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5 Basic Probability Theory

Probability theory addresses the following fundamental question: how do we reason? Reasoning

is central to many areas of human endeavor, including philosophy (what is the best way to make

decisions?), cognitive science (how does the mind work?), artificial intelligence (how do we build

reasoning machines?), and science (how do we test and develop theories based on experimental

data?). In nearly all real-world situations, our data and knowledge about the world is incomplete,

indirect, and noisy; hence, uncertainty must be a fundamental part of our decision-making pro-

cess. Bayesian reasoning provides a formal and consistent way to reasoning in the presence of

uncertainty; probabilistic inference is an embodiment of common sense reasoning.

The approach we focus on here is Bayesian. Bayesian probability theory is distinguished by

defining probabilities as degrees-of-belief. This is in contrast to Frequentist statistics, where the

probability of an event is defined as its frequency in the limit of an infinite number of repeated

trials.

5.1 Classical logic

Perhaps the most famous attempt to describe a formal system of reasoning is classical logic, origi-

nally developed by Aristotle. In classical logic, we have some statements that may be true or false,

and we have a set of rules which allow us to determine the truth or falsity of new statements. For

example, suppose we introduce two statements, named A and B:

A ≡ “My car was stolen”

B ≡ “My car is not in the parking spot where I remember leaving it”

Moreover, let us assert the rule “A implies B”, which we will write as A → B. Then, if A is

known to be true, we may deduce logically that B must also be true (if my car is stolen then it

won’t be in the parking spot where I left it). Alternatively, if I find my car where I left it (“B is

false,” written B̄), then I may infer that it was not stolen (Ā) by the contrapositive B̄ → Ā.

Classical logic provides a model of how humans might reason, and a model of how we might

build an “intelligent” computer. Unfortunately, classical logic has a significant shortcoming: it

assumes that all knowledge is absolute. Logic requires that we know some facts about the world

with absolute certainty, and then, we may deduce only those facts which must follow with absolute

certainty.

In the real world, there are almost no facts that we know with absolute certainty — most of

what we know about the world we acquire indirectly, through our five senses, or from dialogue with

other people. One can therefore conclude that most of what we know about the world is uncertain.

(Finding something that we know with certainty has occupied generations of philosophers.)

For example, suppose I discover that my car is not where I remember leaving it (B). Does

this mean that it was stolen? No, there are many other explanations — maybe I have forgotten

where I left it or maybe it was towed. However, the knowledge of B makes A more plausible

— even though I do not know it to be stolen, it becomes more likely a scenario than before. The
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actual degree of plausibility depends on other contextual information — did I park it in a safe

neighborhood?, did I park it in a handicapped zone?, etc.

Predicting the weather is another task that requires reasoning with uncertain information.

While we can make some predictions with great confidence (e.g. we can reliably predict that it

will not snow in June, north of the equator), we are often faced with much more difficult questions

(will it rain today?) which we must infer from unreliable sources of information (e.g., the weather

report, clouds in the sky, yesterday’s weather, etc.). In the end, we usually cannot determine for

certain whether it will rain, but we do get a degree of certainty upon which to base decisions and

decide whether or not to carry an umbrella.

Another important example of uncertain reasoning occurs whenever you meet someone new —

at this time, you immediately make hundreds of inferences (mostly unconscious) about who this

person is and what their emotions and goals are. You make these decisions based on the person’s

appearance, the way they are dressed, their facial expressions, their actions, the context in which

you meet, and what you have learned from previous experience with other people. Of course, you

have no conclusive basis for forming opinions (e.g., the panhandler you meet on the street may

be a method actor preparing for a role). However, we need to be able to make judgements about

other people based on incomplete information; otherwise, normal interpersonal interaction would

be impossible (e.g., how do you really know that everyone isn’t out to get you?).

What we need is a way of discussing not just true or false statements, but statements that have

varying levels of certainty. In addition, we would like to be able to use our beliefs to reason about

the world and interpret it. As we gain new information, our beliefs should change to reflect our

greater knowledge. For example, for any two propositions A and B (that may be true or false), if

A → B, then strong belief in A should increase our belief in B. Moreover, strong belief in B may

sometimes increase our belief in A as well.

5.2 Basic definitions and rules

The rules of probability theory provide a system for reasoning with uncertainty.There are a number

of justifications for the use of probability theory to represent logic (such as Cox’s Axioms) that

show, for certain particular definitions of common-sense reasoning, that probability theory is the

only system that is consistent with common-sense reasoning. We will not cover these here (see,

for example, Wikipedia for discussion of the Cox Axioms).

The basic rules of probability theory are as follows.

• The probability of a statement A — denoted P (A) — is a real number between 0 and

1, inclusive. P (A) = 1 indicates absolute certainty that A is true, P (A) = 0 indicates

absolute certainty that A is false, and values between 0 and 1 correspond to varying degrees

of certainty.

• The joint probability of two statements A and B — denoted P (A,B) — is the probability

that both statements are true. (i.e., the probability that the statement “A ∧ B” is true).

(Clearly, P (A,B) = P (B,A).)
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• The conditional probability of A given B — denoted P (A|B) — is the probability that

we would assign to A being true, if we knew B to be true. The conditional probability is

defined as P (A|B) = P (A,B)/P (B).

• The Product Rule:

P (A,B) = P (A|B)P (B) (1)

In other words, the probability that A and B are both true is given by the probability that B is

true, multiplied by the probability we would assign to A if we knew B to be true. Similarly,

P (A,B) = P (B|A)P (A). This rule follows directly from the definition of conditional

probability.

• The Sum Rule:

P (A) + P (Ā) = 1 (2)

In other words, the probability of a statement being true and the probability that it is false

must sum to 1. In other words, our certainty that A is true is in inverse proportion to our

certainty that it is not true. A consequence: given a set of mutually-exclusive statements Ai,

exactly one of which must be true, we have

∑

i

P (Ai) = 1 (3)

• All of the above rules can be made conditional on additional information. For example,

given an additional statement C, we can write the Sum Rule as:

∑

i

P (Ai|C) = 1 (4)

and the Product Rule as

P (A,B|C) = P (A|B,C)P (B|C) (5)

From these rules, we further derive many more expressions to relate probabilities. For example,

one important operation is called marginalization:

P (B) =
∑

i

P (Ai,B) (6)

if Ai are mutually-exclusive statements, of which exactly one must be true. In the simplest case

— where the statement A may be true or false — we can derive:

P (B) = P (A,B) + P (Ā,B) (7)
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The derivation of this formula is straightforward, using the basic rules of probability theory:

P (A) + P (Ā) = 1, Sum rule (8)

P (A|B) + P (Ā|B) = 1, Conditioning (9)

P (A|B)P (B) + P (Ā|B)P (B) = P (B), Algebra (10)

P (A,B) + P (Ā,B) = P (B), Product rule (11)

Marginalization gives us a useful way to compute the probability of a statement B that is inter-

twined with many other uncertain statements.

Another useful concept is the notion of independence. Two statements are independent if and

only if P (A,B) = P (A)P (B). If A and B are independent, then it follows that P (A|B) = P (A)
(by combining the Product Rule with the defintion of independence). Intuitively, this means that,

whether or not B is true tells you nothing about whether A is true.

In the rest of these notes, I will always use probabilities as statements about variables. For

example, suppose we have a variable x that indicates whether there are one, two, or three people

in a room (i.e., the only possibilities are x = 1, x = 2, x = 3). Then, by the sum rule, we can

derive P (x = 1) + P (x = 2) + P (x = 3) = 1. Probabilities can also describe the range of a real

variable. For example, P (y < 5) is the probability that the variable y is less than 5. (We’ll discuss

continuous random variables and probability densities in more detail in the next chapter.)

To summarize:

The basic rules of probability theory:

• P (A) ∈ [0...1]
• Product rule: P (A,B) = P (A|B)P (B)
• Sum rule: P (A) + P (Ā) = 1
• Two statements A and B are independent iff: P (A,B) = P (A)P (B)
• Marginalizing: P (B) =

∑

i P (Ai,B)
• Any basic rule can be made conditional on additional information.

For example, it follows from the product rule that P (A,B|C) = P (A|B,C)P (B|C)

Once we have these rules — and a suitable model — we can derive any probability that we

want. With some experience, you should be able to derive any desired probability (e.g., P (A|C))
given a basic model.

5.3 Discrete random variables

It is convenient to describe systems in terms of variables. For example, to describe the weather,

we might define a discrete variable w that can take on two values sunny or rainy, and then try to

determine P (w = sunny), i.e., the probability that it will be sunny today. Discrete distributions

describe these types of probabilities.

As a concrete example, let’s flip a coin. Let c be a variable that indicates the result of the flip:

c = heads if the coin lands on its head, and c = tails otherwise. In this chapter and the rest of
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these notes, I will use probabilities specifically to refer to values of variables, e.g., P (c = heads)
is the probability that the coin lands heads.

What is the probability that the coin lands heads? This probability should be some real number

θ, 0 ≤ θ ≤ 1. For most coins, we would say θ = .5. What does this number mean? The number θ
is a representation of our belief about the possible values of c. Some examples:

θ = 0 we are absolutely certain the coin will land tails

θ = 1/3 we believe that tails is twice as likely as heads

θ = 1/2 we believe heads and tails are equally likely

θ = 1 we are absolutely certain the coin will land heads

Formally, we denote the probability of the coin coming up heads as P (c = heads), so P (c =
heads) = θ. In general, we denote the probability of a specific event event as P (event). By the

Sum Rule, we know P (c = heads) + P (c = tails) = 1, and thus P (c = tails) = 1− θ.

Once we flip the coin and observe the result, then we can be pretty sure that we know the value

of c; there is no practical need to model the uncertainty in this measurement. However, suppose

we do not observe the coin flip, but instead hear about it from a friend, who may be forgetful or

untrustworthy. Let f be a variable indicating how the friend claims the coin landed, i.e. f = heads

means the friend says that the coin came up heads. Suppose the friend says the coin landed heads

— do we believe him, and, if so, with how much certainty? As we shall see, probabilistic reasoning

obtains quantitative values that, qualitatively, matches our common sense very effectively.

Suppose we know something about our friend’s behaviour. We can represent our beliefs with

the following probabilities, for example, P (f = heads|c = heads) represents our belief that the

friend says “heads” when the the coin landed heads. Because the friend can only say one thing, we

can apply the Sum Rule to get:

P (f = heads|c = heads) + P (f = tails|c = heads) = 1 (12)

P (f = heads|c = tails) + P (f = tails|c = tails) = 1 (13)

If our friend always tells the truth, then we know P (f = heads|c = heads) = 1 and P (f =
tails|c = heads) = 0. If our friend usually lies, then, for example, we might have P (f = heads|c =
heads) = .3.

5.4 Binomial and Multinomial distributions

A binomial distribution is the distribution over the number of positive outcomes for a yes/no (bi-

nary) experiment, where on each trial the probability of a positive outcome is p ∈ [0, 1]. For exam-

ple, for n tosses of a coin for which the probability of heads on a single trial is p, the distribution

over the number of heads we might observe is a binomial distribution. The binomial distribution

over the number of positive outcomes, denoted K, given n trials, each having a positive outcome

with probability p is given by

P (K = k) =

(

n
k

)

pk (1− p)n−k (14)
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for k = 0, 1, . . . , n, where
(

n
k

)

=
n!

k! (n− k)!
. (15)

A multinomial distribution is a natural extension of the binomial distribution to an experiment

with k mutually exclusive outcomes, having probabilities pj , for j = 1, . . . , k. Of course, to be

valid probabilities
∑

pj = 1. For example, rolling a die can yield one of six values, each with

probability 1/6 (assuming the die is fair). Given n trials, the multinomial distribution specifies the

distribution over the number of each of the possible outcomes. Given n trials, k possible outcomes

with probabilities pj , the distribution over the event that outcome j occurs xj times (and of course
∑

xj = n), is the multinomial distribution given by

P (X1 = x1, X2 = x2, . . . , Xk = xk) =
n!

x1! x2! . . . xk!
px1

1
px2

2
. . . pxk

k (16)

5.5 Mathematical expectation

Suppose each outcome ri has an associated real value xi ∈ R. Then the expected value of x is:

E[x] =
∑

i

P (ri)xi . (17)

The expected value of f(x) is given by

E[f(x)] =
∑

i

P (ri)f(xi) . (18)
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