University of Toronto
csc148S - Introduction to Computer Science, Spring 2001

Midterm Test Answers

Wednesday February 28, 2001

Duration: 50 minutes

Aids allowed: None

Family Name: Given names:

Student #: Tutor:

e There are 6 pages, including this one. The test is out of 50 marks and the value of each
question is provided; please use this information to manage your time effectively.

Part A: / 15
Part B: / 10
Part C: / 25
Total / 50

Page 1 of 6

Part A [15 marks in total]
Consider the following java classes with many details omitted.

class Fish extends FishTankItem implements Pet { ... }
class SunFish extends Fish { ... }

class OysterShell extends Shell { ... }

class Shell extends FishTankItem { ... }

class FishTankItem { ... }

class StarFish extends Fish { ... }

1. Draw an inheritance hierarchy diagram for these classes. Include the class Object in your
diagram.

2. For each of the following java statements, indicate if it will compile by circling one of YES or

NO.

(a) Fish f = new Shell(); YES
(b) Fish f = new FishTankItem(); YES
(c) FishTankItem ft = new OysterShell(); YES NO

3. Assume that you have the statement Fish f = new SunFish(); earlier in your code. For
each of these later casts, indicate by circling one of the options, whether the cast gives a
compile-time error, a run-time error or runs fine.

(a) (Shell) f | CoMPILE-TIME ERROR| ~ RUN-TIME ERROR ~ RUNS FINE

(B) (SunFish) f COMPILE-TIME ERROR RUN-TIME ERROR
(c) (FishTankItem) f COMPILE-TIME ERROR RUN-TIME ERROR

Page 2 of 6

4. Pet.java contains the following code:

public interface Pet {
public void feed();
public String getName() ;

For the code fragments listed below, indicate by circling one of the options, whether each
gives a compile-time error, a run-time error or runs fine.

(a) COMPILE-TIME ERROR RUN-TIME ERROR | RUNS FINE

SunFish sf = new SunFish();
sf.feed();

(b) ‘COMPILE—TIME ERROR‘ RUN-TIME ERROR RUNS FINE

FishTankItem ft = new Fish();
ft.feed();

(c) ‘COMPILE—TIME ERROR‘ RUN-TIME ERROR RUNS FINE

FishTankItem ft = new Shell();
ft.feed();

(D) COMPILE-TIME ERROR ‘RUN—TIME ERROR‘ RUNS FINE

FishTankItem ft = new FishTankItem();
((Fish) ft) .feed();

(E) CoMPILE-TIME ERROR RUN-TIME ERROR RUNS FINE

Fish f = new StarFish();
f.feed();

5. We have stack on which we have called the following operations in this order: push(17),
push(15), push (12), pop(), pop(), push(20), push(16), pop(), push(4)

Draw a sketch showing the current state of the stack.

20
17

Page 3 of 6

Part B [10 marks]

You would like to design some java code for passing secret messages. Your messages will be coded
in a very basic way where each character is represented by an integer. For example the char ‘H’
might be 0 and the character ‘E’ might be 3.

A class that handles coding must provide three operations. It should be able to take a code and
character pair (for example ‘E’ and 3) and enter them into the list of codes. It should be able to
return a code when given a character. And finally, it should be able to return a character when
given a code. This class does not need to worry about breaking the message into individual char
elements or reassembling the characters of a decoded message. That will be the job of the client.

You aren’t going to actually write the code for the class, that’s somebody else’s job. Instead you
need to write the java interface that their code must meet.

Below we have started a Coder interface. Finish it. Use exceptions to handle the situation where
the client asks you to code or decode an element which hasn’t been entered into the list yet. Make
up appropriate exception class names. Include comments in your solution. JavaDoc is not required.

public interface Coder {
// assign the code i to correspond to char ’c’
// If ’c’ already has a code, replace it with ’i’
// If code ’i’ is already used, throw an UnavailableCodeException();
public void add(char c, int i) throws UnavailableCodeException;

Solution:

// return the code for ¢
// throws NoCodeException if ¢ doesn’t have a code yet
public int encode(char c) throws NoCodeException();

// return the char for code i

// throws InvalidCodeException if i isn’t a code
public char decode(int i) throws InvalidCodeException();

Page 4 of 6

Part C [25 marks]
Here is the file MyQueue. java and the class LinkedNode:

public interface MyQueue {
// add o to the tail of the queue
public void enqueue(Object o);

// return the item at the head of the queue

// and remove it from the queue public class LinkedNode {
// Pre: the queue is not empty public LinkedNode(Object o) {
public Object dequeue(); data = o;
}
// return the item at the head of the queue public Object data;
// but do not remove it. public LinkedNode next;
// Pre: the queue is not empty ¥

public Object head();

// return true iff the queue is empty
public boolean isEmpty();

Write the class LinkedQueue which implements MyQueue and uses LinkedNode objects to store the
queue elements. Be neat. You do not need to copy comments from the interface class into your
solution.

SOLUTION

public class LinkedQueue implements MyQueue {
private LinkedNode head;
// add o to the tail of the queue
public void enqueue(Object o) {

if (head == null) {
head = new LinkedNode(o);

} else {
LinkedNode current = head;
while (current.next != null) {

current = current.next;

current.next = new LinkedNode(o);

}

// return the item at the head of the queue
// and remove it from the queue
// Pre: the queue is not empty
public Object dequeue() {
LinkedNode result = head.data;
head = head.next;
return result;

Page 5 of 6

// return the item at the head of the queue
// but do not remove it.
// Pre: the queue is not empty
public Object head() {
return head.data;

}

// return true iff the queue is empty
public boolean isEmpty() {
return (head==null);

}

End of Test

