
CSCC11 Machine Learning and Data Mining, Fall 2015

Assignment 4: Principal Components Analysis (13%)

Due Monday, November 30th, 5:00pm

This assignment involves some programming and some thinking. Mainly, your job is to write the code
we ask for in a script called EyeDetector.m. You will also write a report. Your report should address
any discussion or comments requested of you in the assignment requirements below. It should also
include any plots or images requested below, as well as any plots or images that help to explain or
justify your comments in the report. Please submit a hardcopy of your report in the C11 drop-box.
Also please create and submit a tar file named A4.tar that includes your report and all Matlab files
required to run your script (please don’t include the training and test data).

Note: the deadline for this assignment is hard. There can be no late submissions and there
will be absolutely no extensions or exceptions. Any student whose submission is not received by
the deadline will be given a zero for this assignment!

Introduction. Suppose you are asked to build an algorithm to find eyes in images. A digital image
is a two-dimensional array of pixel elements (called pixels) that represents brightness or color. Even
small images are high-dimensional objects since the number of rows and columns is typically 1000
or more. For this reason, dimensionality reduction is a common precursor to learning models for
detecting specific objects in images.

In this assignment you are given two sets of small image patches. One set contains images of eyes.
The other is a random set of image patches which are not eyes (called non-eyes). Here is a typical eye
and non-eye images.

Eye Image Noneye Image

The first goal is to perform PCA on these two image ensembles. Your next main goal is to build
a PCA-based classifier capable of distinguishing between eye and non-eye images. You will also
compare the performance of this classifier against kNN on the original data, and kNN applied to the
low-dimensional PCA representations of the images.

To get started, download the starter file from the course web site. In the file you will find EyeDetector.m.
This Matlab script provides detailed instructions on what you need to implement (also outlined be-
low). It also specifies a list of printouts and questions that you should include in your report. This
assignment also makes use of several helper functions to perform kNN (so you do not need to im-
plement kNN). The first section of EyeDetector.m shows a kNN classifier applied to the original
training and testing images.

Note: Your printouts and analysis are worth a significant portion of the marks, so be sure to include
all required results. And comment on all the questions below and contained in EyeDetector.m.



Your Task

1. PCA. As described in the comments of EyeDetector.m, your first task is to apply PCA to
the eye image ensemble and to the non-eye ensemble.

(a) Compute the averages of the eye and non-eye images. Print these out (as images) for your
report.

(b) Subtract the means from the training images, calculate the two covariance matrices, and
then calculate their eigenvectors and eigenvalues. (See Matlab function eig).

(c) Sort the eigenvectors based on their associated eigenvalues. Print out the leading 5 eigen-
vectors (as images) for your report.

(d) The number of PCA basis images to use is given by PCAcomp in EyeDetector.m).
Place these PCA basis images (the eigenvectors) into two arrays called eyeVec and
noneyeVec. These matrices have N rows, and PCAcomp columns.

(e) Project each of the test images onto both of the eye and non-eye model matrices. That
is, as described in EyeDetector.m, project each test image onto each of the two PCA
subspaces. This yields low-dimensional PCA subspace coefficients for the model of eye
images, and for the model of non-eye images.

(f) Compute the PCA subspace coefficients for each training image projected onto each of the
two PCA subspace models.

2. Compute Classification Rates for a kNN Classifier. Compute the correct classification rate,
and the false-positive rate for the kNN classifier based on the low-dimensional PCA repre-
sentations and compare with these results to those based on the original high-dimensional data
(already computed for you earlier in EyeDetector.m). Are the results better or worse? Why?

3. PCA Classifier based on Reconstruction Errors. Given a point in the low-dimensional PCA
subspace, one can use the generative model to reconstruct the corresponding image (i.e., by
multiplying the basis matrix with the low-dimensional subspace coefficients and then adding the
mean image). If an image reconstructed from the eye subspace model is closer to the original
image than that from the noneye model, we’ll conclude that the image is an eye image.

From the eye and non-eye coefficients of each test image, reconstruct two images, one from the
eye model and one from the non-eye model. Then, compute the mean squared-errors for each of
the two reconstructions. The classification decision is based on the ratio of mean squared errors.

Print the correct classification rate and the false positive rate for this classifier, and compare them
to the low-dimensional kNN classifier. Do this for models with different subspace dimensions;
use PCAcomp equal to 5, 10, 15, 25 and 50. Plot graphs of the correct classification rates vs the
number of PCA components for the two types of classifier. Do the same for the false-positive
rate vs the number of PCA components.

Questions

• Which classifier gives the overall best performance?

• What conclusions can you draw about the usefulness of dimensionality reduction?

• Which classifier would you use on a large training set consisting of high-dimensional data?

• Which classifier would you use on a large training set of low-dimensional (e.g. 4D) data? Why?



Bonus Question

For bonus marks in the course (up to 3%), implement another approach to classification which works
better. It can be any method discussed in class or in the notes which is substantially different that the
ones used here. However, you must implement it yourself. Analyze the results about how well the
method works relative to these and why. Include the code in your electronic submission and include
a separate report on the method with your report.


