
CSCC11 Assignment 3: Classification and Bayesian Methods

Written Part (5%): due Friday, November 6th, 11am

Question 1: Bayesian Prediction

Suppose you are attending a conference where each person has an ID badge with a number, indicating the order in
which they registered. After seeing a number of people walk by and noting the number on their ID badges, you
wonder how many people are there in total? What ID number is likely to be seen next?

To formalize the problem, we assume that all IDs are numbers from 1 to L, where L is the largest ID number.
Let M be the largest possible value of L. To make things simple, we’ll assume that ID numbers are three digits, so
that M = 999. We assume that all values of L are equally likely, so our prior for L is a uniform distribution from
1 to M . Furthermore, we assume that, when we see a new ID, we are equally likely to see any of the L IDs out
there, so the likelihood of seeing ID number X is also uniform. Our observations will be the ID numbers Xi of the
N people we see go by.

To specify the model, we define

U(Z|A,B) =

{
1

B−A+1 A ≤ Z ≤ B
0 otherwise

(1)

P (L) = U(L|1,M) (the prior) (2)

P (X|L) = U(X|1, L) (the likelihood of a ID number X) (3)

P (X1:N |L) =
N∏
i=1

P (Xi|L) (the likelihood of observing numbers X1:N ) (4)

Additionally, define

Xmax = maxX1:N (5)

to be the largest ID number observed.

1. Write the posterior distribution P (L|X1:N ) using Bayes’ Rule, in terms of the uniform distributions above.
Hints: simplify the numerator first. For the denominator, use the sum rule and the product rule: P (X1:N ) =∑M
i=1 P (X1:N , L = i) =

∑M
i=1 P (X1:N |L = i)P (L = i). How does the denominator relate to the numera-

tor?

2. For what range of values of L will the posterior be non-zero?

3. For the values of L where the posterior is nonzero, simplify the posterior into a function of only L, M , N ,
Xmax, and/or the observations. Hint: begin with the numerator.
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4. Let M = 999 and Xmax = 700. On one set of axes, plot P (L|X1:N ) for N = 1, N = 10, and N = 100.
The horizontal axis of the plot should range from 1 toM . Be sure to label your plot with xlabel, ylabel,
title, and legend. (As a sanity check, make sure that

∑
P (L = i|X1:N ) = 1, otherwise this estimate

won’t be meaningful.)

5. Suppose we want to estimate L from this data. What is the MAP estimate LMAP? Does this estimate seem
intuitive, i.e., is it what a person might do?

6. Another way to determine L is to use the Bayes’ estimate, i.e., the posterior mean,

LBayes = E[L] =
M∑
i=1

i P (L = i|X1:N ) (6)

Compute this numerically for N = 1, N = 10, and N = 100. Do these estimates seem more or less
reasonable than the MAP estimate?

7. A third option is to not estimate L. Suppose we now wish to describe the probability of the next ID number
XN+1 that we might see. Derive a formula for this distribution, i.e., P (XN+1|X1:N ) in terms of the pos-
terior distribution and the distributions from the model. Your derivation should use only the basic rules of
probability theory, i.e., Sum Rule, Product Rule, and Bayes’ Rule. You will also need to make use of the
independence of X’s given L: P (XN+1|L,X1:N ) = P (XN+1|L).

8. Plot, on one set of axes: P (XN+1|LMAP), P (XN+1|LBayes), and P (XN+1|X1:N ), for the case where N =
10, M = 999, and Xmax = 700.

9. Which plot seems most consistent with your intution about the likelihood of the next number, given what
you’ve seen? Suppose you have seen 10 people, with Xmax = 700, and your friend bets you $10 that the
next person will have an ID number less than 750. Do you take the bet? Why or why not?

Question 2: Gaussians

1. Let x̄ = [x1, ..., xD]T be a vector composed of D scalar, independent, zero-mean Gaussian variables {xi},
with variances {σ2

i }. So, the joint density over the variables xi (i.e., the elements of x̄) is the product of their
individual densities. Show that this joint distribution can also be written as a multidimensional Gaussian on
x̄ with mean µ and covariance Σ. Give mathematical expressions for µ and Σ (ie for their elements).

2. Consider the following regression model

y = wTb(x) + n, (7)

where the observation noise n is Gaussian with mean zero and variance σ2, which leads to the following
likelihood

p(y|x,w, σ2) = G(y;wTb(x), σ2) (8)

p(y1:N |x1:N ,w, σ
2) =

N∏
i=1

p(yi|xi,w, σ2). (9)

We define a Gaussian prior on the parameters, with mean v, covariance K (v and K are hyperparameters of
the model):

p(w) = G(w;v,K). (10)
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The hyperparameters v,K, σ are assumed to have a uniform prior, i.e.,

p(v,K, σ) = c, (11)

where c is a constant (we can ignore the finite bounds on their domains here).
It can be shown that the posterior over the weights is given by

p(w | y1:N , x1:N ,v,K, σ
2) =

∏
iG(yi;w

Tb(xi), σ
2) G(w;v,K)

Z
, (12)

where Z is a constant. Moreover, the posterior is still Gaussian

p(w | y1:N , x1:N ,v,K, σ
2) = G(w;µ,Σ) . (13)

Your task is to derive the mean µ and covariance Σ of the new posterior. Hint: (1) A Gaussian can be written
e−(x̄−µ)Σ−1(x̄−µ)/2/Z. Work out the terms of the exponent, completing the square to determine µ and Σ. (2)
See the Bayesian Methods chapter of the course lecture notes for a similar problem.

Submission

Answers to the above questions should be placed in the course assignment drop box by the due date, including
a coverpage with your name and student number clearly indicated. Either hand-written or computer formatted
answers are acceptable, however please make sure that hand-written solutions are legible. Students interested in
producing computer formatted answers are encouraged to investigate the LyX software. For parts that ask you to
plot things, be sure to include printouts of the plots with your written answers.

Programming Part (8%): due Friday, November 13th, 11am

Spam Classification

We will provide a data set of features from email messages (available from the course web site), each of which
corresponds to either a spam email or a valid (“ham”) email. The input is a list of discrete features. The output is
either spam or ham.

The Data: This data set comes from a collection of 5000 personal email messages, 1000 which are used for
the training set, and 4000 for the test set. Each spam message was reduced to 185 binary {0, 1} features. The
text strings associated with these 185 features are included in the feature names variables. Each message is
thus represented by a vector of 185 binary values, i.e., a row in the data train and data train vectors.
Your goal is to learn two classifiers. Each takes a 185-vector and returns a class label. The labels test and
labels train data sets are binary features indicating which of the emails are spam and which are ham. We’ll
leave it to you to figure out whether 0 or 1 indicates spam. (The data are courtesy of Sam Roweis.)

Your Task: Learn classifiers for these datasets using both Naı̈ve Bayes and Logistic Regression. The starter code
includes an implementation of Logistic Regression for you to use, but you will need to implement discrete Naı̈ve
Bayes yourself. You should implement the regularized form of learning for Naı̈ve Bayes, see course notes Section
8.7.
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For each dataset, test with a variety of regularization parameters (e.g., on the weights of the logistic regression,
or on the binomial probabilities as explained in the notes) and plot test-set performance as a function of these
parameters. Use these plots to try to select the best setting for these regularizatino parameters. Then, for each of
the two methods using the best regularization parameter settings, show a list of the 10 features most indicative of a
message being spam, and the 10 features most indicative of ham, along with their weights in the classifier.

MATLAB hints: You can use the find command to separate the training sets, e.g.,
data train(find(labels train==0),:)
will give you all the data from class 0. You can use the sort command to find the highest and lowest weights, and
then get the corresponding indices from the list of labels.

Submission

Your paper copy should include a coversheet with the course number, assignment number, your name, student num-
ber and mathlab username. Hand in any written or formatted work for the assignment using the course assignment
drop box, by the due date. For the electronic version of your solution, create a tar file comprising all Matlab scripts
and function files (but not the dataset directory). Call the tar file A3.tar, and submit it according to instructions
on the course web site (again, by the due date).
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