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Abstract

Given a CNF formula and a weight for each assignment
of values to variables, two natural problems are weighted
model counting and distribution-aware sampling of satisfy-
ing assignments. Both problems have a wide variety of im-
portant applications. Due to the inherent complexity of the
exact versions of the problems, interest has focused on solv-
ing them approximately. Prior work in this area scaled only to
small problems in practice, or failed to provide strong theo-
retical guarantees, or employed a computationally-expensive
most-probable-explanation (MPE) queries that assumes prior
knowledge of a factored representation of the weight distri-
bution. We identify a novel parameter, tilt, which is the ratio
of the maximum weight of satisfying assignment to minimum
weight of satisfying assignment and present a novel approach
that works with a black-box oracle for weights of assignments
and requires only an NP-oracle (in practice, a SAT-solver) to
solve both the counting and sampling problems when the tilt
is small. Our approach provides strong theoretical guarantees,
and scales to problems involving several thousand variables.
We also show that the assumption of small tilt can be signifi-
cantly relaxed while improving computational efficiency if a
factored representation of the weights is known.

1 Introduction
Given a set of weighted elements, computing the cumulative
weight of all elements that satisfy a set of constraints is a
fundamental problem that arises in many contexts. Known
variously as weighted model counting, discrete integration
and partition function computation, this problem has appli-
cations in machine learning, probabilistic reasoning, statis-
tics, planning, and combinatorics, among other areas (Roth
1996; Sang et al. 2004; Domshlak and Hoffmann 2007;
Xue, Choi, and Darwiche 2012). A closely related problem
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is that of sampling elements satisfying a set of constraints,
where the probability of choosing an element is proportional
to its weight. The latter problem, known as distribution-
aware sampling or weighted sampling, also has important
applications in probabilistic reasoning, machine learning,
statistical physics, constrained random verification and other
domains (Jerrum and Sinclair 1996; Bacchus, Dalmao, and
Pitassi 2003; Naveh et al. 2006; Madras and Piccioni 1999).
Unfortunately, the exact versions of both problems are com-
putationally hard. Weighted model counting can be used
to count the number of satisfying assignments of a CNF
formula; hence it is #P-hard (Valiant 1979). As shown
by (Toda 1989), P#P contains the entire polynomial-time hi-
erarchy, and thus #P-hard problems are structurally harder
than NP-complete problems. Fortunately, approximate solu-
tions to weighted model counting and weighted sampling are
adequate for most applications. As a result, there has been
significant interest in designing practical approximate algo-
rithms for these problems. Before discussing approaches to
the approximate weighted sampling and counting problems,
we should pause to note that a fully polynomial random-
ized approximation scheme (FPRAS) for weighted sampling
would yield an FPRAS for #P-complete inference prob-
lems (Jerrum and Sinclair 1996; Madras and Piccioni 1999)
– a possibility that lacks any evidence so far. Therefore, even
approximate versions of weighted sampling and counting
are computationally challenging problems with applications
to a wide variety of domains.

Since constraints arising from a large class of real-world
problems can be modeled as propositional CNF (henceforth
CNF) formulas, we focus on CNF formulas and assume
that the weights of truth assignments are given by a weight
function w(·). Roth showed that approximately counting the
models of a CNF formula is NP-hard even when the struc-
ture of the formula is severely restricted (Roth 1996). By a
result of Jerrum, Valiant and Vazirani 1986, we also know
that approximate model counting and almost uniform sam-
pling (a special case of approximate weighted sampling) are
polynomially inter-reducible. Therefore, it is unlikely that
there exist polynomial-time algorithms for either approx-
imate weighted model counting or approximate weighted
sampling (Karp, Luby, and Madras 1989). Recently, a new
class of algorithms that use pairwise-independent random
parity constraints and MPE (most-probable-explanation)-



queries have been proposed for solving both problems (Er-
mon et al. 2013c; 2014; 2013a). These algorithms pro-
vide strong theoretical guarantees (an FPRAS relative to the
MPE-oracle), and have been shown to scale to medium-
sized problems in practice. While this represents a signifi-
cant step in our quest for practically efficient algorithms with
strong guarantees for approximate weighted model count-
ing and approximate weighted sampling, the use of MPE-
queries presents issues that need to be addressed in prac-
tice. First, MPE is an optimization problem – significantly
harder in practice than a feasibility query (CNF satisfiabil-
ity) (Park and Darwiche 2004). Indeed, even the approxi-
mate version of MPE has been shown to be NP-hard (Er-
mon et al. 2013a). Second, the use of MPE-queries along
with parity constraints poses scalability hurdles (Ermon et
al. 2014), and it has been argued in (Ermon et al. 2013b)
that the MPE-query-based weighted model counting algo-
rithm proposed in (Ermon et al. 2013c) is unlikely to scale
well to large problem instances. This motivates us to ask if
we can design approximate algorithms for weighted model
counting and weighted sampling that do not invoke MPE-
queries at all, and do not assume any specific representation
of the weight distribution.

Our primary contributions are twofold. First, we iden-
tify a novel parameter, tilt, defined as the ratio of the
maximum weight of a satisfying assignment to the mini-
mum weight of a satisfying assignment, which character-
izes the hardness of the approximate weighted model count-
ing and weighted sampling problems. Second, we provide
an affirmative answer to the question posed above, when
the tilt is small. Specifically, we show that two recently-
proposed algorithms for approximate (unweighted) model
counting (Chakraborty, Meel, and Vardi 2013b) and almost-
uniform (unweighted) sampling (Chakraborty, Meel, and
Vardi 2014; 2013a) can be adapted to work in the setting of
weighted assignments, using only a SAT-solver (NP-oracle)
and a black-box weight function w(·) when the tilt is small.
A black-box weight function is useful in applications where
a factored representation is not easily available, such as in
probabilistic program analysis and constrained random sim-
ulation. We also present arguments why it might be rea-
sonable to assume a small tilt for some important classes
of problems; a detailed classification of problems based on
their tilt, however, is beyond the scope of this work. For
distributions with large tilt, we propose an adaptation of
our algorithm, which requires a pseudo-Boolean satisfiabil-
ity solver instead of an (ordinary) SAT-solver as an oracle.

2 Notation and Preliminaries
Let F be a Boolean formula in conjunctive normal form
(CNF), and let X be the set of variables appearing in F . The
set X is called the support of F . Given a set of variables
S ⊆ X and an assignment σ of truth values to the variables
in X , we write σ|S to denote the projection of σ onto S. A
satisfying assignment or witness of F is an assignment that
makes F evaluate to true. We denote the set of all witnesses
of F by RF . For notational convenience, whenever the for-
mula F is clear from the context, we omit mentioning it.
Let D ⊆ X be a subset of the support such that there are

no two satisfying assignments that differ only in the truth
values of variables in D. In other words, in every satisfying
assignment, the truth values of variables in X \ D uniquely
determine the truth value of every variable in D. The set D
is called a dependent support of F , and X \ D is called an
independent support of F . Note that there may be more than
one independent supports; for example, (a∨¬b)∧ (¬a∨ b)
has three, namely {a}, {b}, and {a, b}. Clearly, if I is an
independent support of F , so is every superset of I.

Let w(·) be a function that takes as input an assign-
ment σ and yields a real number w(σ) ∈ (0, 1] called
the weight of σ. Given a set Y of assignments, we use
w(Y ) to denote Σσ∈Y w(σ). Our main algorithms (see Sec-
tion 4) make no assumptions about the nature of the weight
function, treating it as a black-box. In particular, we do
not assume that the weight of an assignment can be fac-
tored into the weights of projections of the assignment on
specific subsets of variables. The exception to this is Sec-
tion 6, where we consider possible improvements when the
weights are given by a known function, or “white-box”.
Three important quantities derived from the weight function
are wmax = maxσ∈RF w(σ), wmin = minσ∈RF w(σ), and
the tilt ρ = wmax/wmin. Following standard definitions, the
MPE (most probable explanation) is wmax. Thus an MPE-
query for a CNF formula F and weight distribution w(·)
seeks the value of wmax. Our algorithms require an upper
bound on the tilt, denoted r, which is provided by the user.
To maximize the efficiency of the algorithms, it is desirable
to obtain as tight a bound on the tilt as possible.

We write Pr [X : P] for the probability of outcome X
when sampling from a probability space P . For brevity, we
omit P when it is clear from the context. The expected value
of the outcome X is denoted E [X].

Special classes of hash functions, called k-wise indepen-
dent hash functions, play a crucial role in our work (Bel-
lare, Goldreich, and Petrank 1998). Let n,m and k be pos-
itive integers, and let H(n,m, k) denote a family of k-wise
independent hash functions mapping {0, 1}n to {0, 1}m.
We use h R←− H(n,m, k) to denote the probability space
obtained by choosing a hash function h uniformly at ran-
dom from H(n,m, k). The property of k-wise indepen-
dence guarantees that for all α1, . . . αk ∈ {0, 1}m and
for all distinct y1, . . . yk ∈ {0, 1}n, Pr

[∧k
i=1 h(yi) = αi

: h
R←− H(n,m, k)

]
= 2−mk. For every α ∈ {0, 1}m and

h ∈ H(n,m, k), let h−1(α) denote the set {y ∈ {0, 1}n |
h(y) = α}. Given RF ⊆ {0, 1}n and h ∈ H(n,m, k), we
use RF,h,α to denote the set RF ∩ h−1(α).

Our work uses an efficient family of hash functions, de-
noted as Hxor(n,m, 3). Let h : {0, 1}n → {0, 1}m be a
hash function in the family, and let y be a vector in {0, 1}n.
Let h(y)[i] denote the ith component of the vector obtained
by applying h to y. The family of hash functions of interest is
defined as {h(y) | h(y)[i] = ai,0 ⊕ (

⊕n
l=1 ai,l · y[l]), ai,j ∈

{0, 1}, 1 ≤ i ≤ m, 0 ≤ j ≤ n}, where ⊕ denotes the XOR
operation. By choosing values of ai,j randomly and inde-
pendently, we can effectively choose a random hash function
from the family. It has been shown in (Gomes, Sabharwal,



and Selman 2007) that this family of hash functions is 3-
wise independent. For every m ∈ {1, . . . |S| − 1}, the mth

prefix-slice of h, denoted h(m), is a map from {0, 1}|S| to
{0, 1}m, such that h(m)(y)[i] = h(y)[i], for all y ∈ {0, 1}|S|
and for all i ∈ {1, . . .m}. Similarly, the mth prefix-slice
of α, denoted α(m), is an element of {0, 1}m such that
α(m)[i] = α[i] for all i ∈ {1, . . .m}.

Given a CNF formula F , an exact weighted model counter
returns w(RF ). An approximate weighted model counter
relaxes this requirement to some extent: given a tolerance
ε > 0 and confidence 1 − δ ∈ (0, 1], the value v returned
by the counter satisfies Pr[w(RF )

1+ε ≤ v ≤ (1 + ε)w(RF )] ≥
1 − δ. A related kind of algorithm is a weighted-uniform
probabilistic generator, which outputs a witness w ∈ RF
such that Pr [w = y] = w(y) /w(RF ) for every y ∈ RF .
An almost weighted-uniform generator relaxes this require-
ment, ensuring that for all y ∈ RF , we have w(y)

(1+ε)w(RF ) ≤
Pr [w = y] ≤ (1+ε)w(y)

w(RF ) . Probabilistic generators are allowed
to occasionally “fail” by not returning a witness (when RF
is non-empty), with the failure probability upper bounded by
δ.

3 Related Work
Marrying strong theoretical guarantees with scalable perfor-
mance is the holy grail of research in the closely related ar-
eas of weighted model counting and weighted sampling. The
tension between the two objectives is evident from a sur-
vey of the literature. Earlier algorithms for weighted model
counting can be broadly divided into three categories: those
that give strong guarantees but scale poorly in practice, those
that give weak guarantees but scale well in practice, and
some recent attempts to bridge this gap. Techniques in the
first category attempt to compute the weighted model count
exactly by enumerating partial solutions (Sang, Beame, and
Kautz 2005) or by converting the CNF formula to alterna-
tive representations (Darwiche 2004; Choi and Darwiche
2013). Unfortunately, none of these approaches scale to
large problem instances. Techniques in the second cate-
gory employ variational methods, sampling-based methods
or other heuristic methods. Variational methods (Wainwright
and Jordan 2008; Gogate and Dechter 2011) work extremely
well in practice, but do not provide guarantees except in very
special cases. Sampling-based methods are usually based
on importance sampling (e.g. (Gogate and Dechter 2011)),
which provide weak one-sided bounds, or on Markov Chain
Monte Carlo (MCMC) sampling (Jerrum and Sinclair 1996;
Madras 2002). MCMC sampling is perhaps the most pop-
ular technique for both weighted sampling and weighted
model counting. Several MCMC algorithms like simulated
annealing and the Metropolis-Hastings algorithm have been
studied extensively in the literature (Kirkpatrick, Gelatt, and
Vecchi 1983; Madras 2002). While MCMC sampling is
guaranteed to converge to a target distribution under mild re-
quirements, convergence is often impractically slow (Jerrum
and Sinclair 1996). Therefore, practical MCMC sampling-
based tools use heuristics that destroy the theoretical guar-
antees. Several other heuristic techniques that provide weak

one-sided bounds have also been proposed in the litera-
ture (Gomes, Sabharwal, and Selman 2006).

Recently, Ermon et al. proposed new hashing-based al-
gorithms for approximate weighted model counting and ap-
proximate weighted sampling (2013c; 2013a; 2013b; 2014).
Their algorithms use random parity constraints as pairwise
independent hash functions to partition the set of satisfying
assignments of a CNF formula into cells. An oracle is then
queried to obtain the maximum weight of an assignment in a
randomly chosen cell. By repeating the MPE-queries poly-
nomially many times for randomly chosen cells of appropri-
ate expected sizes, Ermon et al. showed that they can prov-
ably compute approximate weighted model counts and also
provably achieve approximate weighted sampling. The per-
formance of Ermon et al’s algorithms depend crucially on
the ability to efficiently answer MPE-queries. Complexity-
wise, MPE is an optimization problem and is believed to
be much harder than a feasibility query (CNF satisfiabil-
ity). Furthermore, even the approximation of MPE is known
to be NP-hard (Ermon et al. 2013a). The problem is fur-
ther compounded by the fact that the MPE-queries generated
by Ermon et al’s algorithms have random parity constraints
built into them. Existing MPE-solving techniques work effi-
ciently when the weight distribution of assignments is speci-
fied by a graphical model, and the underlying graph has spe-
cific structural properties (Park and Darwiche 2004). With
random parity constraints, these structural properties are
likely to be violated very often. In (Ermon et al. 2013b), it
has been argued that an MPE-query-based weighted model-
counting algorithm proposed in (Ermon et al. 2013c) is un-
likely to scale well to large problem instances. Since MPE-
solving is also crucial in the weighted sampling algorithm
of (Ermon et al. 2013a), the same criticism applies to that
algorithm as well. Several relaxations of the MPE-query-
based algorithm proposed in (Ermon et al. 2013c), were
therefore discussed in (Ermon et al. 2013b). While these re-
laxations help reduce the burden of MPE-solving, they also
significantly weaken the theoretical guarantees.

In later work, Ermon et al. (2014) showed how the aver-
age size of parity constraints in their weighted model count-
ing and weighted sampling algorithms can be reduced us-
ing a new class of hash functions. This work, however, still
stays within the same paradigm as their earlier work – i.e., it
uses MPE-queries and XOR constraints. Although Ermon et
al’s algorithms provide a 16-factor approximation in theory,
in actual experiments, they use relaxations and timeouts of
the MPE-solver to get upper and lower bounds on the opti-
mal MPE solution. Unfortunately, these bounds do not come
with any guarantees on the factor of approximation. Run-
ning the MPE-solver to obtain the optimal value is likely to
take significantly longer, and is not attempted in Ermon et
al’s work. Furthermore, to get an approximation factor less
than 16 using Ermon et al’s algorithms requires replication
of variables. This can significantly increase the running time
of their algorithms. In contrast, the performance of our algo-
rithms is much less sensitive to the approximation factor, and
our experiments routinely compute 1.75-approximations of
weighted model counts.

The algorithms developed in this paper are closely related



to two algorithms proposed recently by Chakraborty, Meel
and Vardi (2013b; 2014) The first of these (Chakraborty,
Meel, and Vardi 2013b) computes the approximate (un-
weighted) model-count of a CNF formula, while the sec-
ond algorithm (Chakraborty, Meel, and Vardi 2014) per-
forms near-uniform (unweighted) sampling. Like Ermon et
al’s algorithms, these algorithms make use of parity con-
straints as pairwise independent hash functions, and can ben-
efit from the new class of hash functions proposed in (Er-
mon et al. 2014). Unlike Ermon et al’s algorithms, however,
Chakraborty et al. use a SAT-solver (NP-oracle) specifically
engineered to handle parity constraints efficiently. This al-
lows Chakraborty, Meel, and Vardi’s algorithms to scale to
much larger problems than those analyzed by Ermon et al.,
albeit in the unweighted setting. As we show later, this scal-
ability is inherited by our algorithms in the weighted setting
as well.

Algorithm 1 WeightMC(F, ε, δ, S, r)

1: counter← 0;C ← emptyList; wmax ← 1;
2: pivot← 2× de3/2

(
1 + 1

ε

)2e;
3: t← d35 log2(3/δ)e;
4: repeat
5: (c,wmax)←WeightMCCore(F, S, pivot, r,wmax);
6: counter← counter + 1;
7: if c 6= ⊥ then
8: AddToList(C, c · wmax);
9: until (counter < t)

10: finalCount← FindMedian(C);
11: return finalCount;

4 Algorithms
We now present algorithms for approximate weighted model
counting and approximate weighted sampling, assuming a
small bounded tilt and a black-box weight function. Recall-
ing that the tilt concerns weights of only satisfying assign-
ments, our assumption about it being bounded by a small
number is reasonable in several practical situations. For ex-
ample, when performing probabilistic inference with evi-
dence by reduction to weighted model counting (Chavira
and Darwiche 2008), every satisfying assignment of the
CNF formula corresponds to an assignment of values to vari-
ables in the underlying probabilistic graphical model that is
consistent with the evidence. Furthermore, the weight of a
satisfying assignment is the joint probability of the corre-
sponding assignment of variables in the probabilistic graph-
ical model. A large tilt would therefore mean existence of
two assignments that are consistent with the same evidence,
but of which one is overwhelmingly more likely than the
other. In several real-world situations, this is considered un-
likely given that numerical conditional probability values
are often obtained from human experts providing qualitative
and rough quantitative data (see, e.g. Sec 8.3 of (Dıez and
Druzdzel 2006)).

The algorithms presented in this section require an upper
bound for the tilt ρ as part of their input. It is worth noting

Algorithm 2 WeightMCCore(F, S, pivot, r,wmax)

1: (Y,wmax)←
2: BoundedWeightSAT(F,pivot, r,wmax, S);
3: if (w(Y ) /wmax ≤ pivot) then
4: return w(Y );
5: else
6: i← 0;
7: repeat
8: i← i+ 1;
9: Choose h at random from Hxor(|S|, i, 3);

10: Choose α at random from {0, 1}i;
11: (Y,wmax) ← BoundedWeightSAT(F ∧

(h(x1, . . . x|S|) = α),pivot, r,wmax, S);
12: until ((0 < w(Y ) /wmax ≤ pivot) or (i = n))
13: if ((w(Y ) /wmax > pivot) or (w(Y ) = 0)) then re-

turn (⊥,wmax);
14: else return (w(Y )·2i−1

wmax
,wmax);

Algorithm 3 BoundedWeightSAT(F,pivot, r,wmax, S)

1: wmin ← wmax/r; wtotal ← 0;Y = {};
2: repeat
3: y ← SolveSAT(F );
4: if (y = UNSAT) then
5: break;
6: Y = Y ∪ y;
7: F = AddBlockClause(F, y|S);
8: wtotal ← wtotal + w(y);
9: wmin ← min(wmin, w(y));

10: until (wtotal/(wmin · r) > pivot);
11: return (Y,wmin · r);

that although tighter upper bounds improve performance, the
algorithms are sound with respect to any upper bound esti-
mate. While an algorithmic solution to the estimation of up-
per bounds for ρ is beyond the scope of this work, such an
estimate can often be easily obtained from the designers of
probabilistic models. It is often easier for designers to esti-
mate an upper bound for ρ than to accurately estimatewmax,
since the former does not require precise knowledge of the
probabilities of all models.

Our weighted model counting algorithm, called
WeightMC, is best viewed as an adaptation of the
ApproxMC algorithm proposed by Chakraborty, Meel
and Vardi (2013b) for approximate unweighted model
counting. Similarly, our weighted sampling algorithm,
called WeightGen, can be viewed as an adaptation of the
the UniGen algorithm (Chakraborty, Meel, and Vardi 2014),
originally proposed for near-uniform unweighted sampling.
The key idea in both ApproxMC and UniGen is to partition
the set of satisfying assignments into “cells” containing
roughly equal numbers of satisfying assignments, using
a random hash function from the family Hxor(n,m, 3).
A random cell is then chosen and inspected to see if the
number of satisfying assignments in it is smaller than a
pre-computed threshold. This threshold, in turn, depends on



Algorithm 4 WeightGen(F, ε, r, S)

/*Assume ε > 6.84 */
1: wmax ← 1; Samples = {};
2: (κ,pivot)← ComputeKappaPivot(ε);
3: hiThresh← 1 +

√
2(1 + κ)pivot;

4: loThresh← 1√
2(1+κ)

pivot;
5: (Y,wmax) ← BoundedWeightSAT(F,hiThresh, r,

wmax, S);
6: if (w(Y ) /wmax ≤ hiThresh) then
7: Choose y weighted-uniformly at random from Y ;
8: return y;
9: else

10: (C,wmax)←WeightMC(F, 0.8, 0.2);
11: q ← dlogC − log wmax + log 1.8− log pivote;
12: Choose h at random from Hxor(|S|, n, 3);
13: Choose α at random from {0, 1}n;
14: i← q − 4;
15: repeat
16: i← i+ 1;
17: (Y,wmax) ← BoundedWeightSAT(F ∧

(hi(x1, . . . x|S|) = αi),hiThresh, r,wmax, S);
18: W ← w(Y ) /wmax

19: until (loThresh ≤W ≤ hiThresh) or (i = q)
20: if ((W > hiThresh) or (W < loThresh)) then return
⊥

21: else Choose y weighted-uniformly at random from
Y ; return y;

Algorithm 5 ComputeKappaPivot(ε)

1: Find κ ∈ [0, 1) such that ε = (1+κ)(7.55+ 0.29
(1−κ)2 )−1

2: pivot← d4.03
(
1 + 1

κ

)2e; return (κ,pivot)

the desired approximation factor or tolerance ε. If the cho-
sen cell is small enough, UniGen samples uniformly from
the chosen small cell to obtain a near-uniformly generated
satisfying assignment. ApproxMC multiplies the number
of satisfying assignments in the cell by a suitable scaling
factor to obtain an estimate of the model count. ApproxMC
is then repeated a number of times (depending on the
desired confidence 1 − δ) and the median of the computed
counts determined to obtain the final approximate model
count. For weighted model counting and sampling, the
primary modification that needs to be made to ApproxMC
and UniGen is that instead of requiring “cells” to have
roughly equal numbers of satisfying assignments, we now
require them to have roughly equal weights of satisfying
assignments.

A randomly chosen hash function from Hxor(n,m, 3)
consists of m XOR constraints, each of which has ex-
pected size n/2. Although ApproxMC and UniGen were
shown to scale to a few thousand variables, their perfor-
mance erodes rapidly beyond that point. It has recently been
shown in (Chakraborty, Meel, and Vardi 2014) that by using
random parity constraints on the independent support of a
formula (which can be orders of magnitude smaller than the

complete support), we can significantly reduce the size of
XOR constraints. We use this idea in our work. For all our
benchmark problems, obtaining the independent support of
the CNF formulae has been easy, once we examine the do-
main from which the problem originated.

Both WeightMC and WeightGen assume access to a sub-
routine called BoundedWeightSAT that takes as inputs a
CNF formula F , a “pivot”, an upper bound r on the tilt
and an upper bound wmax on the maximum weight of
a satisfying assignment in the independent support set S.
BoundedWeightSAT returns a set of satisfying assignments
of F such that the total weight of the returned assignments
scaled by 1/wmax exceeds the “pivot”. Since all weights are
assumed to be in (0, 1], the upper bound of wmax is set to 1 in
the initial invocation of BoundedWeightSAT. Subsequently,
BoundedWeightSAT returns a refined upper bound of wmax

from the knowledge of r (upper bound on the tilt), and the
minimum weight of all satisfying assignments seen so far.
Every invocation of BoundedWeightSAT also accesses an
NP-oracle, called SolveSAT, which can decide SAT. In ad-
dition, it accesses a subroutine AddBlockClause that takes
as inputs a formula F and a projected assignment σ|S , com-
putes a blocking clause for σ|S , and returns the formula F ′
obtained by conjoining F with the blocking clause.

4.1 WeightMC Algorithm
The pseudo-code for WeightMC is shown in Algorithm 1.
The algorithm takes as inputs a CNF formula F , toler-
ance ε ∈ (0, 1), confidence parameter δ ∈ (0, 1), inde-
pendent support S, and upper bound r on the tilt, and re-
turns an approximate weighted model count. WeightMC in-
vokes an auxiliary procedure WeightMCCore that computes
an approximate weighted model count by randomly parti-
tioning the space of satisfying assignments using hash func-
tions from the familyHxor(|S|,m, 3). WeightMC first com-
putes two parameters: pivot, which quantifies the size of
a “small” cell, and t, which determines the number of in-
vocations of WeightMC. The particular choice of expres-
sions to compute these parameters is motivated by technical
reasons. After invoking WeightMCCore sufficiently many
times, WeightMC returns the median of the non-⊥ counts
returned by WeightMCCore.

The pseudo-code for subroutine WeightMCCore is pre-
sented in Algorithm 2. WeightMCCore takes as inputs a
CNF formula F , independent support S, parameter pivot to
quantify the size of “small” cells, upper bound r on the tilt,
and the current upper bound on wmax, and returns an ap-
proximate weighted model count and a revised upper bound
on wmax. WeightMCCore first handles the easy case of the
total weighted count of F being less than pivot in lines 1–
4. Otherwise, in every iteration of the loop in lines 7–12,
WeightMCCore randomly partitions the solution space of F
using Hxor(|S|, i, 3) until a randomly chosen cell is “small”
i.e. the total weighted count of the cell is less than pivot.
We also refine the estimate for wmax in every iteration of
the loop in lines 7–12 using the minimum weight of solu-
tions seen so far (computed by BoundedWeightSAT). In the
event a chosen cell is “small”, WeightMCCore multiplies
the weighted count of the cell by the total number of cells



to obtain the estimated total weighted count. The estimated
total weighted count along with a refined estimate of wmax
is finally returned in line 14.

Theorem 1. Given a propositional formula F , ε ∈ (0, 1),
δ ∈ (0, 1), independent support S, and upper bound r
of the tilt, suppose WeightMC(F, ε, δ, S, r) returns c. Then

Pr
[
(1 + ε)

−1 · w(RF )) ≤ c ≤ (1 + ε) · w(RF ))]≥ 1− δ.

Theorem 2. Given an oracle (SolveSAT) for SAT,
WeightMC(F, ε, δ, S, r) runs in time polynomial in
log2(1/δ), r, |F | and 1/ε relative to the oracle.

The proofs of Theorem 1 and 2 can be found in
(Chakraborty et al. 2014).

4.2 WeightGen Algorithm
The pseudo-code for WeightGen is presented in Algorithm
4. WeightGen takes as inputs a CNF formula F , tolerance
ε > 6.84, upper bound r of the tilt, and independent support
S, and returns a random (approximately weighted-uniform)
satisfying assignment of F .
WeightGen can be viewed as an adaptation of

UniGen (Chakraborty, Meel, and Vardi 2014) to the
weighted domain. It first computes two parameters, κ
and pivot, and then uses them to compute hiThresh and
loThresh, which quantify the size of a “small” cell. The
easy case of the weighted count being less than hiThresh
is handled in lines 6–9. Otherwise, WeightMC is called to
estimate the weighted model count. This is then used to
estimate a range of candidate values for i, where a random
hash function fromHxor(|S|, i, 3) must be used to randomly
partition the solution space. The choice of parameters for
the invocation of WeightMC is motivated by technical
reasons. The loop in lines 13–19 terminates when a small
cell is found; a sample is then picked weighted-uniformly
at random from that cell. Otherwise, the algorithm reports a
failure in line 20.

Theorem 3. Given a CNF formula F , tolerance ε >
6.84, upper bound r of the tilt, and independent sup-
port S, for every y ∈ RF we have w(y)

(1+ε)w(RF ) ≤
Pr [WeightGen(F, ε, r,X) = y] ≤ (1 + ε) w(y)

w(RF ) . Also,
WeightGen succeeds (i.e. does not return ⊥) with proba-
bility at least 0.52.

Theorem 4. Given an oracle (SolveSAT) for SAT,
WeightGen(F, ε, r, S) runs in time polynomial in r, |F | and
1/ε relative to the oracle.

The proofs of Theorem 3 and 4 can be found
in (Chakraborty et al. 2014).

Implementation Details: In our implementations of
WeightGen and WeightMC, BoundedWeightSAT is imple-
mented using CryptoMiniSAT (Cry), a SAT solver that han-
dles XOR clauses efficiently. CryptoMiniSAT uses blocking
clauses to prevent already generated witnesses from being
generated again. Since the independent support of F deter-
mines every satisfying assignment of F , blocking clauses

can be restricted to only variables in the set S. We im-
plemented this optimization in CryptoMiniSAT, leading to
significant improvements in performance. We used “ran-
dom device” implemented in C++11 as a source of pseudo-
random numbers to make random choices in WeightGen and
WeightMC.

4.3 Generalization
We have so far restricted S to be an independent sup-
port of F in order to ensure 3-wise independence of
Hxor(|S|,m, 3) over the entire solution space RF . Indeed,
this is crucial for proving the theorems presented in this
section. However, similar to (Chakraborty, Meel, and Vardi
2014), our results can be generalized to arbitrary subsets S
of the support of F . For an arbitrary S, Theorems 3 and 1
generalize to weighted sampling and weighted counting over
the solution space projected onto S. To illustrate the projec-
tion of the solution space (RF ) over S, consider F = (a∨b)
and S = {b}. Then the projection of RF over S, denoted
by RF |S , is {{0}, {1}}. This generalization allows our al-
gorithms to extend to formulas of the form ∃(·)F without
incurring any additional cost. We discuss this generalization
in detail in the full version of our paper (Chakraborty et al.
2014).

5 Experimental Results
To evaluate the performance of WeightGen and WeightMC,
we built prototype implementations and conducted an ex-
tensive set of experiments. The suite of benchmarks was
made up of problems arising from various practical do-
mains as well as problems of theoretical interest. Specifi-
cally, we used bit-level unweighted versions of constraints
arising from grid networks, plan recognition, DQMR net-
works, bounded model checking of circuits, bit-blasted ver-
sions of SMT-LIB (SMT) benchmarks, and ISCAS89 (Br-
glez, Bryan, and Kozminski 1989) circuits with parity con-
ditions on randomly chosen subsets of outputs and next-
state variables (Sang, Beame, and Kautz 2005; John and
Chakraborty 2011). While our algorithms are agnostic to
the weight oracle, other tools that we used for compari-
son require the weight of an assignment to be the prod-
uct of the weights of its literals. Consequently, to create
weighted problems with tilt bounded by some number r,
we randomly selected m = max(15, n/100) of the n vari-
ables in a problem instance and assigned them the weight w,
where (w/(1− w))m = r, and assigned their negations the
weight 1− w. All other literals were assigned the weight 1.
To demonstrate the agnostic nature of our algorithms with
respect to the weight oracle, we also evaluated WeightMC
and WeightGen with a non-factored weight representation.
However, we do not present these results here due to lack of
space and also due to the unavailability of a competing tool
with which to compare our results on benchmarks with non-
factored weights. Details of these experiments are presented
in the full version of our paper. Unless mentioned otherwise,
our experiments for WeightMC reported in this paper used
r = 5, ε = 0.8, and δ = 0.2, while our experiments for
WeightGen used r = 5 and ε = 16.



Table 1: WeightMC, SDD, and WeightGen runtimes in sec-
onds.

Benchmark vars #clas
Weight-

MC SDD
Weight-

Gen
or-50 100 266 17 0.39 0.17
or-60 120 323 115 0.51 1.5
s526a 3 2 366 944 115 13 1.27
s526 15 7 452 1303 119 41 2.74
s953a 3 2 515 1297 12994 357 33
s1196a 15 7 777 2165 2559 1809 30
s1238a 7 4 704 1926 2885 mem 45
Squaring1 891 2839 18276 mem 164
Squaring7 1628 5837 21982 mem 175
LoginService2 11511 41411 207 mem 4.81
Sort 12125 49611 39641 T 258
Karatsuba 19594 82417 4352 T 326
EnqueueSeq 16466 58515 5763 mem 96
TreeMax 24859 103762 41 mem 4.2
LLReverse 63797 257657 1465 mem 298

To facilitate performing multiple experiments in paral-
lel, we used a high performance cluster, with each exper-
iment running on its own core. Each node of the clus-
ter had two quad-core Intel Xeon processors with 4GB of
main memory. We used 2500 seconds as the timeout of
each invocation of BoundedWeightSAT and 20 hours as
the overall timeout for WeightGen and WeightMC. If an
invocation of BoundedWeightSAT timed out in line 11 of
WeightMCCore or line 17 of WeightGen, we repeated the
execution of the corresponding loops without incrementing
the variable i in both algorithms. With this setup, WeightMC
and WeightGen were able to successfully return weighted
counts and generate weighted random solutions for formu-
las with almost 64, 000 variables.

We compared the performance of WeightMC with the
SDD Package (sdd), a state-of-the-art tool which can per-
form exact weighted model counting by compiling CNF for-
mulae into Sentential Decision Diagrams (Choi and Dar-
wiche 2013). We also tried to compare our tools against
Cachet, WISH, and PAWS, but the current versions of the
tools made available to us were broken and we are yet, at
the time of submission, to receive working tools. If we are
granted access to working tools in future, we will update
the full version of our paper with the corresponding com-
parisons. Our results are shown in Table 1, where column
1 lists the benchmarks and columns 2 and 3 give the num-
ber of variables and clauses for each benchmark. Column
4 lists the time taken by WeightMC, while column 5 lists
the time taken by SDD. We also measured the time taken by
WeightGen to generate samples, which we discuss later in
this section, and list it in column 6. “T” and “mem” indi-
cate that an experiment exceeded our imposed 20-hour and
4GB-memory limits, respectively. While SDD was generally
superior for small problems, WeightMC was significantly
faster for all benchmarks with more than 1,000 variables.

To evaluate the quality of the approximate counts returned
by WeightMC, we computed exact weighted model counts
using the SDD tool for a subset of our benchmarks. Fig-

ure 1 shows the counts returned by WeightMC, and the ex-
act counts from SDD scaled up and down by 1 + ε. The
weighted model counts are represented on the y-axis, while
the x-axis represents benchmarks arranged in increasing or-
der of counts. We observe that the weighted counts returned
by WeightMC always lie within the tolerance of the ex-
act counts. Over all of the benchmarks, the L2 norm of
the relative error was 0.014, demonstrating that in practice
WeightMC is substantially more accurate than the theoreti-
cal guarantees provided by Theorem 3.
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Figure 1: Quality of counts computed by WeightMC. The
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In another experiment, we studied the effect of different
values of the tilt bound r on the runtime of WeightMC. Run-
time as a function of r is shown for several benchmarks in
Figure 3, where times have been normalized so that at the
lowest tilt (r = 1) each benchmark took one (normalized)
time unit. Each runtime is an average over 15 runs on the
same benchmark. The theoretical linear dependence on the
tilt shown in Theorem 2 can be seen to roughly occur in
practice.

Since a probabilistic generator is likely to be invoked
many times with the same formula and weights, it is use-
ful to perform the counting on line 10 of WeightGen only
once, and reuse the result for every sample. Reflecting this,
column 6 in Table 1 lists the time, averaged over a large
number of runs, taken by WeightGen to generate one sample
given that the weighted model count on line 10 has already
been found. It is clear from Table 1 that WeightGen scales
to formulas with thousands of variables.

To measure the accuracy of WeightGen, we implemented
an Ideal Sampler, henceforth called IS, and compared the
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Figure 3: Runtime of WeightMC as a function of tilt bound.

distributions generated by WeightGen and IS for a represen-
tative benchmark. Given a CNF formula F , IS first generates
all the satisfying assignments, then computes their weights
and uses these to sample the ideal distribution. We generated
a large number N (= 6 × 106) of sample witnesses using
both IS and WeightGen. In each case, the number of times
various witnesses were generated was recorded, yielding a
distribution of the counts. Figure 2 shows the distributions
generated by WeightGen and IS for one of our benchmarks
(case110) with 16,384 solutions. The almost perfect match
between the distribution generated by IS and WeightGen
held also for other benchmarks. Thus, as was the case for
WeightMC, the accuracy of WeightGen is better in practice
than that established by Theorem 3.

6 White-Box Weight Functions
As noted above, the runtime of WeightMC is proportional
to the tilt of the weight function, which means that the al-
gorithm becomes impractical when the tilt is large. If the
assignment weights are given by a known polynomial-time-
computable function instead of an oracle, we can do bet-
ter. We abuse notation slightly and denote this weight func-
tion by w(X), where X is the set of support variables of
the Boolean formula F . The essential idea is to partition
the set of satisfying assignments into regions within which
the tilt is small. Defining RF (a, b) = {σ ∈ RF |a <
w(σ) ≤ b}, we have w(RF ) = w(RF (wmin, wmax)).
If we use a partition of the form RF (wmin, wmax) =
RF (wmax/2, wmax) ∪ RF (wmax/4, wmax/2) ∪ · · · ∪
RF (wmax/2

N , wmax/2
N−1), where wmax/2N ≤ wmin,

then in each partition region the tilt is at most 2. Note that
we do not need to know the actual values of wmin and
wmax: any bounds L and H such that 0 < L ≤ wmin
and wmax ≤ H will do (although if the bounds are too
loose, we may partition RF into more regions than neces-
sary). If assignment weights are poly-time computable, we
can add to F a constraint that eliminates all assignments not
in a particular region. So we can run WeightMC on each re-
gion in turn, passing 2 as the upper bound on the tilt, and
sum the results to get w(RF ). This idea is implemented in
PartitionedWeightMC (Algorithm 6).

The correctness and runtime of PartitionedWeightMC are
established by the following theorems, whose proofs are pre-
sented in (Chakraborty et al. 2014).

Algorithm 6 PartitionedWeightMC(F, ε, δ, S, L,H)

1: N ← dlog2H/Le+ 1; δ′ ← δ/N ; c← 0
2: for all 1 ≤ m ≤ N do
3: G← F ∧ (H/2m < w(X) ≤ H/2m−1)
4: d←WeightMC(G, ε, δ′, S, 2)
5: if (d = ⊥) then return ⊥
6: c← c+ d
7: return c

Theorem 5. If PartitionedWeightMC(F, ε, δ, S, L,H) re-
turns c (and all arguments are in the required ranges), then

Pr
[
(1 + ε)−1w(RF ) ≤ c ≤ (1 + ε)w(RF ))

]
≥ 1− δ.

Theorem 6. With access to an NP oracle, the runtime
of PartitionedWeightMC(F, ε, δ, S, L,H) is polynomial in
|F |, 1/ε, log(1/δ), and log r = log(H/L).

The reduction of the runtime’s dependence on the tilt
bound r from linear to logarithmic can be a substantial sav-
ing. If the assignment weights are products of literal weights,
as is the case in many applications, the best a priori bound
on the tilt ρ given only the literal weights is exponential in
n. Thus, unless the structure of the problem allows a better
bound on ρ to be used, WeightMC will not be practical. In
this situation PartitionedWeightMC can be used to maintain
polynomial runtime.

When implementing PartitionedWeightMC in practice
the handling of the weight constraint H/2m < w(X) ≤
H/2m−1 is critical to efficiency. If assignment weights are
sums of literal weights, or equivalently products of literal
weights (we just take logarithms), then the weight constraint
is a pseudo-Boolean constraint. In this case we may replace
the SAT-solver used by WeightMC with a pseudo-Poolean
satisfiability (PBS) solver. While a number of PBS-solvers
exist (Manquinho and Roussel 2012), none have the spe-
cialized handling of XOR clauses that is critical in making
WeightMC practical. The design of such solvers is a clear
direction for future work. We also note that the choice of 2
as the tilt bound for each region is arbitrary, and the value
may be adjusted depending on the application: larger values
will decrease the number of regions, but increase the diffi-
culty of counting within each region. Finally, note that the
same partitioning idea can be used to reduce WeightGen’s
dependence on r to be logarithmic.

7 Conclusion
In this paper, we considered approximate approaches to the
twin problems of distribution-aware sampling and weighted
model counting for SAT. For approximation techniques that
provide strong theoretical two-way bounds, a major limita-
tion is the reliance on potentially-expensive most probable
explanation (MPE) queries. We identified a novel parame-
ter, tilt, to categorize weighted counting and sampling prob-
lems for SAT. We showed how to remove the reliance on
MPE-queries, while retaining strong theoretical guarantees.
First, we provided model counting and sampling algorithms
that work with a black-box model of giving weights to as-
signments, requiring access only to an NP-oracle, which is



efficient for small tilt values. Experimental results demon-
strate the effectiveness of this approach in practice. Sec-
ond, we provided an alternative approach that promises to
be efficient for large tilt values, requiring, however, a white-
box weight model and access to a pseudo-Boolean solver.
As a next step, we plan to empirically evaluate this latter
approach using pseudo-Boolean solvers designed to handle
parity constraints efficiently.
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APPENDIX
Using notation introduced in Section 2, let w(y) denote the
weight of solution y and RF denote the set of witnesses of
the Boolean formula F . We denote the weight of the set RF
by w(RF ). For brevity, we write W (y) for the expression
w(y) /wmax (where wmax is the variable appearing in sev-
eral of our algorithms).

Recall that WeightMC is a probabilistic algorithm that
takes as inputs a Boolean CNF formulaF , a tolerance ε, con-
fidence parameter δ, a subset S of the support of F , and an
upper bound r on the ratio ρ. We extend the results in (?) and
show that if X is the support of F , and if S ⊆ X is an inde-
pendent support of F , then WeightMC(F , ε, δ, S, r) behaves
identically (in a probabilistic sense) to WeightMC(F , ε, δ,
X , r). Once this is established, the remainder of the proof
proceeds by making the simplifying assumption S = X .
The proofs of Lemmas 1 and 2 extend the earlier results by
(?) for unweighted sample space.

Clearly, the above claim holds trivially if X = S. There-
fore, we focus only on the case when S ( X . For notational
convenience, we assume X = {x1, . . . xn}, 0 ≤ k < n,
S = {x1, . . . xk} and D = {xk+1, . . . xn} in all the state-
ments and proofs in this section. We also use ~X to denote
the vector (x1, . . . xn), and similarly for ~S and ~D.

Lemma 1. Let F ( ~X) be a Boolean function, and S an in-
dependent support of F . Then there exist Boolean functions
g0, g1, . . . gn−k, each with support S such that

F ( ~X)↔

g0(~S) ∧
n−k∧
j=1

(xk+j ↔ gj(~S))


Proof. Since S is an independent support of F , the set D =
X \ S is a dependent support of F . From the definition of a
dependent support, there exist Boolean functions g1, . . . gk,
each with support S, such that F ( ~X) →

∧n−k
j=1 (xk+j ↔

gj(~S)).
Let g0(~S) be the characteristic function of

the projection of RF on S. More formally,
g0(~S) ≡

∨
(xk+1,...xn)∈{0,1}n−k F ( ~X). It follows that

F ( ~X) → g0(~S). Combining this with the result from the
previous paragraph, we get the implication F ( ~X) →(
g0(~S) ∧

∧n−k
j=1 (xk+j ↔ gj(~S))

)
From the definition of g0(~S) given above, we

have g0(~S) → F (~S, xk+1, . . . xn), for some val-
ues of xk+1, . . . xn. However, we also know that
F ( ~X) →

∧n−k
j=1 (xk+j ↔ gj(~S)). It follows that(

g0(~S) ∧
∧n−k
j=1 (xk+j ↔ gj(~S))

)
→ F ( ~X).

Referring to the pseudocode of WeightMC in Section 4,
we observe that the only steps that depend directly on
S are those in line 9, where h is chosen randomly from
Hxor(|S|, i, 3), and line 11, where the set Y is computed
by calling BoundedWeightSAT(F ∧ (h(x1, . . . x|S|) =
α), pivot, r,wmax). Since all subsequent steps of the algo-
rithm depend only on Y , it suffices to show that if S is an
independent support of F , the probability distribution of Y
obtained at line 11 is identical to what we would obtain if S
was set equal to the entire support X .

The following lemma formalizes the above statement. As
before, we assume X = {x1, . . . xn} and S = {x1, . . . xk}.

Lemma 2. Let S be an independent support of F ( ~X). Let h
and h′ be hash functions chosen uniformly at random from
Hxor(k, i, 3) and Hxor(n, i, 3), respectively. Let α and α′
be tuples chosen uniformly at random from {0, 1}i. Then,
for every Y ∈ {0, 1}n, pivot > 0, r ≥ 1, and wmax ≥ 1,
we have

Pr
[
BoundedWeightSAT

(
F ( ~X) ∧ (h(~S) = α), pivot, r,wmax

)
= Y

]
= Pr

[
BoundedWeightSAT

(
F ( ~X) ∧ (h′( ~X) = α′), pivot, r,wmax

)
= Y

]
Proof. Since h′ is chosen uniformly at random
from Hxor(n, i, 3), recalling the definition of
the latter we have F ( ~X) ∧ (h′( ~X) = α′) ≡
F ( ~X) ∧

∧i
l=1

(
(al,0 ⊕

⊕n
j=1 al,j · x[j])↔ α′[l]

)
, where

the coefficients al,j are chosen i.i.d. uniformly from {0, 1}.
Since S is an independent support of F , from Lemma 1,

there exist Boolean functions g1, . . . gn−k, each with sup-
port S, such that F ( ~X) →

∧n−k
j=1 (xk+j ↔ gj(~S)).

Therefore, F ( ~X) ∧ (h′( ~X) = α′) holds iff F ( ~X) ∧∧i
l=1

(
(al,0 ⊕

⊕k
j=1 al,j · x[j]⊕B)↔ α′[l]

)
does, where

B ≡
⊕n

j=k+1 al,j · gj−k(~S). Rearranging terms, we get

F ( ~X) ∧
∧i
l=1

(
(al,0 ⊕

⊕k
j=1 al,j · x[j])↔ (α′[l]⊕B)

)
.

Now since α′ is chosen uniformly at random from {0, 1}i
and since B is independent of α′, we have that α′[l] ⊕ B is
a random binary variable with equal probability of being 0
and 1. So α′[l]⊕B has the same distribution as α[l], and the
result follows.

Lemma 2 allows us to continue with the remainder
of the proof assuming S = X . It has already been
shown in (Gomes, Sabharwal, and Selman 2007) that
Hxor(n,m, 3) is a 3-independent family of hash functions.
We use this fact in a key way in the remainder of our analy-
sis. The following result about Chernoff-Hoeffding bounds,
proved in (Chakraborty, Meel, and Vardi 2013a), plays an
important role in our discussion.

Lemma 3. Let Γ be the sum of r-wise independent random
variables, each of which is confined to the interval [0, 1],
and suppose E[Γ] = µ. For 0 < β ≤ 1, if 2 ≤ r ≤ 3 and
µ ≥ de3/2β2e , then Pr [ |Γ− µ| ≥ βµ ] ≤ e−3/2.



8 Analysis of WeightMC
In this section we denote the quantity log2W (RF ) −
log2 pivot+1 bym. For simplicity of exposition, we assume
henceforth that m is an integer. A more careful analysis re-
moves this restriction with only a constant factor scaling of
the probabilities.

Lemma 4. Let algorithm WeightMCCore, when
invoked from WeightMC, return c with i be-
ing the final value of the loop counter in
WeightMCCore. Then Pr

[
(1 + ε)−1 · W (RF ) ≤ c

≤ (1 + ε) · W (RF )
∣∣∣ c 6= ⊥ ∧ i ≤ m] ≥ 1− e−3/2.

Proof. Referring to the pseudocode of WeightMCCore, the
lemma is trivially satisfied if W (RF ) ≤ pivot . Therefore,
the only non-trivial case to consider is when W (RF ) >
pivot and WeightMCCore returns from line 14. In this case,
the count returned is 2i · W (RF,h,α), where α, i and h de-
note (with abuse of notation) the values of the correspond-
ing variables and hash functions in the final iteration of
the repeat-until loop in lines 7–12 of the pseudocode. From
the pseudocode of WeightMCCore, we know that pivot =
de3/2(1 + 1/ε)2e. The lemma is now proved by showing
that for every i in {0, . . .m}, h ∈ H(n, i, 3), and α ∈
{0, 1}i, we have Pr

[
(1 + ε)−1 · W (RF ) ≤ 2iW (RF,h,α)

≤ (1 + ε) · W (RF )] ≥ 1− e−3/2.
For every y ∈ {0, 1}n and α ∈ {0, 1}i, define an indi-

cator variable γy,α as follows: γy,α = W (y) if h(y) = α,
and γy,α = 0 otherwise. Let us fix α and y and choose h
uniformly at random from H(n, i, 3). The random choice
of h induces a probability distribution on γy,α such that
Pr [γy,α =W (y)] = Pr [h(y) = α] = 2−i, and E [γy,α] =
W (y)Pr [γy,α =W (y)] = 2−iW (y). In addition, the 3-
wise independence of hash functions chosen fromH(n, i, 3)
implies that for every distinct ya, yb, yc ∈ RF , the random
variables γya,α, γyb,α and γyc,α are 3-wise independent.

Let Γα =
∑
y∈RF γy,α and µα = E [Γα]. Clearly, Γα =

W (RF,h,α) and µα =
∑
y∈RF E [γy,α] = 2−iW (RF ).

Therefore, using Lemma 3 with β = ε/(1 + ε), we have
Pr
[
W (RF )

(
1− ε

1+ε

)
≤ 2iW (RF,h,α) ≤ (1 + ε

1+ε )W (RF )
]

≥ 1 − e−3/2. Simplifying and noting that
ε

1+ε < ε for all ε > 0, we obtain
Pr
[
(1 + ε)−1 · W (RF ) ≤ 2iW (RF,h,α) ≤ (1 + ε) · W (RF )

]
≥ 1− e−3/2.

Lemma 5. GivenW (RF ) > pivot , the probability that an
invocation of WeightMCCore from WeightMC returns non-
⊥ with i ≤ m, is at least 1− e−3/2.

Proof. Let pi (0 ≤ i ≤ n) denote the conditional prob-
ability that WeightMCCore terminates in iteration i of the
repeat-until loop (lines 7–12 of the pseudocode) with 0 <
W (RF,h,α) ≤ pivot , given W (RF ) > pivot . Since the
choice of h and α in each iteration of the loop are in-
dependent of those in previous iterations, the conditional
probability that WeightMCCore returns non-⊥ with i ≤
m, given W (RF ) > pivot , is p0 + (1 − p0)p1 + · · · +

(1 − p0)(1 − p1) · · · (1 − pm−1)pm. Let us denote this
sum by P . Thus, P = p0 +

∑m
i=1

∏i−1
k=0(1 − pk)pi ≥(

p0 +
∑m−1
i=1

∏i−1
k=0(1− pk)pi

)
pm +

∏m−1
s=0 (1 − ps)pm

= pm. The lemma is now proved by showing that pm ≥
1− e−3/2.

It was shown in the proof of Lemma 4 that
Pr
[
(1 + ε)−1 · W (RF ) ≤ 2iW (RF,h,α) ≤ (1 + ε) · W (RF )

]
≥ 1 − e−3/2 for every i ∈ {0, . . . ,m}, h ∈ H(n, i, 3)
and α ∈ {0, 1}i. Substituting m for i, re-arranging
terms and noting that the definition of m implies
2−mW (RF ) = pivot/2, we get Pr

[
(1 + ε)−1(pivot/2)

≤ W (RF,h,α) ≤ (1 + ε)(pivot/2)] ≥ 1 − e−3/2.
Since 0 < ε ≤ 1 and pivot > 4, it follows that
Pr [0 <W (RF,h,α) ≤ pivot ] ≥ 1 − e−3/2. Hence,
pm ≥ 1− e−3/2.

Lemma 6. Let an invocation of
WeightMCCore from WeightMC return c. Then
Pr
[
c 6= ⊥ ∧ (1 + ε)−1 · w(RF ) ≤ c · wmax ≤

(1 + ε) · w(RF )] ≥ (1− e−3/2)2 > 0.6.

Proof. It is easy to see that the re-
quired probability is at least as large as
Pr
[
c 6= ⊥ ∧ i ≤ m ∧ (1 + ε)−1w(RF ) ≤ c · wmax

≤ (1 + ε) · w(RF )]. Dividing by wmax and applying
Lemmas 4 and 5, this probability is ≥ (1− e−3/2)2.

We now turn to proving that the confidence can be raised
to at least 1 − δ for δ ∈ (0, 1] by invoking WeightMCCore
O(log2(1/δ)) times, and by using the median of the non-⊥
counts thus returned. For convenience of exposition, we use
η(t,m, p) in the following discussion to denote the prob-
ability of at least m heads in t independent tosses of a
biased coin with Pr [heads] = p. Clearly, η(t,m, p) =∑t
k=m

(
t
k

)
pk(1− p)t−k.

Theorem 1. Given a propositional formula F and pa-
rameters ε (0 < ε ≤ 1) and δ (0 < δ ≤
1), suppose WeightMC(F, ε, δ,X, r) returns c. Then

Pr
[
(1 + ε)

−1 · w(RF )) ≤ c ≤ (1 + ε) · w(RF ))]≥ 1− δ.

Proof. Throughout this proof, we assume that
WeightMCCore is invoked t times from WeightMC,
where t = d35 log2(3/δ)e (see pseudocode for
ComputeIterCount in Section ??). Referring to the
pseudocode of WeightMC, the final count returned is the
median of the non-⊥ counts obtained from the t invocations
of WeightMCCore. Let Err denote the event that the
median is not in

[
(1 + ε)−1 · W (RF ) , (1 + ε) · W (RF )

]
.

Let “#non⊥ = q” denote the event that q (out of t) values
returned by WeightMCCore are non-⊥. Then, Pr [Err] =∑t
q=0 Pr [Err | #non⊥ = q] · Pr [#non⊥ = q].
In order to obtain Pr [Err | #non⊥ = q], we define a 0-

1 random variable Zi, for 1 ≤ i ≤ t, as follows. If the
ith invocation of WeightMCCore returns c, and if c is ei-
ther ⊥ or a non-⊥ value that does not lie in the interval
[(1+ε)−1 ·W (RF ) , (1+ε)·W (RF )], we set Zi to 1; other-
wise, we set it to 0. From Lemma 6, Pr [Zi = 1] = p < 0.4.



If Z denotes
∑t
i=1 Zi, a necessary (but not sufficient) con-

dition for event Err to occur, given that q non-⊥s were re-
turned by WeightMCCore, is Z ≥ (t − q + dq/2e). To see
why this is so, note that t− q invocations of WeightMCCore
must return ⊥. In addition, at least dq/2e of the remaining
q invocations must return values outside the desired inter-
val. To simplify the exposition, let q be an even integer. A
more careful analysis removes this restriction and results in
an additional constant scaling factor for Pr [Err]. With our
simplifying assumption, Pr [Err | #non⊥ = q] ≤ Pr[Z ≥
(t − q + q/2)] = η(t, t − q/2, p). Since η(t,m, p) is a de-
creasing function of m and since q/2 ≤ t − q/2 ≤ t, we
have Pr [Err | #non⊥ = q] ≤ η(t, t/2, p). If p < 1/2, it
is easy to verify that η(t, t/2, p) is an increasing function of
p. In our case, p < 0.4; hence, Pr [Err | #non⊥ = q] ≤
η(t, t/2, 0.4).

It follows from the above that Pr [Err] =
∑t
q=0

Pr [Err | #non⊥ = q] · Pr [#non⊥ = q] ≤ η(t, t/2, 0.4)·∑t
q=0 Pr [#non⊥ = q] = η(t, t/2, 0.4). Since

(
t
t/2

)
≥(

t
k

)
for all t/2 ≤ k ≤ t, and since

(
t
t/2

)
≤ 2t,

we have η(t, t/2, 0.4) =
∑t
k=t/2

(
t
k

)
(0.4)k(0.6)t−k ≤(

t
t/2

)∑t
k=t/2(0.4)k(0.6)t−k ≤ 2t

∑t
k=t/2(0.6)t(0.4/0.6)k

≤ 2t · 3 · (0.6 × 0.4)t/2 ≤ 3 · (0.98)t. Since t =
d35 log2(3/δ)e, it follows that Pr [Err] ≤ δ.

Theorem 2. Given an oracle for SAT,
WeightMC(F, ε, δ, S, r) runs in time polynomial in
log2(1/δ), r, |F | and 1/ε relative to the oracle.

Proof. Referring to the pseudocode for WeightMC, lines 1–
3 take O(1) time. The repeat-until loop in lines 4–9 is re-
peated t = d35 log2(3/δ)e times. The time taken for each
iteration is dominated by the time taken by WeightMCCore.
Finally, computing the median in line 10 takes time lin-
ear in t. The proof is therefore completed by showing that
WeightMCCore takes time polynomial in |F |, r and 1/ε rel-
ative to the SAT oracle.

Referring to the pseudocode for WeightMCCore, we find
that BoundedWeightSAT is called O(|F |) times. Observe
that when the loop in BoundedWeightSAT terminates, wmin

is such that each y ∈ RF whose weight was added to
wtotal has weight at least wmin. Thus since the loop ter-
minates when wtotal/wmin > r · pivot, it can have iter-
ated at most (r · pivot) + 1 times. Therefore each call to
BoundedWeightSAT makes at most (r · pivot) + 1 calls
to the SAT oracle, and takes time polynomial in |F |, r,
and pivot relative to the oracle. Since pivot is in O(1/ε2),
the number of calls to the SAT oracle, and the total time
taken by all calls to BoundedWeightSAT in each invoca-
tion of WeightMCCore is polynomial in |F |, r and 1/ε rel-
ative to the oracle. The random choices in lines 9 and 10 of
WeightMCCore can be implemented in time polynomial in
n (hence, in |F |) if we have access to a source of random
bits. Constructing F ∧ h(z1, . . . zn) = α in line 11 can also
be done in time polynomial in |F |.

9 Analysis of WeightGen
For convenience of analysis, we assume that log(W (RF )−
1)− log pivot is an integer, where pivot is the quantity com-
puted by algorithm ComputeKappaPivot (see Section 4).
A more careful analysis removes this assumption by scal-
ing the probabilities by constant factors. Let us denote
log(W (RF ) − 1) − log pivot by m. The expression used
for computing pivot in algorithm ComputeKappaPivot en-
sures that pivot ≥ 17. Therefore, if an invocation of
WeightGen does not return from line 8 of the pseudocode,
thenW (RF ) ≥ 18. Note also that the expression for com-
puting κ in algorithm ComputeKappaPivot requires ε ≥
1.71 in order to ensure that κ ∈ [0, 1) can always be found.

In the case where W (RF ) ≤ 1 + (1 + κ)pivot,
BoundedWeightSAT returns all witnesses of F and
WeightGen returns a perfect weighted-uniform sample on
line 8. So we restrict our attention in the lemmas below to
the other case, where as noted above we haveW (RF ) ≥ 18.
The following lemma shows that q, computed in line 11 of
the pseudocode, is a good estimator of m.

Lemma 7. Pr[q − 3 ≤ m ≤ q] ≥ 0.8

Proof. Recall that in line 10 of the pseudocode, an ap-
proximate weighted model counter is invoked to obtain
an estimate, C, of w(RF ) with tolerance 0.8 and confi-
dence 0.8. By the definition of approximate weighted model
counting, we have Pr[ C1.8 ≤ w(RF ) ≤ (1.8)C] ≥ 0.8.
Defining c = C/wmax, we have Pr[log c − log(1.8) ≤
logW (RF ) ≤ log c + log(1.8)] ≥ 0.8. It follows that
Pr[log c − log(1.8) − log pivot − log( 1

1−1/W(RF ) ) ≤
log(W (RF ) − 1) − log pivot ≤ log c − log pivot +
log(1.8) − log( 1

1−1/W(RF ) )] ≥ 0.8. Substituting q =

dlogC−log wmax+log 1.8−log pivote = dlog c+log 1.8−
log pivote, and using the bounds wmax ≤ 1, log 1.8 ≤ 0.85,
and log( 1

1−1/W(RF ) ) ≤ 0.12 (since W (RF ) ≥ 18 at line
10 of the pseudocode, as noted above), we have Pr[q − 3 ≤
m ≤ q] ≥ 0.8.

The next lemma provides a lower bound on the probability
of generation of a witness. Let wi,y,α denote the probability

Pr
[
pivot
1+κ ≤ W (RF,h,α) ≤ 1 + (1 + κ)pivot ∧ h(y) = α

]
,

with h
R←− Hxor(n, i, 3). The proof of the lemma also

provides a lower bound on wm,y,α.

Lemma 8. For every witness y ∈ RF , Pr[y is output] ≥
0.8(1−e−3/2)W(y)

(1.06+κ)(W(RF )−1)

Proof. Let U denote the event that witness y ∈ RF is out-
put by WeightGen on inputs F , ε, r, and X . Let pi,y denote
the probability that we exit the loop at line 19 with a par-
ticular value of i and y ∈ RF,h,α, where α ∈ {0, 1}i is the
value chosen on line 13. Then, Pr[U ] = ∪qi=q−3

W(y)
W(Y )pi,y ,

where Y is the set returned by BoundedWeightSAT on line
17. Let fm = Pr[q − 3 ≤ m ≤ q]. From Lemma 7,
we know that fm ≥ 0.8. From line 20, we also know
that 1

1+κpivot ≤ W (Y ) ≤ 1 + (1 + κ)pivot. Therefore,



Pr[U ] ≥ W(y)
1+(1+κ)pivot · pm,y · fm. The proof is now com-

pleted by showing pm,y ≥ 1
2m (1− e−3/2), as then we have

Pr[U ] ≥ 0.8(1−e−3/2)
(1+(1+κ)pivot)2m ≥

0.8(1−e−3/2)
(1.06+κ)(W(RF )|−1) . The last

inequality uses the observation that 1/pivot ≤ 0.06.
To calculate pm,y , we first note that since

y ∈ RF , the requirement “y ∈ RF,h,α” reduces
to “y ∈ h−1(α)”. For α ∈ {0, 1}n, we define
wm,y,α = Pr

[
pivot
1+κ ≤ W (RF,h,α) ≤ 1 + (1 + κ)

pivot ∧ h(y) = α : h
R←− Hxor(n,m, 3)

]
. Then we

have pm,y = Σα∈{0,1}m (wm,y,α · 2−m). So to prove
the desired bound on pm,y it suffices to show that
wm,y,α ≥ (1 − e−3/2)/2m for every α ∈ {0, 1}m and
y ∈ {0, 1}n.

Towards this end, let us first fix a random y. Now we
define an indicator variable γz,α for every z ∈ RF \ {y}
such that γz,α = W (z) if h(z) = α, and γz,α = 0
otherwise. Let us fix α and choose h uniformly at ran-
dom from Hxor(n,m, 3). The random choice of h in-
duces a probability distribution on γz,α such that E[γz,α] =
W (z)Pr[γz,α = W (z)] = W (z)Pr[h(z) = α] =
W (z) /2m. Since we have fixed y, and since hash func-
tions chosen from Hxor(n,m, 3) are 3-wise independent,
it follows that for every distinct za, zb ∈ RF \ {y}, the
random variables γza,α, γzb,α are 2-wise independent. Let
Γα =

∑
z∈RF \{y} γz,α and µα = E[Γα]. Clearly, Γα =

W (RF,h,α) − W (y) and µα =
∑
z∈W(RF )\{y} E[γz,α]

= (W (RF ) − W (y))/2m. Since pivot = (W (RF ) −
1)/2m ≤ (W (RF ) − W (y))/2m, we have Pr[pivot1+κ ≤
W (RF,h,α) ≤ 1 + (1 + κ)pivot] ≥ Pr[W(RF )−W(y)

(1+κ)2m ≤
W (RF,h,α) ≤ 1 + (1 +κ)W(RF )−1

2m ] ≥ Pr[W(RF )−W(y)
2m(1+κ) ≤

W (RF,h,α) − W (y) ≤ (1 + κ) (W(RF )−W(y))
2m ]. Since

pivot = de3/2(1 + 1/κ)2e and the variables γz,α are 2-wise
independent and in the range [0, 1], we may apply Lemma
3 with β = κ/(1 + κ) to obtain Pr[pivot1+κ ≤ W (RF,h,α) ≤
1 + (1 +κ)pivot] ≥ 1− e−3/2. Since h is chosen at random
from Hxor(n,m, 3), we also have Pr[h(y) = α] = 1/2m. It
follows that wm,y,α ≥ (1− e−3/2)/2m.

The next lemma provides an upper bound of wi,y,α and
pi,y .

Lemma 9. For i < m, both wi,y,α and pi,y are bounded
above by 1

W(RF )−1
1

(1− 1+κ

2m−i )
2 .

Proof. We will use the terminology introduced in the
proof of Lemma 8. Clearly, µα = W(RF )−W(y)

2i . Since
each γz,α takes values in [0, 1], V [γz,α] ≤ E [γz,α].
Therefore, σ2

z,α ≤
∑
z 6=y,z∈RF E [γz,α] ≤

∑
z∈RF E [γz,α]

= E [Γα] ≤ 2−m(W (RF ) − W (y)). So Pr[pivot1+κ ≤
W (RF,h,α) ≤ 1 + (1 + κ)pivot] ≤ Pr[W (RF,h,α) −
W (y) ≤ (1 + κ)pivot]. From Chebyshev’s inequality, we
know that Pr [|Γα − µz,α| ≥ λσz,α] ≤ 1/λ2 for every
λ > 0. Pr[W (RF,h,α) −W (y) ≤ (1 + κ) (W(RF )−W(y))

2i ]

≤ Pr
[
|(W (RF,h,α)−W (y))− W(RF )−1

2i |

≥ (1− 1+κ
2m−i )

W(RF )−W(y)
2i

]
≤ 1

(1− (1+κ)

2m−i )
2 · 2i

W(RF )−1 .

Since h is chosen at random from Hxor(n,m, 3),
we also have Pr[h(y) = α] = 1/2i. It follows that
wi,y,α ≤ 1

W(RF )−1
1

(1− 1+κ

2m−i )
2 . The bound for pi,y is easily

obtained by noting that pi,y = Σα∈{0,1}i
(
wi,y,α · 2−i

)
.

Lemma 10. For every witness y ∈ RF , Pr[y is output] ≤
(1+κ)W(y)
W(RF )−1 (2.23 + 0.48

(1−κ)2 )

Proof. We will use the terminology introduced in the proof
of Lemma 8. Using pivot

1+κ ≤ W (Y ), we have Pr[U ] =

∪qi=q−3
W(y)
W(Y )pi,y ≤

1+κ
pivotW (y)

∑q
i=q−3 pi,y . Now we sub-

divide the calculation of Pr[U ] into three cases depending
on the value of m.
Case 1 : q − 3 ≤ m ≤ q.
Now there are four values that m can take.

1. m = q − 3. We know that pi,y ≤ Pr[h(y) = α] = 1
2i , so

Pr[U |m = q−3] ≤ 1+κ
pivot ·

W(y)
2q−3

15
8 . Substituting the values

of pivot and m gives Pr[U |m = q − 3] ≤ 15(1+κ)W(y)
8(W(RF )−1) .

2. m = q − 2. For i ∈ [q − 2, q] pi,y ≤ Pr[h(y) =
α] = 1

2i Using Lemma 9, we get pq−3,y ≤
1

W(RF )−1
1

(1− 1+κ
2 )

2 . Therefore, Pr[U |m = q − 2] ≤
1+κ
pivotW (y) 1

W(RF )−1
4

(1−κ)2 + 1+κ
pivotW (y) 1

2q−2
7
4 . Noting

that pivot = W(RF )−1
2m > 10, we obtain Pr[U |m =

q − 2] ≤ (1+κ)W(y)
W(RF )−1 ( 7

4 + 0.4
(1−κ)2 )

3. m = q − 1. For i ∈ [q − 1, q], pi,y ≤
Pr[h(y) = α] = 1

2i . Using Lemma 9, we get

pq−3,y +pq−2,y ≤ 1
W(RF )−1

(
1

(1− 1+κ

22
)
2 + 1

(1− 1+κ
2 )

2

)
=

1
W(RF )−1

(
16

(3−κ)2 + 4
(1−κ)2

)
. Therefore, Pr[U |m = q −

1] ≤ 1+κ
pivotW (y)

(
1

W(RF )−1

(
16

(3−κ)2 + 4
(1−κ)2

)
+

1
2q−1

3
2

)
. Since pivot = W(RF )−1

2m > 10 and κ ≤ 1,

Pr[U |m = q − 1] ≤ (1+κ)W(y)
W(RF )−1 (1.9 + 0.4

(1−κ)2 ).

4. m = q. We have pq,y ≤ Pr[h(y) = α] = 1
2q , and

using Lemma 9 we get pq−3,y + pq−2,y + pq−1,y ≤
1

W(RF )−1

(
1

(1− 1+κ

23
)
2 + 1

(1− 1+κ

22
)
2 + 1

(1− 1+κ
2 )

2

)
=

1
W(RF )−1

(
64

(7−κ)2 + 16
(3−κ)2 + 4

(1−κ)2

)
.

So Pr[U |m = q] ≤
1+κ
pivotW (y)

(
1

W(RF )−1

(
64

(7−κ)2 + 16
(3−κ)2 + 4

(1−κ)2

)
+ 1
)

.

Using pivot = W(RF )−1
2m > 10 and κ ≤ 1, we obtain

Pr[U |m = q] ≤ (1+κ)W(y)
W(RF )−1 (1.58 + 0.4

(1−κ)2 ).

Since Pr[U |q−3 ≤ m ≤ q] ≤ maxq−3≤i≤q(Pr[U |m = i]),
we have Pr[U |q − 3 ≤ m ≤ q] ≤ 1+κ

W(RF )−1 (1.9 + 0.4
(1−κ)2 )

from the m = q − 1 case above.



Case 2 : m < q − 3. Since pi,y ≤ Pr[h(y) = α] = 1
2i , we

have Pr[U |m < q − 3] ≤ 1+κ
pivotW (y) · 1

2q−3
15
8 . Substitut-

ing the value of pivot and maximizing m − q + 3, we get
Pr[U |m < q − 3] ≤ 15(1+κ)W(y)

16(W(RF )−1) .
Case 3 : m > q. Using Lemma 9, we know that
Pr[U |m > q] ≤ 1+κ

pivot
W(y)

W(RF )−1
∑q
i=q−3

1

(1− 1+κ

2m−i )
2 .

The R.H.S. is maximized when m = q + 1. Hence
Pr[U |m > q] ≤ 1+κ

pivot
W(y)

W(RF )−1×
∑q
i=q−3

1

(1− 1+κ

2q+1−i )
2 .

Noting that pivot = W(RF )−1
2m > 10 and expand-

ing the above summation we have Pr[U |m > q] ≤
(1+κ)W(y)
W(RF )−1

1
10

(
256

(15−κ)2 + 64
(7−κ)2 + 16

(3−κ)2 + 2
(1−κ)2

)
. Us-

ing κ ≤ 1 for the first three summation terms, we obtain
Pr[U |m > q] ≤ (1+κ)W(y)

W(RF )−1 (0.71 + 0.4
(1−κ)2 )

Summing up all the above cases, Pr[U ] = Pr[U |m <
q−3]×Pr[m < q−3]+Pr[U |q−3 ≤ m ≤ q]×Pr[q−3 ≤
m ≤ q] + Pr[U |m > q] × Pr[m > q]. From Lemma 7
we have Pr[m < q − 1] ≤ 0.2 and Pr[m > q] ≤ 0.2, so
Pr[U ] ≤ (1+κ)W(y)

W(RF )−1 (2.23 + 0.48
(1−κ)2 )

Combining Lemmas 8 and 10, the following lemma is ob-
tained.
Lemma 11. For every witness y ∈ RF , if ε > 1.71, then

w(y)
(1+ε)w(RF ) ≤ Pr [WeightGen(F, ε, r,X) = y] ≤ (1 +

ε) w(y)
w(RF ) .

Proof. In the case whereW (RF ) ≤ 1 + (1 + κ)pivot, the
result holds because WeightGen returns a perfect weighted-
uniform sample. Otherwise, using Lemmas 8 and 10 and
substituting (1 + ε) = (1 + κ)(2.36 + 0.51

(1−κ)2 ) = 18
17 (1 +

κ)(2.23+ 0.48
(1−κ)2 ), via the inequality 1.06+κ

0.8(1−e−3/2)
≤ 18

17 (1+

κ)(2.23 + 0.48
(1−κ)2 ) we have the bounds W(y)

(1+ε)(W(RF )−1) ≤
Pr [WeightGen(F, ε, r,X) = y] ≤ 18

17 (1 + ε) W(y)
W(RF )−1 . Us-

ingW (RF ) ≥ 18, we obtain the desired result.

Lemma 12. Algorithm WeightGen succeeds (i.e. does not
return ⊥) with probability at least 0.62.

Proof. If W (RF ) ≤ 1 + (1 + κ)pivot, the theorem holds
trivially. Suppose W (RF ) > 1 + (1 + κ)pivot and let
Psucc denote the probability that a run of the algorithm suc-
ceeds. Let pi with q − 3 ≤ i ≤ q denote the conditional
probability that WeightGen (F , ε, r, X) terminates in iter-
ation i of the repeat-until loop (lines 15–19) with pivot

1+κ ≤
W (RF,h,α) ≤ 1 + (1 + κ)pivot, given that W (RF ) >

1+(1+κ)pivot. Then Psucc =
∑q
i=q−3 pi

∏i
j=q−3(1−pj).

Letting fm = Pr[q − 3 ≤ m ≤ q], by Lemma 7 we have
Psucc ≥ pmfm ≥ 0.8pm. The theorem is now proved by
using Lemma 3 to show that pm ≥ 1− e−3/2 ≥ 0.776.
For every y ∈ {0, 1}n and α ∈ {0, 1}m, define an indicator
variable νy,α as follows: νy,α = W (y) if h(y) = α, and
νy,α = 0 otherwise. Let us fix α and y and choose h uni-
formly at random from Hxor(n,m, 3). The random choice

of h induces a probability distribution on νy,α, such that
Pr[νy,α = W (y)] = Pr[h(y) = α] = 2−m and E[νy,α] =
W (y)Pr[νy,α = 1] = 2−mW (y). In addition 3-wise in-
dependence of hash functions chosen from Hxor(n,m, 3)
implies that for every distinct ya, yb, yc ∈ RF , the random
variables νya,α, νyb,α and νyc,α are 3-wise independent.

Let Γα =
∑
y∈RF νy,α and µα = E [Γα]. Clearly, Γα =

W (RF,h,α) and µα =
∑
y∈RF E [νy,α] = 2−mW (RF ).

Since pivot = de3/2(1 + 1/ε)2e, we have 2−mW (RF ) ≥
e3/2(1 + 1/ε)2, and so using Lemma 3 with β = κ/(1 + κ)

we obtain Pr
[
W(RF )

2m .
(

1− κ
1+κ

)
≤ W (RF,h,α)

≤ (1 + κ
1+κ )W(RF )

2m

]
> 1 − e−3/2. Simplify-

ing and noting that κ
1+κ < κ for all κ > 0,

we have Pr
[
(1 + κ)−1 · W(RF )

2m ≤ W (RF,h,α)

≤ (1 + κ) · W(RF )
2m

]
> 1 − e−3/2. Also, pivot

1+κ =

1
1+κ

W(RF )−1
2m ≤ W(RF )

(1+κ)2m and 1 + (1 + κ)pivot =

1 + (1+κ)(W(RF )−1)
2m ≥ (1+κ)W(RF )

2m . Therefore,
pm = Pr[pivot1+κ ≤ W (RF,h,α) ≤ 1 + (1 +

κ)pivot] ≥ Pr
[
(1 + κ)−1 · W(RF )

2m ≤ W (RF,h,α)

≤ (1 + κ) · W(RF )
2m

]
≥ 1− e−3/2.

By combining Lemmas 11 and 12, we get the following:

Theorem 3. Given a CNF formula F , tolerance ε > 1.71,
tilt bound r, and independent support S, for every y ∈ RF
we have w(y)

(1+ε)w(RF ) ≤ Pr [WeightGen(F, ε, r,X) = y] ≤
(1+ε) w(y)

w(RF ) . Also, WeightGen succeeds (i.e. does not return
⊥) with probability at least 0.62.

Theorem 4. Given an oracle for SAT,
WeightGen(F, ε, r, S) runs in time polynomial in r, |F | and
1/ε relative to the oracle.

Proof. Referring to the pseudocode for WeightGen, the run-
time of the algorithm is bounded by the runtime of the con-
stant number (at most 5) of calls to BoundedWeightSAT and
one call to WeightMC (with parameters δ = 0.2, ε = 0.8).
As shown in Theorem 1, the call to WeightMC can be done
in time polynomial in |F | and r relative to the oracle. Ev-
ery invocation of BoundedWeightSAT can be implemented
by at most (r · pivot) + 1 calls to a SAT oracle (as in the
proof of Theorem 2), and the total time taken by all calls to
BoundedWeightSAT is polynomial in |F |, r and pivot rel-
ative to the oracle. Since pivot = O(1/ε2), the runtime of
WeightGen is polynomial in r, |F | and 1/ε relative to the
oracle.

10 Analysis of Partitioned WeightMC
Theorem 5. If PartitionedWeightMC(F, ε, δ, S, L,H) re-
turns c (and all arguments are in the required ranges), then

Pr
[
c 6= ⊥ ∧ (1 + ε)−1w(RF ) ≤ c ≤ (1 + ε)w(RF ))

]
≥ 1−δ.



Proof. For future reference note that since N ≥ 1 and
δ < 1, we have (1 − δ′)N = (1 − δ/N)N ≥ 1 − δ. De-
fine Gm = F ∧ (H/2m < w(X) ≤ H/2m−1), the for-
mula passed to WeightMC in iteration m. Clearly, we have
w(RF ) =

∑N
m=1 w(RGm). Since w(·) is poly-time com-

putable, the NP oracle used in WeightMC can decide the
satisfiability of Gm, and so WeightMC will return a value
dm. Now since H/2m and H/2m−1 are lower and upper
bounds respectively on the weights of any solution to Gm,
by Theorem 1 we have

Pr
[
dm 6= ⊥ ∧ (1 + ε)−1w(RGm) ≤ dm ≤ (1 + ε)w(RGm)

]
≥ 1−δ′

for every m, and so

Pr
[
c 6= ⊥ ∧ (1 + ε)−1w(RF ) ≤ c ≤ (1 + ε)w(RF )

]
= Pr

[
c 6= ⊥ ∧ (1 + ε)−1

∑
m

w(RGm) ≤ c ≤ (1 + ε)
∑
m

w(RGm)

]
≥ (1− δ′)N ≥ 1− δ

as desired.

Theorem 6. With access to an NP oracle, the runtime
of PartitionedWeightMC(F, ε, δ, S, L,H) is polynomial in
|F |, 1/ε, log(1/δ), and log r = log(H/L).

Proof. Put r = H/L. By Theorem 2, each call to
WeightMC runs in time polynomial in |G|, 1/ε and
log(1/δ′) (the tilt bound is constant). Clearly |G| is poly-
nomial in |F |. Since δ′ = δ/N we have log(1/δ′) =
log(N/δ) = O(log((logk r)/δ)) = O(log log r +
log(1/δ)). Therefore each call to WeightMC runs in time
polynomial in |F |, 1/ε, log(1/δ), and log log r. Since there
are N = O(log r) calls, the result follows.


