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Abstract

Modern society is increasingly reliant on the functionality
of infrastructure facilities and utility services. Consequently,
there has been surge of interest in the problem of quantifica-
tion of system reliability, which is known to be #P-complete.
Reliability also contributes to the resilience of systems, so
as to effectively make them bounce back after contingencies.
Despite diverse progress, most techniques to estimate system
reliability and resilience remain computationally expensive.
In this paper, we investigate how recent advances in hashing-
based approaches to counting can be exploited to improve
computational techniques for system reliability. The primary
contribution of this paper is a novel framework, RelNet, that
reduces the problem of computing reliability for a given net-
work to counting the number of satisfying assignments of a
Σ1

1 formula, which is amenable to recent hashing-based tech-
niques developed for counting satisfying assignments of SAT
formula. We then apply RelNet to ten real world power-
transmission grids across different cities in the U.S. and are
able to obtain, to the best of our knowledge, the first theoret-
ically sound a priori estimates of reliability between several
pairs of nodes of interest. Such estimates will help managing
uncertainty and support rational decision making for commu-
nity resilience.

1 Introduction
Modern society is increasingly reliant on the availability
of critical facilities and utility services, such as power,
telecommunications, water, gas, and transportation among
others (The White House, Office of the Press Secretary,
2016). To ensure adequate service, it is imperative to quan-
tify system reliability, or the probability of the system to re-
main functional, as well as system resilience, or the abil-
ity of the system to quickly return to normalcy when fail-
ure is unavoidable (Bruneau et al. 2003). While resilience
assessment requires human decision making principles, it
also heavily depends on intrinsic system reliability. Hence,
the recent focus on community resilience and sustainabil-
ity has spurred significant activity in engineering reliability
(Zio 2009).
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One of the key challenging problems in the area of engi-
neering reliability is network reliability, wherein the input to
the problem consists of a network, represented as a graph,
arising out of distribution of water, power, transportation
routes and the like. The problem of the network reliabil-
ity seeks to measure the likelihood of two points of inter-
est being reachable under conditions such as natural disas-
ters. Early theoretical investigations showed that the prob-
lem of network reliability is #P complete (Valiant 1979).
Although graph contraction strategies combined with DNF
counting provide a Fully Polynomial Randomized Approx-
imation Scheme (FPRAS) with error guarantees (Karger
2001), implementation on practical systems does not scale
well due to the requirement of a large number of Monte
Carlo steps. Consequently, recent investigations have fo-
cused on advancing algorithmic strategies that build upon
advanced Monte Carlo simulation (Zuev, Wu, and Beck
2015a) and analytical approaches (Lim and Song 2012;
Dueñas-Osorio and Rojo 2011). In addition, inventive sam-
pling methods, such as line sampling and variance reduction
schemes (Fishman 1986), along with graphical models, es-
pecially Bayesian networks, provide versatile strategies to
quantify the reliability of complex engineered systems and
their dynamics (Bensi, Kiureghian, and Straub 2013).

Despite significant progress, most techniques remain
computationally expensive. As an alternative, when invok-
ing approximations, most methods are unable to guarantee
the quality of the reliability estimation a priori, barring small
instances where exact methods do not time out. Therefore,
design of techniques that offer strong theoretical guarantees
on the quality of estimates and can scale to large real world
instances remains an unattained goal across multiple disci-
plines.

A promising alternative approach to answer #P queries is
to reduce a #P problem to a #SAT problem, where #SAT
denotes the problem of computing the number of solutions
for a given SAT formula. While computing exact answers to
#SAT is known to be computationally hard, recent advances
in universal hashing-based approaches to #SAT have re-
ceived wide interest (Gomes, Sabharwal, and Selman 2007;
Chakraborty, Meel, and Vardi 2013; Ivrii et al. 2015). In
particular, these techniques can provide probably approxi-
mately correct (PAC) guarantees, i.e., they compute an es-
timate that is within a prescribed error tolerance of ε with



confidence at least 1− δ for a given δ. Furthermore, the ex-
pected value of the estimate is equal to the exact count of the
number of solutions. The success of recent hashing-based
techniques largely stems from the usage of SAT solvers as
NP oracles and efficient encoding of universal hash func-
tions as XOR constraints. The recent breakthrough in the
reduction of the number of NP oracle calls from linear to
logarithmic (in the number of variables of SAT formula) fur-
ther highlights the promise of the approach (Chakraborty,
Meel, and Vardi 2016). This motivates us to ask: Can we
design a counting-based framework that can take advantage
of progress in hashing-based techniques to provide theoreti-
cally sound estimates for the network reliability problem?

The primary contribution of this paper is a positive answer
to the above question. We present a counting-based frame-
work, called RelNet, that reduces the problem of computing
reliability for a given network to counting the number of sat-
isfying assignments of a Σ1

1 formula, which is amenable to
recent hashing-based techniques developed for counting sat-
isfying assignments of SAT formula. RelNet significantly
outperforms state of the art techniques and in particular, al-
lowed us to obtain the first theoretically sound estimates of
reliability for ten networks representing different cities in
the U.S.

The remainder of the paper is organized as follows. We
introduce notations and preliminaries in Section 2. We then
discuss related work in Section 3 and discuss datasets of in-
terest in Section 4. In Section 5, we present the primary con-
tribution of this paper: RelNet. We then discuss the exper-
imental methodology along with details of real world data
sets, to then present experimental results in Section 6. Fi-
nally, we conclude in Section 7.

2 Preliminaries
We write P [Y : Ω] to denote the probability of outcome Y
when sampling from a probability space Ω. For brevity, we
omit Ω when it is clear from the context. The expected value
of Y is denoted E [Y ]. For a set A, Ā denotes the comple-
ment of the set A.

Let G = (V,E) be a graph, where V is set of the vertices,
also referred as nodes, and E is set of edges. For every edge
e ∈ E from u to v, we define start(e) = u and end(e) = v.
Note that we allow multiple edges between pairs of nodes.

We say that π = (u,w1, · · ·wk−1, v) is a path of length k
that connects u and v if ∀i < k − 1, wi ∈ V and ∃e (u =
start(e) ∧ w1 = end(e))∧ ∃e (wk−1 = start(e) ∧ v =
end(e))∧ ∀i < k− 2,∃e (wi = start(e) ∧wi+1 = end(e)).
We use Tπ to denote set of all edges in π. For every subset
σ ⊆ E, we say u and v are connected under σ, denoted by
(u, v) |= σ, if ∃π, k such that π is a path of length k that
connects u and v and Tπ ⊆ σ. For a given graph G, we use
ΓG,u,v to denote the set of all subsets σ of E that make u
and v connected, i.e ΓG,u,v = {σ ⊆ E|(u, v) |= σ}.

For a given graph G = (V,E) and nodes u and v, we use
e(u, v) ∪ G to denote the augmented graph G′ obtained by
putting an edge e such that u = start(e) and v = end(e).
Note that if G has i edges from u to v, then G′ has i+1
edges from u to v. In this paper, we focus on probabilistic
variant of graphs, where probability function is associated

to edges in E. For every edge e ∈ E, we use e1 to de-
note the event that edge e does not fail and e0 to denote the
the event that edge e fails. We have P[e0] + P[e1] = 1.
As discussed in Section 4, the failure of edge corresponds
to event in real life when an existing edge is broken due to
events such as natural disasters. We assume all e1

i to be in-
dependent. Without loss of generality, the least significant
bit in the representation of P[e1

i ] is always taken to be 1.
We call a graph as unweighted if for all edges e ∈ E, we
have P[e0] = 1/2, otherwise the graph is called weighted.
Therefore for σ ⊆ E, P[σ] =

∏
ei∈σ P(e1

i )×
∏
ej /∈σ P(e0

j ).
Furthermore, we have P[ΓG,u,v] =

∑
σ∈ΓG,u,v

P[σ]. For a
given graphG, source node u and sink node v, the reliability
of u→ v is defined as P[ΓG,u,v]. In this paper, we consider
the problem of estimating r(u, v) = 1− P[ΓG,u,v]

We say F (X) is a Σ1
1 formula if F (X) can be expressed

as (∃S)φ(S,X), where φ is defined over variables in S ∪X
and is represented in conjunctive normal form (CNF). Let
Vars(φ) (resp. Vars(F )) be the set of variables appearing in
φ (resp. F ). An assignment τ of truth values to the variables
inX∪S is called a satisfying assignment or witness of φ if τ
makes φ evaluate to true. Similarly, an assignment σ of truth
values to variables in X is satisfying assignment of F if ∃
assignment ρ to variables in S such that ρ∪ σ is a satisfying
assignment of φ. We denote the set of all witnesses of F
(resp. φ) by RF (resp. Rφ). Given a set of variables T ⊆
Vars(φ), we use Rφ↓T to denote the projection of Rφ on
T . Note that for F and φ as defined above, we have RF =
Rφ↓X .

The constrained counting problem for Σ1
1 is to compute

|RF | for a given Σ1
1 formula F . A probably approxi-

mately correct (or PAC) counter is a probabilistic algorithm
ApproxCount(·, ·, ·) that takes as inputs a formula F , a sam-
pling set S, a tolerance ε > 0, and a confidence 1 − δ ∈
(0, 1], and returns a count c such that P

[
|RF |/(1 + ε) ≤

c ≤ (1 + ε)|RF |
]
≥ 1 − δ. The probabilistic guarantee

provided by a PAC counter is also called an (ε, δ) guarantee.

Our work uses a special class of graphs, called chain
graphs, which are inspired from the work on chain formu-
las (Chakraborty et al. 2015b). Similar to every edge, every
chain graph has start and end node defined as follows. Ev-
ery edge e is a chain graph, say G, such that u = start(G)
if u = start(e) and v = end(G) if v = end(e), and we rep-
resented G as G := (u ∨ v). In addition, if G = (V,E) is
a chain graph and e is an edge such that (i) u = start(e) =
start(G) ∈ V and v = end(e) = end(G) ∈ V , we say that
e∪G is a chain formula, represented by (u∨G) or (ii) u =
start(e) /∈ V and v = end(e) = start(G) ∈ V , then e∪G is
a chain formula, represented by (u ∧G). Every chain graph
G over nodes a1, a2, ...am and n edges can be represented
as (b1C1(b2C2(· · · (bnCnbn+1) · · · )), where Ci = ∨ or ∧
and performing a many to one mapping from {b1, · · · bn+1}
to {a1, a2, · · · am} such that (i) b1 7→ a1 ∧ bn+1 7→ am, and
(ii) ∀i < m − 1, bi 7→ aj ∧ bi+1 7→ al → j < l if Ci = ∧
and j = l, otherwise.



3 Related Work
Prior Work The problem of computing r(u, v) for a given
graph G was shown to be #P-complete by Valiant (1979).
Consequently, there has been focus on development of ap-
proximate techniques for r(u, v). In his seminal paper,
Karger (2001) provided the first Fully Polynomial Random-
ized Approximation Scheme (FPRAS) such that returned es-
timate satisfies (ε, δ) guarantees while the runtime of algo-
rithm (referred as Karger’s algorithm in rest of the paper)
is polynomial in the |G|, log(1/δ), 1/ε. Our experiments
demonstrate that the high requirement of Monte Carlo sam-
ples in the above algorithm is a major bottleneck to effi-
ciency and for our benchmarks, Karger’s algorithm times
out.

The recent investigations into network reliability have fo-
cused on advancing algorithmic strategies that build upon
advanced Monte Carlo simulation (Zuev, Wu, and Beck
2015a) and analytical approaches (Lim and Song 2012;
Dueñas-Osorio and Rojo 2011). In particular, statistical
learning techniques when combined with numerical simula-
tion afford the reliability assessment of complex engineered
systems, while unraveling component importance and sen-
sitivities (Hurtado 2013). Also, successful strategies in data
science, such as hierarchical clustering, provide novel tools
for reliability and risk assessment (Yin and Kareem 2016;
Gómez, Sánchez-Silva, and Dueñas-Osorio 2011). Also,
state space partition strategies and optimization allow for an-
alytical modeling of system reliability, which also offers, as
a by-product, insights on the geometry of the failure space
(Alexopoulos 1997; Dotson and Gobien 1979). Classical
universal generating functions but combined with optimiza-
tion also offer fresh alternatives to quantify system relia-
bility approximately (Chang and Mori 2013). Besides, in-
ventive sampling methods, such as line sampling and vari-
ance reduction schemes (Fishman 1986), along with graph-
ical models, especially Bayesian networks, provide versatile
strategies to quantify the reliability of complex engineered
systems and their dynamics (Bensi, Kiureghian, and Straub
2013).

With the advent of resilience engineering, analytical
methods are highly regarded in engineering reliability as
they provide accurate estimates or, in more challenging in-
stances, they yield lower and upper bounded estimates with
100% confidence. Furthermore, we can classify analyt-
ical network reliability methods in two groups based on
their algorithmic approach. The first uses prior enumera-
tion of cut sets (or path sets) or boolean algebra to account
for non-disjoint events (Aggarwal, Misra, and Gupta 1975;
Abraham 1979), whereas the latter uses recursive or iterative
decompositions of disjoint events (Dotson and Gobien 1979;
Rai and Kumar 1987; Page and Perry 1988). The latter
group has proven more practical due to its online decompo-
sition capabilities while not relying on the prior cut (or path)
set enumeration and applications of the inclusion-exclusion
principle, both NP-hard problems. In particular, research
that builds upon the work by Dotson et al. has found wide
technical application for medium-size networks (Li and He
2002; Lim and Song 2012) and in this paper we use the Se-
lective path based Recursive Decomposition Algorithm (S-

RDA) as a representative approach of state-of-the-art ana-
lytical reliability methods for civil infrastructure systems.
Herein, we refer to the gap between upper and lower bound
estimates of reliability as the gap error. S-RDA aims at
shrinking the gap error as much as possible by finding dis-
joint path sets that contain the shortest path of maximum
likelihood at every decomposition step while prioritizing
partitioning subsets of larger likelihood as well allowing it
to provide anytime approximation guarantee.

Approximate Counting Complexity theoretic studies of
propositional model counting were initiated by Valiant, who
showed that the problem is #P-complete (Valiant 1979). De-
spite advances in exact model counting over the years (Thur-
ley 2006), the inherent complexity of the problem poses
significant hurdles to scaling exact counting to large prob-
lem instances. The study of approximate model counting
has therefore been an important topic of research for several
decades.

In (Chakraborty, Meel, and Vardi 2013), a new hashing-
based probably approximately correct counting algorithm,
called ApproxMC, was shown to scale to formulas with hun-
dreds of thousands of variables, while providing rigorous
PAC-style (ε, δ) guarantees. The core idea of ApproxMC
is to use 2-universal hash functions to randomly partition
the solution space of the original formula into “small”
enough cells. The sizes of sufficiently many randomly cho-
sen cells are then determined using calls to a specialized
SAT solver (CryptoMiniSAT (Soos, Nohl, and Castelluccia
2009)), and a scaled median of these sizes is used to esti-
mate the desired model count. Overall, ApproxMC makes a
total of O(n log(1/δ)

ε2 ) calls to CryptoMiniSAT. The works
of (Ermon et al. 2013; Chakraborty et al. 2014; 2015a;
2016) have subsequently extended the ApproxMC approach
to finite domain discrete integration. Recent breakthrough
by Chakraborty et al (Chakraborty, Meel, and Vardi 2016)
require only O( logn log(1/δ)

ε2 ) calls to SAT solver. Further-
more, hashing-based techniques, in particular ApproxMC2,
have been shown to handle counting over Σ1

1 formulas as
well (Chakraborty, Meel, and Vardi 2016). In this con-
text, we are motivated by success of hashing-based tech-
niques and we demonstrate how we can employ hashing-
based counters to design scalable reliability estimation tech-
niques.

4 Datasets
In this paper we use as benchmark 10 power transmission
networks powering small to medium size cities in the states
of Texas (TX), Florida (FL), California (CA), Tennessee
(TN), Georgia (GA), and South Carolina(SC). Such states
are susceptible to extreme natural disasters such as flood-
ing, hurricanes, or earthquakes. These cities have popula-
tions in the order of tens to hundreds of thousands and the
grids connect generators and substations with 110-765 kV
transmission-level power lines. Also, as shown in Table 4,
networks’ size go from 47 to 112 nodes and the number of
edges are of the same order. The raw network data was ob-
tained in GIS format from the “Platts” repository for maps



Index City Name |V | |E|
G1 Amarillo, TX 47 62
G2 Lakeland, FL 50 69
G3 El Paso, TX 52 65
G4 San Luis Obispo, CA 57 69
G5 Eureka, CA 61 70
G6 Bulls Gap, TN 62 91
G8 Memphis, TN 66 83
G12 Lubbock, TX 85 106
G22 Athens, GA 103 116
G27 Sumter, SC 112 139

Table 1: Test power networks.

and geospatial data 1.
Transmission line outages due to random failures are not

uncommon in power transmission systems during regular
operation. The annualized probability of such failures de-
pends on technical characteristics such as length of lines,
supply/demand, temperature, etc. Typical values for ten-
hour line outages, based on their annual occurrence rate,
range from 60% to 98% for lines of length 50 and 200 kilo-
meters respectively (Billinton and Li 1994). Although these
values may appear high, such contingencies can be managed
relatively easily. In contrast, extensive and complete dam-
age due to natural disasters have smaller occurrence prob-
abilities but are much more difficult to manage due to in-
creased time of repairs. Even though the likelihood of such
extreme natural events is small, conditioned on their occur-
rence, the probability of failures with significant damage for
power transmission lines and facilities can be much larger
as is typically depicted in fragility curves that encode proba-
bilities of failure conditioned on some hazard intensity level
(Fig. 1). For our experiments, we consider failure probabil-
ity of 0.125 – a value that is attainable in practice by wide
range of extreme natural events.

5 From Network Reliability to Σ1
1 Counting

In this section, we discuss how the problem of computing
reliability can be reduced to counting over Σ1

1 formulas. In
this section, we first discuss how weighted graphs can be
reduced to unweighted graphs. We then discuss how the
problem of computing reliability for an unweighted graph
can be reduced to counting the number of satisfying as-
signments of a Σ1

1 formula. We then discuss our proposed
framework, RelNet, that combines the two reductions and
employs hashing-based techniques to compute reliability for
arbitrary graphs.

5.1 From Weighted to Unweighted Graph
The central idea of our reduction is usage of chain graphs to
represent weights, which is closely related to usage of chain
formulas for weighted counting (Chakraborty et al. 2015b).
Let m > 0 be a natural number, and k < 2m be a positive
odd number. Let c1c2 · · · cm be the m-bit binary representa-
tion of k, where cm is the least significant bit. Let z be the

1http://www.platts.com/products/gis-data.

Figure 1: Probability of exceeding a given damage state
(DS) for Medium/Large Generation Facilities with An-
chored Components as a function of the peak ground accel-
eration intensity after an earthquake. Different levels of DS
are indicated on top. Taken from HAZUS’ technical manual
(HAZUS 2003).

number of zeros in the representation of k. Define

ψk,m(b1, · · · bm+1) = (b1C1(b2C2 · · · (bmCmbm+1) · · · ))

where Ci = ∨ if ci = 1 and ∧ otherwise. We now construct
chain graph φk,m(a1, · · · az+2) by performing a many to
one mapping between {b1, · · · bm+1} and {a1, a2, · · · az+2}
such that (i) b1 7→ a1 ∧ bm+1 7→ az+2, and (ii) ∀i <
m − 1, (bi 7→ aj ∧ bi+1 7→ al) → j < l if Ci = ∧ and
j = l, otherwise. Note that there is one to one correspon-
dence between ψk,m(b1, · · · bm+1) and φk,m(a1, · · · az+2)
For example, consider k = 3 and m = 3. The binary repre-
sentation of 3 using 3 bits is 011 and z = 1. Therefore, we
have ψ3,3(b1, b2, b3, b4) = ( b1 ∧ (b2∨ (b3∨ b4)))), which
gives us ϕ3,3(a1, a2, a3) = (a1 ∧ (a2 ∨ (a2 ∨ a3)))). We
now first show that |ϕk,m| is of linear size and then discuss
the relationship between k, m and ΓG,a1,az+2

.

Lemma 1 Let m > 0 be a natural number, k < 2m , z
and ϕk,m as defined above. Then |ϕk,m| is linear in m.
Furthermore |Γϕk,m,a1,az+2

| = k

Proof By construction, ϕk,m(a1, · · · az+2) is of size lin-
ear in m. To prove that |Γϕk,m,a1,az+2

| is of exactly
size k, we use induction on m. We apply induction
on ψk,m since ψk,m and ϕk,m have 1-1 correspondence.
The base case (m = 1) is trivial. For m ≥ 1, let
c2 · · · cm represent the number k′ in binary, and assume
that ψk′,m−1 = (b2 · · ·Cmbm+1) · · · ) has corresponding
chain graph ϕk′,m−1 such that |Γϕk′,m−1,u,v| = k′, where
u = start(ϕk′,m−1) and v = end(ϕk′,m−1). If c1 is 0, then
on one hand k = k′, and on the other hand we have, ϕk,m ≡
e ∪ ϕk′,m−1, where a1 = start(e), end(e) = start(ϕk′m−1)
which has |Γϕk,m,a1,az+2

| = k . Otherwise, if c1 is 1,
then on one hand k = 2m−1 + k′, and on the other hand
C1 is the connector “∨”. Therefore, ϕk,m ≡ e ∪ ϕk′,m−1

where a1 = start(e), end(e) = end(ϕk′m−1), which has
|Γϕk,m,a1,az+2

| = 2m−1 + k′ = k. This completes the in-
duction.



5.2 From Graphs to Σ1
1 Formulas

In this section, we discuss how for a given graphG = (V,E)
and nodes u and v, and associated probability function such
that P[e1|e ∈ E] = 1/2, we can reduce the problem of com-
puting r(u, v) to the problem of computing |RF | wherein F
is a Σ1

1 formula.
The central idea of our reduction is based on usage of tran-

sitive closure for connectivity. Our reduction has close con-
nection to previously proposed formulations for s-t connec-
tivity (See (Clote and Setzer 1998) for related survey). Let
R(u, v) denote the event that ∃ path π such that π connects
u and v. If R(u, v) occurs and there exists an edge e ∈ E,
such that v = start(e) ∧ w = end(e), then R(u,w) must
occur. For a given graph G = (V,E) and pair of nodes u
and v, the goal is to create a Σ1

1 formula F such that every
satisfying assignment to F has one to one correspondence
with σ ⊆ E such that u and v are not connected under σ.
To this end, we define a propositional variables pu and qe
for every node u ∈ V and every edge e ∈ E respectively.
Define,

Ce = (pu ∧ qe → pv)

S = {pu|u ∈ V }

Fu,v = ∃S(pu ∧ ¬pv ∧
∧
e∈E

Ce)

Lemma 2 For a given graph G = (V,E) and nodes u and
v, let Fu,v be as defined above. Then, |RFu,v

| = |ΓG,u,v|.
Furthermore if ∀e ∈ E, we have P[e1] = 1

2 , then r(u, v) =
|RFu,v |

2|E|

Proof We defer the proof to technical report (Dueñas-
Osorio et al. 2017) for lack of space.

5.3 RelNet

We now describe how the above reductions can be employed
to design a counting-based framework, called RelNet, for
the problem of network reliability. For a given graph G =
(V,E), source node u and sink node v and a probability
space Ω over the edges, RelNet consists of the following
three steps:

Step 1: We obtain a transformed graphG′ by replacing every ei ∈
E with φk,m if P[e1

i ] = ki
2mi

. Let M =
∑
ei∈Emi where

P[e1
i ] = ki

2mi
.

Step 2: Construct Fu,v as described above for the transformed
graph G′, source node u and sink node v

Step 3: Invoke a hashing-based counting technique to estimate
|RFu,v

|
The following theorem proves the correctness of our frame-
work

Theorem 3 For a given Graph G, source node u and sink
node v, and probability space Ω over the edges, r(u, v) =
|RFu,v |

2M

Proof The proof follows directly from Lemmas 1 and 2.

6 Evaluation
Since the primary objective of this project was to compute
connectivity reliability of power transmission grid networks
across different cities in U.S., we compared the effectiveness
of RelNet vis-a-vis state of the art techniques. Specifically,
we sought to answer the following questions:

1. How does the runtime performance of RelNet compare to
that of the state-of-the art techniques on real world power
transmission networks?

2. How do estimates computed by RelNet compare to the
exact estimates of reliability for networks that could be
handled by exact techniques?

6.1 Experimental Methodology
We sought to compute reliability between every pair of
nodes for all the ten cities discussed in Section 4. We im-
plemented a Python prototype of RelNet, which invokes
ApproxMC2 to perform counting over Σ1

1 formulas as re-
quired by Step 3 of the RelNet. For all our experiments, we
used ε = 0.8 and δ = 0.2 as parameters for ApproxMC2,
which is consistent with previously reported studies of us-
ing hashing-based counting techniques.

For comparison purposes, we considered: (i) Karger’s
FPRAS algorithm (Karger 2001), (ii) a recently proposed
MCMC-based technique (Zuev, Wu, and Beck 2015b) and
(iii) selective path based RDA (S-RDA), one of the current
state of the art techniques employed by the reliability engi-
neering community. For all our benchmarks, S-RDA out-
performed Karger’s FPRAS algorithm and the above stated
MCMC technique, therefore we omit further discussion of
these two techniques in the rest of the section.

We used a high-performance cluster to conduct experi-
ments in parallel. Each node of the cluster had a 12-core
2.83 GHz Intel Xeon processor, with 4GB of main memory,
and each experiment was run on a single core. Each experi-
ment consisted of running a given tool on a given graph for
a pair of nodes termed as source and sink. The timeout for
each experiment was set to 1,000 seconds.

6.2 Results
For lack of space, we present results only on a subset of ex-
periments. We refer the reader to technical report (Dueñas-
Osorio et al. 2017) for detailed experimental results.

The analysis of runtime performance of S-RDA and
RelNet shows that RelNet dramatically outperforms S-RDA.
First of all, RelNet can compute r(u, v) for each pair of
source (u) and sink (v) for all the ten cities while S-RDA
could handle only G5 and G27 and timed out for almost ev-
ery pair for rest of the cities. It is worth reiterating before
RelNet, no theoretically sound estimates were, to the best of
our knowledge, a priori available for rest of the eight cities.
Figure 2 presents heat-maps for both S-RDA and RelNet for
cities G1, G2, and G3. For every city Gi, the correspond-
ing heatmap is labeled by either Gi (S-RDA) if it presents
runtime results for S-RDA or Gi (RelNet), otherwise. For
every heat-map, the y-axis represent source node while the
x-axis represents sink node. For every pair of source and
sink, the runtime for the corresponding tool is represented
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(d) G2 (RelNet)

Figure 2: CPU time in seconds using RDA and RelNet for
every source and sink pair
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Figure 3: s-t Unreliability estimates for G1 and G5 using
RelNet for every pair.
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Figure 4: Observed tolerance (εobs) for all pairs of city G5

by the color as specified by the scale next to each heat-map.
Overall, the closer the color of the point is to blue, better the
method is.

The heat-maps clearly show that while RelNet can com-
pute estimates within few tens of seconds for each pair, S-
RDA fails for almost every pair. In this context, it is worth
mentioning that runtime of RelNet is very consistent across
different pairs of source and sink nodes.

As an illustration, Figure 3 shows heat-maps of reliabil-
ity estimates between all pairs of nodes for cities G1 and
G5 as computed by RelNet. Similar to performance com-
parison heatmaps, the y-axis of every plot refers to source
node while the x-axis refers to sink node. The reliability for
(u, v) is represented by the color as per the mapping pre-
sented on the right. Looking at these plots, one might won-
der about the accuracy of reported results. While RelNet
provides theoretical guarantees of accuracy, we sought to
measure the quality of our estimates in practice. Given that
S-RDA is an exact technique, we use the estimates from S-
RDA on G5 to measure the quality of estimates of RelNet.
For each pair, the observed tolerance εobs was calculated as
max(Cf − 1, fC − 1) where C is the estimate from RelNet

and f is the exact estimate computed by S-RDA. Figure 4
shows the heat-map of observed tolerance εobs for each pair
of G5. First of all, for every pair the observed tolerance
is less than 0.14 – far better than the theoretical guarantee
of 0.8. Furthermore, the geometric mean of observed tol-
erance is just 0.023; almost an order of magnitude better
than the theoretical guarantee. This highlights conservative
nature of theoretical guarantees and the need to strengthen
the analysis as part of future work. As this work is part
of larger project, where estimates of reliability are required
to support decision making for community resilience, the
above observations are quite significant as they show how
emerging computational algorithms could support analysis
and management of infrastructure under uncertainty.

7 Conclusion
Estimation of network reliability is crucial for decision mak-
ing to ensure availability and resilience of critical facilities.
Despite significant interest and long history of prior work,
the current state of the art techniques fail to either provide
sound theoretical estimates or scale to large networks. In this
work, we propose a counting-based framework, RelNet, that
provides strong theoretical guarantees of the PAC. Further-
more, unlike the current state of the art techniques, RelNet
can scale to real world networks arising from cities across
U.S., especially when exact reliability computations are not
affordable.
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