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ABSTRACT
Algorithms processing data from wearable sensors promise 
to more accurately predict  risks of falling – a significant 
concern  for  older  adults.  Substantial  engineering  work  is 
dedicated  to  increasing  the  prediction  accuracy  of  these 
algorithms;  yet  fewer  efforts  are  dedicated  to  better 
engaging  users  through  interactive  visualizations  in 
decision-making  using  these  data.  We  present  an 
investigation of the acceptance of a sensor-based fall risk 
assessment  wearable  device.  A participatory  design  was 
employed  to  develop  a  mobile  interface  providing 
visualizations of sensor data and algorithmic assessments of 
fall  risks.  We  then  investigated  the  acceptance  of  this 
interface and its potential to motivate behavioural changes 
through  a  field  deployment,  which  suggested  that  the 
interface  and  its  belt-mounted  wearable  sensors  are 
perceived  as  usable.  We  also  found  that  providing 
contextual  information  for  fall  risk  estimation  combined 
with  relevant  practical  fall  prevention  instructions  may 
facilitate  the  acceptance  of  such  technologies,  potentially 
leading to behaviour change.
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INTRODUCTION
Falls are the leading cause of injuries among seniors. Each 
year  approximately  20% to 30% of  seniors  aged  65 and 
over experience a fall  [45].  The outcome of a  fall  varies 
from a scratch to a fractured hip, and it may even lead to 
direct death in some cases. A fall not only physically harms 
the senior, but also causes a tremendous mental burden that 
leads  to  fear  of  falling,  reduction  in  activity,  and  even 
greater isolation [2,41]. The direct annual costs associated 
with  falls  were  estimated  in  2010  to  be  $8.7  billion  in 

Canada alone [39]. This has lead to a significant demand for 
feasible and affordable technological solutions. 

The  goal  of  such  technological  interventions  is  to  help 
seniors  maintain  independent  living  and  reduce  the 
associated cost  in terms of  medical  treatment  and human 
resources. In the research community, fall detection is the 
most  studied  technique  for  tackling  falls.  Reliable  fall 
detection systems can provide assistance to seniors after a 
fall has occurred, such as prompt response and minimizing 
post-fall  damage.  However,  these systems do not prevent 
falls from happening in the first place. A proactive approach 
would  be  more  valuable  in  terms  of  avoiding  falls  and 
reducing associated medical cost.

Our  work  focuses  on  sensor-based  fall  risk  assessment 
(SFRA) solutions that offers an accessible way to measure 
the risk of falling. This information is particularly important 
for preventing falls in a timely manner. Conventional fall 
risk  evaluations  are  often  used  to  assist  caregivers  and 
families  to  develop  interventions  to  help  seniors  reduce 
falls. However,  these are typically conducted in a clinical 
setting, and thus rather inaccessible in the home.

Although research in SFRA is still incipient, a few proof-of-
concept projects have shown encouraging results [40,  50]. 
These revealed how variables such as activity level or gait 
quality, obtained from wearable sensors through ambulatory 
monitoring can be applied to evaluate risks of falling and 
predict future falls. While this is very useful in improving 
the  accuracy  of  wearable  SFRA systems,  comparatively 
little  research  is  being  carried  out  to  understand  user’s 
acceptance  of  such solutions.  Furthermore,  we are  yet  to 
fully understand how to best design interactive systems that 
empower users to visualize fall risks based on the sensor 
data,  as  well  as  engage  actively  in  a  human-in-the-loop 
approach  to  calibrating  and  providing  feedback  into  the 
underlying processing behind SFRA systems.

The research presented here is aiming to address this gap, 
through  a  field-based  usability  assessment  of  an  SFRA 
system. For this,  we have implemented an SFRA system 
consisting of a wearable sensor belt and fall risk detection 
algorithm.  We  have  conducted  a  participatory  design 
session with older adults that  produced the specifications 
for  a  tablet-based  mobile  control  interface  wirelessly 
connected  to  the  belt.  A  usability  evaluation  was  then 
carried out through a field deployment of the belt + tablet 
combo. This SFRA system was well-received by the users, 
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with potential for changing behaviours with respect to fall 
prevention  by  empowering  users  to  better  understand, 
monitor,  and  control  the  complex  data  and  assessments 
generated by the wearable device. This may better support 
users’ decision-making regarding  the  adoption of  various 
interventions such as home hazard removal, withdrawal of 
certain fall inducing drugs, footwear modification, or even 
surgery [18]. Hence in this study, we bring to light evidence 
that quantifying and visualizing fall  risk estimation had a 
positive effect  on the participants,  in terms of  improving 
fall awareness, tendency to adapt fall prevention practices, 
and awareness of personal physical ability. 

We  describe  in  this  paper  the  user  interface  (UI)  design 
insights we have gained from participatory design sessions 
with  older  adults  (OAs).  Based  on  the  results  of  a  field 
deployment,  we  reflect  on  what  OAs  who  are  otherwise 
physically healthy but concerned about long-term increases 
in fall risks need from a SFRA visualization UI. We then 
provide recommendations for the design of interfaces that 
monitor and control such wearable sensor-based devices. 

BACKGROUND
Although  falls  are  a  widespread  concern,  currently  there 
exists no universally effective prevention solutions, as falls 
are the result of a complex combination of risk factors and 
the effects of ageing [45] (e.g. environment, gait, balance, 
dizziness,  vertigo  [2]).  While  intervention  programs  can 
reduce  falls  through  behaviour  and  environment  changes 
[9,43,47], these are more difficult to implement. 

Technology approaches have been proposed to address the 
implementation cost of conventional interventions, focusing 
on four directions: detection, prevention,  risk assessment, 
and  damage  mitigation.  Fall  detection  and,  to  a  lesser 
extent,  assessment,  are  the  most  active  directions  (e.g. 
intelligent  home  monitoring).  Of  increasing  interest  are 
wearable  monitoring  devices,  which  have  improved 
considerably  in  accuracy  [38]  and  acceptance  by  seniors 
[17,31],  particularly compared  to video based monitoring 
due  to  security  and  mobility  concerns  [15].  However, 
privacy concerns remain for wearable monitoring [34].

We briefly survey here prior technology approaches to fall 
prevention, in which we ground our own work. A complete 
review of relevant hardware and algorithmic advances can 
be found in [19]. We focus on wearable-based approaches 
because of their mobility, low cost, and easy deployment.

Automatic Fall Detection
Research on fall detection and response has been ongoing 
for more than 40 years. Developments of smaller and more 
capable  sensors  during  the  past  decade  have  lead  to  an 
increase  in  the  availability  of  user-friendly  solutions, 
including for real-time detection [55]. Among these, Noury 
[37]  developed  a  wearable  sensor  and  a  simple  fall 
detection  algorithm  based  on  fused  signals  from  an 
accelerometer, a position tilt switch, and a vibration sensor, 
in  an  attempt  to  differentiate  Activities  of  Daily  Living 

(ADL) from falling. Degen et al. [11] created a wrist-worn 
detector  and used the  norm of the  acceleration  vector  to 
detect  falls.  It  was  the  first  design  to  consider  the  user 
experience  of  OAs using  this  device.  The UI  of  the  fall 
detector  was kept minimal to be more usable by seniors. 
Unfortunately, although the device was easy to wear, it only 
performed well in detecting forwards falls.

Fall  detectors  developed in the late  2000s have  achieved 
much  better  accuracy  compared  to  their  predecessors. 
Kangas et al. [25] showed that a waist-mounted fall detector 
using an accelerometer and threshold-based algorithms can 
successfully  detect  falls  with  a  sensitivity  of  97.5% and 
specificity of 100% for older adults aged 40-65. However, 
the detection of falls was performed offline. By 2010, many 
studies [6,20,28,54] reported successful fall detection with 
similar approaches described in Kangas’ studies. However, 
many of these studies were not conducted “in the wild”, and 
involved  young  participants  simulating  falls,  while  ADL 
data were collected from seniors.

Attempts were also made to evaluate fall detectors in real-
world settings with older participants. Bourke [6] presented 
a vest  that uses a threshold-based algorithm for real-time 
fall detection and alert. While promising, this was affected 
by usability issues and false alarms. 

While much has been done on improving the sensor devices 
and  algorithms,  the  usability  challenge  in  wearable  fall 
monitoring  devices  remains  mostly  undiscussed.  The 
current  research  on  fall  detection  is  focused  on  creating 
more reliable algorithms, using different sensor types and 
placements [4,13,14,23]. The waist is identified to be most 
favourable since this location is closest to the body’s centre 
of mass and the acceleration experienced at this site when a 
fall  occurs  tends to be similar  across  different  fall  types. 
Algorithms have also improved in accuracy, mostly through 
the use of machine learning [26], or by incorporating other 
risk factors such as cognition or gait dynamics [27], with 
promising results in settings such as smart homes [8]. Most 
algorithm  research  employs  younger  adults  in  simulated 
settings, which may not generalize to older adults [3,22,24]. 
Further deployments in realistic settings are needed.

Such  deployments  are  now  more  affordable  due  to  the 
increased  ubiquity  of  wearable  sensors  (smartwatches, 
smartphones,  etc.)  Currently,  smartphone-based  detectors 
suffer  from  low  accuracy  [30].  Dedicated  commercial 
solutions  are  more  accurate,  with accuracies  of  75% fall 
detection, although false alarms are still a problem [56] as 
are the additional costs of human monitoring.

Prevention through Sensor-Based Fall Risk Assessment
A proactive approach  that  goes beyond detection may be 
far more valuable in terms of avoiding falls and reducing 
the associated medical cost. In particular, we examine the 
use of wearable sensors to anticipate risks of future falls. 
While  conventional  fall  risk  evaluations  such  as  POMA 
[46], STRATIFY [38], and TUG [42] are successfully used 
to help seniors reduce falls, these are employed in clinical 
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settings. For home settings, unsupervised sensor-based risk 
assessment tools may be more suitable [44].

Although research  in  sensor-based  fall  risk assessment  is 
still  in  its  early  stage,  research  has  shown  encouraging 
preliminary results. Marschollek et al. [33,38] proposed an 
unsupervised  method  to  classify  fallers  from non-fallers, 
using  inertial  sensor  data  to  extract  gait  and  dynamic 
balancing parameters, with classification accuracy of up to 
80%.  van  Schooten  et  al.  [48,49]  utilized  inertial  sensor 
data collected at participants’ trunk to evaluate fall risk in 
an unsupervised setting, yielding and accuracy of 82%.

Although less common as fall detection, these studies have 
shown that wearable-based fall risk assessment is feasible, 
and can potentially assist seniors (and their caregivers) in 
realistic settings such as at home. It is expected that such 
approaches  will  eventually  be  able  to  incorporate 
unsupervised  algorithms  using  motion  data,  further 
increasing the convenience of such systems.

Usability of Wearable Fall Monitors
Aside  from  technical  challenges,  user  acceptance  of  fall 
detection  and  prevention  technologies  are  critical  to 
creating  feasible  solutions,  as  is  the case in general  with 
assistive technologies for older adults [40] and in particular 
with multimodal/multi-sensor interfaces [34]. With respect 
to health monitoring, seniors indicated that balancing ease 
of  use  with  extended  mobility  and  ability  to  afford 
independence is important  for the adoption of monitoring 
devices [15,  31]. Moreover, seniors are concerned by lack 
of control over false alarms, especially when these are sent 
to  caregivers  automatically  [17].  The  user  requirements 
highlighted  by  the  above  studies  suggest  that  usability 
challenges must be addressed in order to implement a fall 
monitor  that  is  practical,  unobtrusive,  well-received  by 
seniors, and ultimately achieves health benefits.

While  today’s  research  on  fall  detection  and  prevention 
using wearable sensors has largely been focused on creating 
and improving algorithms and devices, there is certainly a 
need for studying the acceptance of such implementation 
for older users. Establishing detailed user requirements and 
design requirements will also direct future research on fall 
monitors in terms of user interface, sensor placement, and 
data visualization.

GOALS AND SCOPE
Our research aims to fill the identified gap of lacking real-
life  evaluations  of  design  requirements  supporting  users’ 
needs  with  respect  to  monitoring,  controlling,  and 
understanding  data  collected  from wearable  sensor-based 
fall risk assessment (SFRA) systems. Our work draws from 
gerontechnology research [49] on sensor-based algorithms 
that quantifies changes in risks vs. detecting imminent falls. 
The  oldest  seniors  are  at  higher  risk  of  imminent  falls; 
however,  it  is  the  younger  seniors  who  experience  an 
increase  in awareness  of such risks while  maintaining an 
active lifestyle. Our target demographic is this latter group, 

which exhibits significant  concerns  about  frailty-inducing 
events such as falls – a more frequent concern for healthy 
OAs than e.g. cognitive decline [1,45].

In particular, we aim to explore the most effective fall risk 
data visualization and information delivery mechanisms on 
mobile interfaces  through participatory  design with  older 
users. For this, we hypothesize that:

H1. A wearable SFRA system that quantifies numerically 
and visualizes the risk of falling can lead to acceptance and 
adoption of this technology by older users
H2. The  fall  risk  information  that  the  SFRA  system 
provides leads to improved fall risk awareness

In other words, H1 focuses on usability, and H2 focuses on 
effectiveness  of  the  SFRA  system.  We  answer  these 
hypotheses trough the following research questions:

Q1. What is the most acceptable and comprehensible way  
to  present  information regarding  the  risk  of  falling (and  
changes in such risks) for older users?
Q2. How acceptable and usable do OAs consider the belt  
and visualization display to be for daily use?
Q3.  How  much  do  older  users  value  the  information  
regarding their risk of falling and how much does it help  
them to be aware of their own behaviours regarding fall  
prevention?
Q1 will refine the definition of good usability for the SFRA 
system; Q2 will support the validation of H1, while Q3 will 
produce  evidence  to  support  validation  of  H2.  We  also 
expect that answering these will yield design considerations 
for such systems. The field evaluation provides answers to 
Q2,  and  the  participatory  design  sessions  and  interview 
sessions  to  Q1 and Q3.  We expect  that  these  short-term 
findings  will  help  inform  further  deployments  that  will 
demonstrate long-term acceptance and behaviour change.

IMPLEMENTATION
Our main goal is to evaluate a wearable SFRA system in 
terms of technology acceptance and the effect of improving 
fall risk awareness. For this, we developed a custom SFRA 
system and conducted a field study. We first describe the 
design  and  implementation  of  hardware  and  software 
infrastructure of the custom wearable SFRA system. Next, 
we describe the first phase of the study. The purpose of the 
first  phase of the study is to guide the development of a 
mobile UI interfacing with the SFRA system to display fall 
risk information. We then describe the design, procedures, 
and  findings  of  the  second  phase  of  the  study –  a  field 
evaluation of the SFRA system with older users in real-life 
settings, and report on design considerations.

The SFRA system developed for this study consists of two 
central pieces: a wearable device for data collection, and a 
mobile device for fall risk information display. We decided 
to focus on walking, as prior research suggests that motion 
is a reliable modality for collecting fall risk data [48]. Our 
implementation relies on a server-client  architecture,  with 
data collected by the server being uploaded to a processing 
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unit (e.g. laptop or tablet in the participant’s home), which 
in turns provides fall risk assessment data to a tablet-based 
UI that is used by the participant. This architecture has been 
selected to minimize the battery drain on both the wearable 
sensor  and  the  tablet,  and  to  be  deployable  in  homes 
without  reliable  connectivity.  To  reliably  obtain  gait 
features, previous studies have recommended using 100 Hz 
for accelerometer sampling [6,12,21,49,57,58], which is not 
easily found among consumer devices. Therefore, we have 
built  a  custom  wearable  device  that  can  provide  easy 
integration  with  mobile  devices  as  well  as  high  quality 
motion  data  with  a  high  sampling  rate.  The  custom 
hardware  is  designed  in  the  form of a  belt,  as  shown in 
Figure 1. The belt form factor was chosen for its familiarity 
among the target demographic and its social acceptance, for 
its ability to be worn around the waist (ensuring accurate 
motion data collection as recommended in [50]), and for its 
meeting of usability recommendations [40].

The case for the electronics is 3D printed using the Dremel 
Idea Builder and PLA filament. It is designed as an easy-to-
wear 9mm closing belt buckle. Our custom device collects 
accelerometer  data  at  high  frequency  (200  Hz)  using  a 
FLORA LSM9DS0 9-DOF Accelerometer + Gyroscope + 
Magnetometer.  Data  is  synced  with  a  tablet  using  an 
Adafruit Feather M0 Bluefruit LE (Low Energy Bluetooth). 
The 3.7v 2000mAh Li-Ion battery can last more than a day. 
Motion data is collected by the wearable device and stored 
on the device’s SD card. On request of the mobile app, it 
transmits the stored motion data to the mobile device. The 
data is then sent to the server for fall risk estimation (only 
when motion is detected, in order to save bandwidth).

The algorithm used to assess the fall risk is developed by 
van Schooten et al. [48,49], and used here with permission 
from  these  authors.  The  algorithm  accepts  input  of  raw 
accelerometer  data in three directions of walking motion. 
The algorithm is coupled with the method of Zijlstra et al. 
[59]  to identify valid walking data, which relies on the fact 
that  the  shape  of  the  forward  acceleration  signal  can  be 
roughly predicted during stepping. The output is converted 
to a numerical 1 to 10 scale indicating the risk of falling. 
We have opted for this algorithm as it works as a long-term 
predictor of risks instead of detecting imminent falls.

FIELD STUDY – PARTICIPATORY DESIGN
Participatory design is shown to be an effective approach to 
gather  design  requirements  and  improve  the  quality  of 
digital technology design in the early stage of the design 
process  by  engaging  older  adults  [29].  We  invited 
participants to share their design ideas for  the mobile UI 
that will help older adults to visualize fall risk information. 

This captures users’ perspectives into designing interfaces 
to  display  the  risk  of  falling.  The  input  from  older 
participants (potential users of wearable SFRA systems), is 
used to inform the design of the display interface.

Participants
Five  participants  (Table  1)  participated  in  this  phase  –  a 
number  in  line  with  studies  of  similar  methods  or  users 
[35,52].  The  recruitment  was  carried  out  through  flyers 
posted  on  the  university  campus,  local  libraries,  and 
community centres. Inclusion criteria were at least 55 years 
of age and comfortable using mobile touchscreens.
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P1 61 M High Yes Yes Yes
P2 67 M Medium No No No
P3 59 F Medium Yes Yes Yes
P4 57 F High Yes Yes No
P5 62 F High Yes Yes No
Table 1: Demographic information for Phase I. All participants were 
cognitively able, but concerned about long-term prevention of falls.

The  study  was  designed  with  ethical  guidance  from  the 
Canadian  Tri-Council  Policy  (TCPS2),  and  approved  as 
low-risk  by  our  university’s  Research  Ethics  Board.  We 
have taken additional steps to protect participants, such as 
instructing them to not rely on the prototype’s assessments, 
and providing referral info for a fall specialist.

Protocol and Instruments
Participatory design [29,52] is used, in the format of one-
on-one sessions with an older participant. Each session has 
three parts: “Information gathering and sharing”; “Scenario 
generation”; and “Feature and scenario envisioning”. First 
is a discussion to familiarize the participants with the topics 
of falls and technologies, which they will be using later in a 
paper-and-pencil design activity.  Participants are asked to 
share their understanding of the 3 key concepts that will be 
used in the design activity later: falls among seniors, mobile 
devices,  and  wearable  technologies.  The  discussion  is 
facilitated, as to help participants with unfamiliar concepts.

The second part introduces the design problem, through the 
use of scenarios (narrative storytelling). These are relevant 
to  the  participants,  and  progress  from non-technology  to 
technology-focused, e.g. from visiting a doctor that has the 
participant’s  fall  risk  information,  to  using  mobile  or 
wearable devices presenting such information.

Once the participant is comfortable with the idea of using 
new technology for monitoring the risk of falling, we then 
present mock-ups of the information display interface, from 
simple/emotional to more technical and numerical (Figure 
2). The mock-ups serve as an artifact to provoke responses 

Figure 1:  The custom-built 
wearable hardware

(in the form of a belt).
Figure 2: Design 

mock-ups used in the 
Phase I scenarios.
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from the participants and engage them into producing their 
own sketches. We purposefully omit other details about the 
interfaces, and instead solicit ideas from the participants.

The third scenario is a discussion about risk alerts, where 
we describe the case of receiving alerts on a mobile device 
once the fall risk is estimated to be high. Participants are 
asked how they would like to have the alerts delivered to 
them, and what these would look or behave like.

With the design problem and their preferences in mind, the 
participants  then move on to the final  component  of this 
study: designing their own prototype. We provide guidance 
in this process, and help them reflect and summarize their 
ideas and preferences using paper-and-pencil prototyping.

Results: Fall Risk Display Features
PD data  is  analyzed  by  clustering  features  suggested  by 
participants (Table  2). Three categories emerged: interface 
design, notifications, and feature suggestions.

P1 P2 P3 P4 P5
Interface Design Features

Numerical display (*) • • • • •
Emotional display • • •

Use graphs (*) • • • • •
Adding notes to data (*) • • • •

Qualitative information overlay (*) • • • •
Overall estimation (*) • • •

Detailed daily estimation (*) • • •
Goal setting • • •
User avatar •

Record fall risk estimation by user •
High Fall Risk Notifications Features
Reminder or alert for high risk (*) • • •

Daily use reminder •
Dismiss reminder • • •

User can set high risk level (*) • • • •
Additional Suggestions

Actionable suggestions (*) • • •
Session estimation mode • •

Table 2: Features suggested by Phase I participants. Items marked (*) were 
requested by more than one participant and implemented in Phase II. Most of 
the other requests would have required changes to the underlying algorithm.

For  fall  risk  information  display  design,  all  participants 
suggested or agreed with using graphs to display the risk of 
falling,  with  numerical  values  to  quantify  the  risk.  Most 
participants also suggested there should be some qualitative 
information overlay for additional clarity. Participants also 
gave  examples  of  using  colours,  lines  or  other  visual 
elements to create a “high risk zone” on the graph, to aid 
interpreting the information in the graph. Most participants 
indicated  that  they  would  like  to  see  an  overall  daily 
estimation, as well as detailed breakdown of this estimation. 
They would like to have the ability to “zoom in” on the data 
and see their fall risk information during certain periods of 
time  and  activities.  Some  participants  suggested  using 
emoticons to display the risk of falling, e.g. a stick figure 
animation  of  walking  steadily  to  denote  low  risk. 
Participants explained that using such emotional elements 

can engage the user better than only using graphs; however, 
they  would  still  prioritize  the  display  of  accurate 
information.  As  our  target  demographic  is  the  “younger 
seniors”, this may explain why participants have produced 
designs suitable for longer-term trends (graphs), instead of 
simple indicators (smileys) or auditory or haptic warnings.

For notification, participants suggested a reminder received 
the day after the risk of falling reaches high. It is especially 
important  for  individuals  with  declining  memory.  Most 
participants also wanted the ability to dismiss or mute the 
reminders, and custom-setting the high risk level.

Two other features were suggested by multiple participants. 
First, they believe the fall risk estimation should be coupled 
with instructions on what to do regarding the current risk of 
falling.  For  example,  it  would  be  meaningful  to  include 
instructions for fall prevention practices, when high risk of 
falling is detected. A second feature suggested was session 
estimation  mode.  Instead  of  having  the  wearable  device 
recording  data  autonomously,  users  would  have  better 
control  over  the  system  by  recording  sessions  of  their 
walking, and viewing results for each session they initiate. 
A subset  of these suggested features  was implemented in 
the mobile UI of the SFRA system deployed in the field 
study in Phase II (Figure 3, and marked with (*) in Table 2).

For  fall  risk  information  display,  we  implemented 
numerical graphical displays for both current estimation as 
well as daily history. These included a customizable high 
risk  line  to  overlay  qualitative  information  and  create  a 
clear  indication  of  high  risk.  Daily  estimations  are  also 
divided into time periods (morning/evening). Other features 
include  tips  based  on  current  fall  estimation  (including 
advice  to  see  a  specialist),  note  taking (attached  to  daily 
estimations  and  viewable  from  the  history  screen),  and 
reminders  if  the  risk  was  estimated  to  be  high  for  the 
previous day (alerting users to be attentive while walking).

Figure  3: Current fall risk estimation (left) and history (right), both 
implemented in the main app. The high risk notification (bottom) is 
delivered through the iPad’s built-in notification system, the day after 
the estimated fall risk exceeds the default or user-set threshold. 
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PHASE II: FIELD EVALUATION
Phase II focuses on evaluating the recommendations from 
the participatory design sessions. Older adults were invited 
to  become  the  user  of  the  system  in  a  short-term 
deployment study. Similar to Phase I, this study is in the 
form  of  fieldwork  gathering  qualitative  data  – 
methodologically this has been employed in the past as an 
effective mechanism for informing the design of assistive 
technologies such as those used by older adults [36,53].

Participants
Participants  were  recruited  for  this  phase  following  the 
same process as in Phase I. There was no overlap between 
participants in the two phases, to avoid any bias. Inclusion 
criteria  were  older  than  55,  familiar  with  using  mobile 
touchscreen devices, and comfortable wearing a belt while 
walking.  Table  3 shows  details  about  participants..  All 
participants are living independently,  and are engaging in 
various levels of daily physical activity, including walking.
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A 74 M Yes Yes Yes Yes Yes No Yes
B 73 M Yes No Yes No No No No
C 64 F No Yes Yes Yes No No No
D 69 F No Yes Low Yes No No No

Table 3: Demographics of participants in the Phase II field study.

Protocol and Instruments
Instances of the SFRA system (belt, laptop as server,  and 
tablet) were set up in the participant’s home. Researchers 
visited  the  participants  at  the  end  the  deployment. 
Qualitative  data  was  collected  through  interviews  and 
surveys, which reflected the indicators in the TAM [51] for 
assessing technology acceptance.

Experimental Protocol
Each deployment took between 5 to 10 days, depending on 
the participant’s availability. The trial involves participants 
using  the  device  in  real-world  settings,  as  well  as  a 
simulated  high  fall  risk  event  during  deployment. 
Participants are aware of the simulation. Two surveys are 
used  to  collect  data:  survey  S1  during  deployment  and 
before the simulated high risk event, and survey S2 after the 
deployment. S1 and S2 are designed to evaluate the general 
acceptance of the technology and the effect of the simulated 
high  risk  event.  Interviews  are  conducted  after  the  trial, 
collecting  users’  responses  on  usability  and  acceptance, 
with more depth in the discussion with the researcher.

During  the  first  visit,  we  set  up  the  system  at  the 
participant’s  home,  and  walk  through  the  features  of  the 
system with the participant.  The mobile  UI of  the SFRA 
system was deployed on an iPad Mini 2 tablet. A belt paired 
with  a  tablet  running  the  SFRA UI  were  left  with  each 
participant for the deployment. The UI as deployed during 
the trial implemented the features emerging from the earlier 

collaborative design sessions. We also ask the participant to 
wear the belt and walk briefly, and perform their first fall 
risk assessment to familiarize them with the SFRA system.

The second visit takes place midway in the deployment, and 
involves a simulated event of elevated fall risk. This probes 
the participant’s response to how the event is reported by 
the system.  loaded on the device. Participants are informed 
that  the data they are viewing is simulated. The use of a 
simulated high risk event ensures that participants’ feedback 
will  not  be limited by their  own data,  which is  likely to 
reflect  low  fall  risk.  Hence  we  are  able  to  investigate 
acceptance of this technology and the effect of the fall risk 
information in depth, by gathering participants’ opinions on 
both  real  and  simulated  data.  After  the  scenarios  are 
presented,  we  conduct  an  interview  about  how  the 
participant would perceive and react to the risk of falling.

During the last visit participants complete survey S2, which 
includes the questions in  S1 (“S2 part  1”),  to  detect  any 
change in their opinions, as well as additional questions on 
user experience, value of information, and features of the 
system (“S2 part  2”).  An interview is  then  conducted  to 
research the user’s experience, opinions of features, value 
of  information  and  behaviour  change,  acceptance  of  the 
wearable device, and change in usage over time.

Instrument Design
Surveys  are  designed  to  assess  the  general  level  of 
acceptance and usability. We use the Likert scale to obtain 
most  responses  from  participants,  with  occasional  short 
answer questions for clarification. Survey S1 is conducted 
before  the  simulated  high  risk  event  during  deployment, 
and covers the following aspects:

• General  User  Experience:  perceived  usefulness  and 
overall experience

• Information Reception: clarity of fall risk information and 
whether it can motivate fall prevention practices

• Usage: frequency of using the system to monitor fall risk 
and synchronizing data

Besides surveys, we used interviews for in-depth responses:

• General  User  Experience:  user’s  interaction  with  the 
system,  integration  with  daily  routine,  willingness  to 
continue using the system beyond the trial

• Fall Risk Display: clarity of information
• Motivation  and  Behavioural  Change:  usefulness  of  fall 

risk  information,  trust,  complacence,  fall  prevention 
awareness

• Acceptance  of  Wearable  Device:  usability,  form factor, 
usage pattern, data recording mode

• Adoption Over Time: change in usage pattern, expected 
long-term usage.

Usage
During  the  field  evaluation  participants  mostly  used  the 
tablet interface to monitor progression (over time) of their 
fall risks, interact with the notifications, and adjust the risk 
threshold.  While  participants  had  various  preferences  on 
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how frequent or how long they would like to use the system 
(as detailed later in this Section), their interactions shared 
the same pattern: ensuring they wear the belt before taking 
a walk outside, and upon return synchronizing the data from 
the belt to the iPad device to obtain the fall risk estimation. 
While  the  belt  was  designed  to  allow wear  at  any  time, 
participants felt they gained the most by wearing it during 
walks. The iPad was not carried during walks but typically 
used to check the visualizations upon their return from the 
outside walks (after synchronization).

Results: Survey Responses
Participants  indicated  an  overall  positive  user  experience 
with this  system. All  participants  agree  or strongly agree 
that the wearable system is easy to wear and maintain, and 
it  is  useful  for  motivating  physical  activities.  Regarding 
behaviour modification, all participants believe the fall risk 
information provided by the system creates motivation for 
adopting fall prevention practices. They also indicated they 
are  more  willing  to  adopt  fall  prevention  practices  after 
using this device. Survey answers are tabulated in Figure 4.

In terms of fall risk awareness, all participants except Mr. B 
agree that the system made them more aware of the risk of 
falling. Furthermore,  regarding the main feature (fall  risk 
information display) all participants suggested it is clear to 
read  and  easy  to  understand.  However,  regarding  other 
features, the opinions are mixed. Due to the simulated high 
fall  risk  event,  all  participants  have  interacted  with  the 
reminder  and  tips  features.  Overall  participants  believe 
theses features are useful, while Ms. C is neutral towards 
the high risk reminder feature  and disagrees  that  the tips 
feature  is  helpful.  Most participants  also agree  that  to be 
able to set the high risk zone is useful. However, interaction 
logs suggest only one of the participants interacted with this 
feature as the high risk zone was left at the default level by 
other participants. In addition, the none of the participants 
used the notes feature to annotate their data, and most of 
them are neutral towards this feature.

In addition, the questions in S1 are reused in S2 (part 1) to 
reveal  the  changes  in  participants’  opinions  after  the 

simulated  high  fall  risk  event.  Although  participants’ 
opinions  did  not  change  significantly  regarding  user 
experience and the usefulness of the system, it appears that 
there are more participants in agreement with the statement 
that  this  system  creates  motivation  for  adopting  fall 
prevention  practices:  Ms.  C  and  Ms.  D  changed  their 
opinions from neutral  to  agree,  and Mr.  A changed from 
agree to strongly agree.  This indicates the simulated high 
risk event  did improve the participants’ understanding  of 
this  technology  by  providing  an  example  they  would 
otherwise not experience during this brief field trial.

Results: Analysis of Interview Responses
We  interview  each  participant  twice:  once  during  the 
simulated high fall risk event, and once after completing the 
field  trial.  The  first  probes  the  participants’ reaction  to 
simulated  high  fall  risk  information  and  the  interactions 
with  the  reminder  features.  The  second  probes  usability, 
interaction, perception, and behaviour modification.

Inductive thematic analysis (following guidelines from [7]) 
was used to reveal patterns in order to answer the research 
questions.  Seed  codes  were  generated  following  the  two 
TAM indicators and the structured topics in the interviews, 
and further codes were bootstrapped iteratively, producing 
the  thematic  map  shown  in  Figure  5,  with  the  middle 
rectangles indicating how the codes converged to the five 
key  themes.  The  overarching  themes  (Table  4)  were 
identified using both initial and secondary codes. This was 
guided  by  the  research  questions,  and  we  focused  our 
analysis on the usability of the SFRA system and how older 
adults interact with and react to the fall risk information.

Themes Description

Perceived
Ease-of-Use

The degree to which a person believes that using 
a particular system would be free from effort

Perceived 
Usefulness

The degree to which a person believes that using 
a system would enhance their performance

Information 
Reception

The ways the users react or respond to 
information delivered by the system regarding 
their estimated risk of falling

Potential for 
Behaviour 
Modification

The tendency or promise that the users are willing  
to subject themselves to regarding adopting fall 
prevention practices

Awareness 
Conformation

The user’s construction of awareness and 
conceptualization of falls, technologies, one’s 
physical abilities and how these factors interplay

Table 4: Themes identified in Phase II interview data and descriptions.

Analytic Memo
The findings from the interviews are further  discussed in 
this section as  we apply the identified themes to  capture 
qualitative feedback from the users. To address the research 
questions  and  validate  the  hypotheses,  we  will  first 
investigate  the  acceptance  of  the  SFRA  system  using 
usability factors  and perception factors,  then we consider 
the effect of the fall risk information in terms of how users 
respond and react  to it.  Figure  6 shows how these topics 
relate to the themes – as the design of our measurements Figure 4: The results of the early- and post-deployment surveys.
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was guided by the TAM, the themes that emerged from the 
collected  data  are  aligned  with  TAM  indicators  such  as 
perception  of  usefulness,  utility,  and  ease  of  use.  We 
structure the following (sub)sections along these themes. In 
addition, we also summarize users’ feedback on features of 
the SFRA system as an evaluation of the design guidelines 
for fall risk information display.

User Acceptance of the SFRA System
Overall,  the  participants  reported  good  adoption  of  this 
system in the interview data: 3 out of 4 participants stated 
that  they  have  integrated  this  system  with  their  daily 
routines, and they indicated willingness to continue using 
the system outside of the trial. To evaluate the acceptance of 
the SFRA system with more depth, we identify two groups 
of  factors  that  affect  the  acceptance  of  this  technology: 
usability  factors,  which  directly  correspond  to  the  theme 
“Perceived  Ease-of-Use”;  and  perception  factors,  which 
cover  themes  “Perceived  Usefulness”  and  “Information 
Reception”. These are based on the Technology Acceptance 
Model,  where  usefulness  and  ease-of-use  are  treated 
distinctively, as are also in fundamental texts such as [16].

Perceived Ease-of-Use
While  the  survey  and  interview  data  suggested  varying 
degrees of acceptance of the overall system, all participants 
agreed  that  the  device  is  comfortable  to  wear.  Ms.  D 
reports: “Absolutely (easy-to-wear), it was fine. You didn’t  
even notice that you were wearing a belt.” Participants also 
pointed out their interactions with the belt as “very easy”. 
Mr.  A  described  his  daily  routine:  “It  was  very  easy  
actually. I just put the belt on, and I immediately started  
moving, walking. I walked in my home, in the hallway, and  
in my building, downstairs, outside, depending on the day.  

That was it. Came back, took it off, placed the belt on the  
table, synced it in with the tablet. It worked every time.”

Other participants shared similar experiences to Mr. A. In 
addition, despite none of the participants having previous 
experience with wearable technologies, they did not report 
having any  problems with the wearable  device,  and they 
could  all  recall  and  describe  clearly  how they  interacted 
with the belt and system on a daily basis. This indicates the 
device  has  been adopted  successfully  and the users  have 
learned how to use this new technology. Another benefit of 
designing the wearable device as a belt is to avoid any form 
of intrusion, which was confirmed by Mr. A: “I like the idea 
that it’s a belt, easy to wear, easy to maintain. It’s hidden,  
you can wear it almost anytime. That makes it very useful.”

We  also  found  that  participants  want  the  device  they 
interact with to integrate with familiar objects as much as 
possible. This preference may directly affect how well OAs 
will adopt the wearable device. Mr. B reported that he likes 
the belt, but suggested he “wouldn’t wear it everyday” over 
a longer period of time, unless the device can be “easily  
integrated into a regular belt, rather than being a special  
belt”. In fact, all participants expressed interest in a design 
where the sensors inconspicuously attach to the belt. 

We did not notice gender differences, despite our prototype 
being of a single colour and size – “Women also wear belts” 
(Mr. A), and a more fashionable design “wouldn’t make a  
difference”  (Ms.  D).  However,  all  participants  suggested 
manufacturing the belt to appeal to a wider range of tastes.

Clarity and Simplicity in Fall Risk Information Display
Both  the  survey  and  the  interview  data  suggested  that 
participants consider the information display – namely the 
charts  of  risk  of  falling  –  easy  to  read  and  understand. 
Rather surprisingly, participants indicated a preference for 
graph visualizations.  Ms. D said: “It was very clear.  The  
bar charts are great. The history was very easy, going back  
and forth, and also between morning and evening, yeah.” 
Mr. A concurs: “A graph is worth a thousand words: here is  
the risk line, here is where you are, it’s clear.” 

While clarity of information is necessary for adoption, it is 
not  sufficient.  Three  participants  found  themselves  using 
the system voluntarily (while going out for walks and even 
wearing it all day): “I just made a routine of putting it on  
every  morning,  and  syncing  it  every  night.”  (Mr.  B). 
However, Ms. C showed lowest level of acceptance of the 
system, due to this altering her daily routine by having to 
remember to put on the belt before going out.  Designing 
the  SFRA system for  integration  into  daily  routines  may 
increase adoption, as users then interact with it more often.

Perceived Usefulness
As per the TAM framework,  perceived usefulness  is “the 
degree  to which a person believes  that  using a particular 
system would enhance their job performance” [51]. In our 
study,  all  participants  agreed  that  having  access  to  the 
estimated risk of falling is useful.  In particular,  they find Figure 6: Themes and their relationships to the topics in Analytic Memo.

Figure 5: Identified codes and themes from Phase II interview data.
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this  valuable  when  compared  to  conventional  clinical 
assessments,  which  in  their  experience  is  often  time-
consuming. However, this is only a shallow benefit offered 
by the system, and our data showed participants would like 
the  system to be  able  to  provide  them with more  useful 
information beyond simple risk estimations.

Ms. D believes the numerical fall risk lacks information that 
can help to interpret the risk: “But I would like to know why  
I have a [number] point whatever. It would be interesting to  
know.  I  want  it  to  tell  me  more,  how  it’s  making  that  
determination”.  She  adds:  “The  numbers  don’t  mean  
anything  unless  you  have  context  around  it.” Mr.  B  is 
confident in his physical abilities, and indicates he would 
use  the  belt  only  for  occasional  sampling,  as  “actual  
numbers are not so important” because he would be “more 
interested  to  look  at  trends  instead”.  This  indicates  that 
providing  contextual  information  may  lead  to  increased 
perceived  usefulness.  Indeed,  participants  suggested 
contextual  examples such as  activities performed,  surface 
condition, trip hazards,  footwear,  and comparison to data 
from  other  users.  They  are  also  interested  in  how  the 
estimation is determined – this provides further evidence to 
our initial  assumption that  such  assessment systems must 
offer transparent interpretations of data (much in the same 
vein of “Explainable Artificial Intelligence” [10]).

Usefulness in High Risk Situations
The  simulated  high  risk  events  were  used  to  expand 
participants’  experience  in  the  field  trial.  The  screens 
showing simulated high risk data were previously shown in 
Figure  3,  in  the  Section  “Results:  Fall  Risk  Display
Features“.  In  this  case,  participants  have  suggested  this 
information is useful because for someone with high risk, 
he or she would likely want to track changes in the data, 
especially if fall prevention intervention is in place, and fall 
risk estimation would provide feedback and track progress. 
For example,  although Ms. C sees  no use for  the system 
when fall risk is low, she would consider using it frequently 
if the risk is high: “trying to compete with myself, to see the  
difference. It’s almost the idea of giving people the power to  
change, or giving them the idea they can change.”

Besides  the  value  of  fall  risk  estimation,  it  was  also 
suggested  that  it  would  be  useful  to  provide  tips  for 
participants  on  what  actions  to  take  regarding  different 
levels  of  fall  risk.  We  implemented  this  as  a  proof  of 
concept with generic tips for high risk. The tips appear as a 
dismissable pop-up, invoked by tapping the (i) button of the 
main UI.  While this  was positively  received,  participants 
prefer  to  have  the  tips  customized  and  provided  by  a 
specialist, which will make the system even more useful.

Information Reception: Trust
Three  participants  have  confirmed  that  they  trust  the 
system.  Participants  also  expressed  that  because  of  this 
trust, they are willing to use the estimation fall risk to make 
decisions regarding fall prevention practices.

Participants  have  suggested  several  reasons  why  they 
developed  trust  in  the  system.  First,  the  explanation  of 
technology set the basis for trust. During deployment, we 
explained  the  technology  used  for  assessing  the  risk  of 
falling with a high-level description, and the researcher also 
explicitly stated that  the expected accuracy of fall  risk is 
around 70% [48] to assure the participant.  Moreover,  the 
trust is reinforced when the participant sees their estimated 
risk of falling matching with their expectations. “I believe 
the device  on that point  because it  aligned with my own  
expectations.”  (Mr.  B),  or  “I  trusted  it  more  as  I  saw it  
going down because I was focusing.” (Ms. D).

This suggests that the algorithms and interfaces developed 
for the SFRA system must be able to produce results that 
can align with seniors’ expectations (e.g. not generate false 
alerts),  their understanding of their  abilities,  and physical 
sensations, as well as reflecting their activities.

Changes Facilitated by Using the System
Information Reception and Behaviour Modification
All participants were considered at low fall risk and none of 
them showed significant changes in the fall risk estimation 
data. This is expected, as one’s gait would change little over 
a  limited  time.  When  asked  about  their  experience  with 
seeing  the estimated risk of  falling for  the  first  time,  all 
participants  had  similar  reactions,  such  as  calm  or 
confident. On the other hand, they described their emotions 
towards  the  simulated  high  risk  information  as  worried, 
scared, or surprised. Participants showed that they are more 
eager to know why risk of falling is high than when it was 
low. This also initiates the user’s problem-solving process: 
“My thought was, who can I talk to about this and what can  
I do about it? And I better do something.” (Ms. C). 

Even under the low-risk scenario, Ms. D mentioned she was 
paying  more  attention  to  walking.  However,  participants 
reported becoming motivated to adopt prevention strategies 
based on their experience with simulated high risk data. Mr. 
B indicated he would visit his doctor if the risk is high. All  
indicated  other  actions  they  would  take,  such  as  paying 
attention to walking, or using railings or walking aids.

This re-emphasizes the importance of providing additional 
information to seniors to help them understand the situation 
and guide their behaviours. In addition, high risk of falling 
also creates motivation for behavioural changes.

Awareness
Throughout the deployment of devices with participants, we 
observed changes in OAs’ attitude and awareness. The data 
suggest  the  experience  of  using  the  SFRA system  has 
improved users’ awareness  of falls  and prevention,  while 
the awareness of low risk may also lead to complacence in 
certain  situations:  “it’s  normal  for  people  to  get  
complacent”  (Mr.  A),  although  that  depends  on  “how 
quickly you get  down to low risk” (Ms. D).  On the other 
hand, Mr. B, who is very confident in his physical abilities, 
believes  he  would  not  become  complacent,  because  he 
would “discipline” himself while using this device
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Three participants agreed that using the SFRA system has 
made them more aware of the risk of falling. “When you 
pay more attention and ... focus on it, you are in a better  
position  to  improve  the  balance.”  (Ms.  D).  This  did  not 
apply for seniors who were already confident of their very 
low risk  of  falling,  but  even  those  participants  indicated 
they  would  follow suggestions  and  instructions  from the 
system if their risk “had been much higher up” (Ms. C).

This suggests that quantifying fall risks can help those who 
are unsure about their risks to be more aware and help them 
better assess their situation. This is especially valuable for 
individuals  who have medium to  high  fall  risk,  who are 
otherwise unaware of such risks without using the system.

Summary of Recommendations
The interviews and PD sessions revealed that our (healthy) 
OA participants wanted the ability to monitor their risks and 
especially changes in risks – in many ways similar to how 
one  would  use  a  blood  pressure  monitor  (awareness  of 
changes  over  time  instead  of  prevention  of  an  imminent 
event). Through the thematic analysis presented earlier and 
through participants direct input, we draw a set of design 
recommendations for mobile-based UIs that interface with 
fall risk assessment sensor devices.

• Provide quantitative visualizations of  fall  risk data (e.g. 
numerical  scores),  but  overlay  these  with  qualitative 
information (e.g. textual qualifiers or explanations of the 
assessment,  such as “for  someone your age,  this means 
that  the  risk  is  moderate”).  Our  participants  thought  a 
system is “useless” without both types of information.

• Design  SFRA systems  to  empower  users  and  facilitate 
problem  solving;  avoid  omitting  information  that  may 
hinder the user’s decision process. The system should not 
hide  information,  leading  to  perceptions  of  controlling 
users’ lives; instead, it should support their risk mitigation 
strategies (e.g. deciding what kind of walks to engage in).

• Provide info on fine-grained changes over time instead of 
immediate alerts.

• Attach  contextual  information  regarding  user’s  fall  risk 
estimation,  as  well  as  specific  instructions  for  fall 
prevention  practices,  preferably  from  healthcare 
professionals.  Our  participants  indicated  that  the  fall 
prevention  tips  (e.g.  risk  mitigation  advice)  were  very 
useful  and  suggested  improvements,  including  bringing 
these up automatically when the risk exceeds a threshold, 
or tailoring them to their current risk assessment.

• Include a high risk reminder, prompting users to change 
their  behaviour  if  warranted  by  data  from the  previous 
day.  Combine  this  with  providing  practical  advice  (e.g. 
use railings while on stairs). Provide options to configure 
individual preferences on how to receive the reminders.

• Allow customization of what high risk is, based on users’ 
own physical abilities, while providing a sensible default 
setting. Our study suggests that participants see as useful 
the ability to adjust the high risk line for their own needs.

• Allow customization of how data is collected (on-demand 
vs. automatic). Participants were split with respect to how 
this is handled (Mr. B: “I don’t want that because then I  
can  manipulate  the  data.  Bad.”).  Providing  a  choice 
would empower them; yet, this may have implications for 
the accuracy of the algorithms used to estimate fall risks.

Limitations
Due to the nature of our study not all features suggested in 
Phase I were evaluated, mainly the ability to attach notes to 
logs and using “emotional” elements to present data. The 
short-term deployment was limited to changes in awareness 
and attitudes, as this was the first study of a collaboratively-
designed system that empowers OAs to visualize fall risk 
sensor data. We avoided other confounds such as (lack of) 
digital  literacy  which  may  influence  ease  of  use,  or 
cognitive  decline,  which  may  impact  understandability, 
especially over longer term use.

CONCLUSION
Our survey and interview results showed that  overall  the 
SFRA system implemented in this study achieved high user 
acceptance (Hypothesis H1), and participants consider the 
fall  risk  estimation  useful  and  the  accessibility  is 
appreciated. Participants have also indicated they are more 
aware  of  the  risk  of  falling  from  this  experience 
(Hypothesis H2), and they also believe this information can 
motivate them to adopt fall prevention interventions. With 
the simulated high risk data, we also found that older users 
consider fall risk estimation more useful when the fall risk 
is  high,  and  they  have  also  pointed  out  the  value  of 
estimation  is  limited  when  the  fall  risk  is  low.  This 
highlights  the  importance  of  attaching  contextual 
information to  the estimation data to  help users  interpret 
and understand their situations better, thus providing more 
values  in  the  information  to  keep  users  engaged. 
Furthermore, it is necessary to provide specific instructions 
in the case of high risk, in order to guide the older user to 
take most appropriate actions while they are motivated to 
improve their situation. In addition, any misconception of 
technology must be carefully addressed as it could lead to 
risk-taking  behaviours.  Lastly,  feedback  from  field 
evaluation  were  collected  regarding  features  suggested 
through participatory  design,  leading to  recommendations 
on improving the design of mobile UIs for SFRA systems.
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