Testing report for ExpressionTree assignment

Mary Ellen Foster

21 August 2000

This report describes the testing of my solution to the ExpressionTree assignment. I tested each part
of the program separately: first, the driver program; then, reading and printing arithmetic expressions;
next, evaluating expressions; and finally, simplifying expressions. The test input is divided into three files:
testl.in, test2.in, and test3.in. Specific comments about the result of each test case are included on
the printout of the test inputs and outputs.

1 Testing the driver

The first set of test cases exercise the capabilities of the driver program itself. First, the driver is tested
on blank lines and invalid commands. Next, each valid command is tested before and after reading a valid

expression. The final case tests what happens when the input ends without a “q” command being entered.
In all cases, the program performed as expected or printed an appropriate error message.

File Case(s) | Relevant features
testl.in 1 | Blank line in input
2 | Invalid command
3 | Run each command before entering a valid expression
4,21,33,53 | Valid use of each command
4 | o “t” and “p” commands
21 | e “¢” command
33 | e “s” command
53 | e “q” command
test2.in 1 | End of input without “q” command

2 Reading and printing expressions

The following test cases exercise the code for reading and printing arithmetic expressions. First, simple valid
single-term expressions are entered. Then, more complex valid multi-term expressions are built up from
simpler expressions.

Next, various syntactically valid expressions with unusual components (such as numbers with decimal
points) are tested. After that, expressions that are syntactically invalid in a variety of ways are entered—some
of these result in an error, while others work but in unexpected ways.

The final case ensures that the program does not crash even if the input ends in the middle of reading in
an arithmetic expression.

These cases also demonstrate that a successful command makes the newly-read expression the current
“r” does not change the current expression (case 15).

@
T

expression (case 5), while an unsuccessful

File Case(s) | Relevant features
testl.in 4-T | Single-term expressions
4 | e positive integer
5 | e negative integer; “r” changes the current expression
6 | e single-character variable
7 | e multi-character variable
811 | Increasingly complex multi-term expressions
8 | e two integer operands
9 | e two variable operands
10 | e one variable, one integer
11 | e combination of 810
12—16 | Syntactically valid expressions with unusual components
12 | @ Number with decimal point
13 | e Variable name made up of weird characters
14 | e Invalid operator
15-20 | Syntactically invalid expressions
15 | @ No expression entered; failed “r” does not change the current expression
16 | e No parentheses
17 | e Unbalanced parentheses
18 | e Not fully parenthesized
19 | e Extra balanced parentheses
20 | e Parentheses with nothing in them
test3.in 1 | End of input occurs in the middle of reading an expression

3 Evaluating expressions

The next set of test cases exercise the eval() function.

an expression does not change the value of the current expression.

Next, a more complex expression that includes all of the valid operators is tested. Finally, a number of
unusual cases are tested. In all cases, the program either performs as expected or produces an appropriate

€rTor message.

File Case(s) | Relevant features
testl.in 21-22 | Single integers

21 | e positive

22 | e negative

23-28 | Integer expressions

23 | e addition

24 | e subtraction

25 | e multiplication

26 | e division (exact)

27 | e division (fractional)

First, single positive and negative integers are
entered. Then a number of valid simple integer expressions are entered, including both division that has an
exact answer and division that has a fractional result. Notice that case 23 also demonstrates that evaluating

File

Case(s) | Relevant features
28 | e combination of all four operations in one
29-32 | Unusual cases
29 | e division by zero
30 | 0/0 (where both Os are computed)
31 | e Expression containing a variable
32 | e Invalid operator

Simplifying expressions

The final set of test cases exercise the simplify() function. Once again, the testing starts with simple

expressions and progresses to more complex ones.

The first four cases demonstrate simple expressions to which none of the simplification rules apply, so

simplification does not alter the expressions.

The next set of cases shows each simplification rule being applied individually, while the following set
contains expressions with subexpressions that evaluate to 0 or 1, which then simplifies the whole expression.
Case 37 also demonstrates that simplifying an expression does not change the current expression.

The final set of cases consists of expressions containing operators other than + and *—in all of these
cases, only the subexpressions containing + and * are simplified. Even an invalid operator does not pose a

problem (case 52).
File Case(s) | Relevant features
testl.in 33-36 | Basic cases (expression does not change)

33 | e single integer
34 | e single variable
35 | e integer plus variable
36 | e integer times variable

37-44 | Simple expressions where simplification rules apply
37 | e sum of integers
38 | e product of integers
39 | o (04 var)
40 | o (var + 0)
41 | o (1 % var)
42 | o (var 1)
43 | o (0 var)
44 | o (var % 0)

45-47 | Expressions with subexpressions that cause rules to apply
45 | e variable plus subexpression that evaluates to 0
46 | e variable times subexpression that evaluates to 0
47 | e variable times subexpression that evaluates to 1

48-52 | Expressions with operators other than + and
48 | e Numeric expression with —
49 | e Expression with — with a subexpression that gets simplified

File | Case(s) | Relevant features

50 | e Add another subexpression that also gets simplified
51 | @ A very complex expression multiplied by 0

52 | e Invalid operator

