ [Dellaert et al, ICRA 1999; Thrun et al, AI 2001; Hays and 

Efros, CVPR 2008; Schindler et al, CVPR 2008; Crandall et al, 
WWW 2009; Kalogerakis et al, ICCV 2009]

‣ We develop an inexpensive technique for 
localizing to ~3m in unseen regions
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Introduction

‣ Humans are able to use a map, 
combined with visual input and 
exploration, to localize effectively

‣ Detailed, community developed maps 
are freely available (OpenStreetMap)

How can we exploit maps, combined with 
visual cues, to localize a vehicle?
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Probabilistic Localization using Visual Odometry

‣ Visual odometry provides a strong source of information for localization

5

[Geiger et al, IV 2011]

‣ Visual odometry has some issues

‣ Over short time periods it can 
be noisy and highly ambiguous 

‣ Over long time periods it drifts 
when integrated

‣ We adopt a probabilistic approach 
to represent and maintain this 
uncertainty
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Probabilistic Localization using Visual Odometry

‣ Maps can be considered as a graph

‣ Nodes of the graph represent 
street segments

‣ Edges represent intersections and 
allowed transitions between these 
segments

‣ Position is defined by the current 
street and the distance travelled,   , 
and orientation,   , on that street
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Probabilistic Localization using Visual Odometry

‣ The complete state includes

‣ the current street segment     , and

‣ the current and previous position and orientation 
on the street segment,          

‣ Odometry observations

‣ Localization is formulated as posterior inference

ut

st = (dt, θt, dt−1, θt−1)
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p(ut, st|y1:t)
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State Transition Previous Posterior

∝ p(yt|ut, st)
�

ut−1

�
p(ut|ut−1, st−1)p(st|ut, ut−1, st−1)p(ut−1, st−1|y1:t−1)dst−1

y1:t = (y1, . . . ,yt)

Street Segment 
Transition

Pose Transition
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Probabilistic Localization using Visual Odometry

‣ Likelihood:

8

‣ Parameters (e.g., variances) estimated from data

‣ Model is nearly Gauss-Linear which we exploit to derive a custom inference 
algorithm

‣ Pose transition:

‣ Street segment transition: Length of street 
segment     ut−1
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yt = Mst + η

st = Ast−1 + b+ ζ ζ ∼ N (0,Σs)

η ∼ N (0,Σy)
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Probabilistic Localization using Visual Odometry

‣ To represent the posterior we factorize it

‣ The posterior over pose is represented with a Mixture of Gaussians for 
each street segment

‣ We’ve derived a general algorithm for simplifying mixture models and do 
this periodically to reduce computation

p(st|ut,y1:t) =

Nut�

i=1

π(i)
ut
N

�
st|µ(i)

ut
,Σ(i)

ut

�

p(ut, st|y1:t) = p(st|ut,y1:t)p(ut|y1:t)
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Posterior over pose,
given the street segment

Discrete distribution
over street segments
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Vision meets Robotics: The KITTI Dataset
Andreas Geiger, Philip Lenz, Christoph Stiller and Raquel Urtasun

Abstract—We present a novel dataset captured from a VW
station wagon for use in mobile robotics and autonomous driving
research. In total, we recorded 6 hours of traffic scenarios at
10-100 Hz using a variety of sensor modalities such as high-
resolution color and grayscale stereo cameras, a Velodyne 3D
laser scanner and a high-precision GPS/IMU inertial navigation
system. The scenarios are diverse, capturing real-world traffic
situations and range from freeways over rural areas to inner-
city scenes with many static and dynamic objects. Our data is
calibrated, synchronized and timestamped, and we provide the
rectified and raw image sequences. Our dataset also contains
object labels in the form of 3D tracklets and we provide online
benchmarks for stereo, optical flow, object detection and other
tasks. This paper describes our recording platform, the data
format and the utilities that we provide.

Index Terms—dataset, autonomous driving, mobile robotics,
field robotics, computer vision, cameras, laser, GPS, benchmarks,
stereo, optical flow, SLAM, object detection, tracking, KITTI

I. INTRODUCTION

The KITTI dataset has been recorded from a moving plat-
form (Fig. 1) while driving in and around Karlsruhe, Germany
(Fig. 2). It includes camera images, laser scans, high-precision
GPS measurements and IMU accelerations from a combined
GPS/IMU system. The main purpose of this dataset is to
push forward the development of computer vision and robotic
algorithms targeted to autonomous driving [1]–[7]. While our
introductory paper [8] mainly focuses on the benchmarks,
their creation and use for evaluating state-of-the-art computer
vision methods, here we complement this information by
providing technical details on the raw data itself. We give
precise instructions on how to access the data and comment
on sensor limitations and common pitfalls. The dataset can
be downloaded from http://www.cvlibs.net/datasets/kitti. For
a review on related work, we refer the reader to [8].

II. SENSOR SETUP

Our sensor setup is illustrated in Fig. 3:
• 2 × PointGray Flea2 grayscale cameras (FL2-14S3M-C),

1.4 Megapixels, 1/2” Sony ICX267 CCD, global shutter
• 2 × PointGray Flea2 color cameras (FL2-14S3C-C), 1.4

Megapixels, 1/2” Sony ICX267 CCD, global shutter
• 4 × Edmund Optics lenses, 4mm, opening angle ∼ 90◦,

vertical opening angle of region of interest (ROI) ∼ 35◦

• 1 × Velodyne HDL-64E rotating 3D laser scanner, 10 Hz,
64 beams, 0.09 degree angular resolution, 2 cm distance
accuracy, collecting ∼ 1.3 million points/second, field of
view: 360◦ horizontal, 26.8◦ vertical, range: 120 m

A. Geiger, P. Lenz and C. Stiller are with the Department of Measurement
and Control Systems, Karlsruhe Institute of Technology, Germany. Email:
{geiger,lenz,stiller}@kit.edu

R. Urtasun is with the Toyota Technological Institute at Chicago, USA.
Email: rurtasun@ttic.edu

Fig. 1. Recording Platform. Our VW Passat station wagon is equipped
with four video cameras (two color and two grayscale cameras), a rotating
3D laser scanner and a combined GPS/IMU inertial navigation system.

• 1 × OXTS RT3003 inertial and GPS navigation system,
6 axis, 100 Hz, L1/L2 RTK, resolution: 0.02m / 0.1◦

Note that the color cameras lack in terms of resolution due
to the Bayer pattern interpolation process and are less sensitive
to light. This is the reason why we use two stereo camera
rigs, one for grayscale and one for color. The baseline of
both stereo camera rigs is approximately 54 cm. The trunk
of our vehicle houses a PC with two six-core Intel XEON
X5650 processors and a shock-absorbed RAID 5 hard disk
storage with a capacity of 4 Terabytes. Our computer runs
Ubuntu Linux (64 bit) and a real-time database [9] to store
the incoming data streams.

III. DATASET

The raw data described in this paper can be accessed from
http://www.cvlibs.net/datasets/kitti and contains ∼ 25% of our
overall recordings. The reason for this is that primarily data
with 3D tracklet annotations has been put online, though we
will make more data available upon request. Furthermore, we
have removed all sequences which are part of our benchmark
test sets. The raw data set is divided into the categories ’Road’,
’City’, ’Residential’, ’Campus’ and ’Person’. Example frames
are illustrated in Fig. 5. For each sequence, we provide the raw
data, object annotations in form of 3D bounding box tracklets
and a calibration file, as illustrated in Fig. 4. Our recordings
have taken place on the 26th, 28th, 29th, 30th of September
and on the 3rd of October 2011 during daytime. The total size
of the provided data is 180 GB.

Experiments

‣ We used the Visual Odometry sequences from the 
KITTI dataset [Geiger et al, CVPR 2012]

‣ Video captured from car-mounted cameras 

‣ 11 sequences captured in a variety of settings 
(e.g., urban, highway, rural, etc)

‣ Monocular and Stereo visual odometry 
computed using LIBVISO2 [Geiger et al, IV 2011]

‣ Errors computed in position and heading

‣ Parallelized implementation runs at frame rate on 
average on 16 cores
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Experiments
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Accuracy: 2.1m/1.2°
Localization Time: 21s
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Experiments
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Accuracy: 2.4m/1.2°
Localization Time: 81s
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Experiments: Quantitative Results
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Average Stereo Odometry Monocular Odometry Map Projection

Position Error

Heading Error

Localization Time

3.1m 18.4m 1.4m

1.3° 3.6° -

36s 62s -
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Experiments: Ambiguous Sequences
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Experiments: Initial Map Size
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Initial Map Size (km of road)
50.010.02.0
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Experiments: Full City Maps
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Experiments: Full City Maps
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Conclusions

‣ Fast, accurate map-based localization using only visual odometry

‣ Accuracy of 3.1m/1.3° in 36 seconds of driving time on average

‣ Highly parallelizable, runs at real-time on average w/ 16 cores

‣ Code will be available: http://www.cs.toronto.edu/~mbrubake

‣ Future work

‣ Exploiting other map information, e.g., landmarks, speed limits

‣ Integration of other sensors, e.g., accelerometers
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