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Abstract. The problem of counting the number of solutions of a DNF
formula, also called #DNF, is a fundamental problem in artificial intel-
ligence with applications in diverse domains ranging from network relia-
bility to probabilistic databases. Owing to the intractability of the exact
variant, efforts have focused on the design of approximate techniques for
#DNF. Consequently, several Fully Polynomial Randomized Approxima-
tion Schemes (FPRASs) based on Monte Carlo techniques have been pro-
posed. Recently, it was discovered that hashing-based techniques too lend
themselves to FPRASs for #DNF. Despite significant improvements, the
complexity of the hashing-based FPRAS is still worse than that of the
best Monte Carlo FPRAS by polylog factors. Two questions were left
unanswered in previous works: Can the complexity of the hashing-based
techniques be improved? How do the various approaches stack up against
each other empirically?

In this paper, we first propose a new search procedure for the hashing-
based FPRAS that removes the polylog factors from its time complexity.
We then present the first empirical study of runtime behavior of different
FPRASs for #DNF. The result of our study produces a nuanced picture.
First of all, we observe that there is no single best algorithm that outper-
forms all others for all classes of formulas and input parameters. Second,
we observe that the algorithm with the worst time complexity solves the
largest number of benchmarks.

1 Introduction

Constrained counting is a fundamental problem in artificial intelligence with a
wide variety of applications ranging from network reliability [14], probabilistic
inference [5,30], probabilistic databases [12], quantified information flow [7], and
the like. Given a set of constraints F , the problem of constrained counting seeks
to compute the total number of solutions to F . In this work, we focus on the
variant of constrained counting where F is expressed in Disjunctive Normal
Form (DNF), henceforth denoted as DNF-Counting or #DNF. This problem is
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important in practice, as applications such as query evaluation in probabilistic
databases [12] and failure-probability estimation of networks [20] reduce to it.

The problem of #DNF is known to be #P-complete [34], where #P is the
class of counting problems for decision problems in NP. Due to the intractability
of exact #DNF, the approximate variant of #DNF has been studied extensively
by both theoreticians and practitioners. Of particular interest is to obtain (ε, δ)
approximation, such that the count returned by the approximation scheme is
within (1 + ε) factor of the exact count with confidence at least 1 − δ, where ε
and δ are supplied by the user.

In their seminal paper, Karp and Luby [21] proposed the first Fully Polyno-
mial Randomized Approximation Scheme (FPRAS) for #DNF based on Monte
Carlo sampling. We will henceforth use the term KL Counter to denote the
FPRAS proposed by Karp et al. The time complexity of KL Counter is quadratic
in the number of cubes (i.e., disjuncts) and linear in the number of the variables
of the input formula F . Building on KL Counter, Karp et al. [22] proposed an
improved FPRAS, henceforth denoted as KLM Counter, which has time com-
plexity linear in the number of cubes. Vazirani [35] proposed a variant of KL
Counter (denoted Vazirani Counter) with same time complexity as KL Counter,
but combined with an enhancement proposed in [11], it requires fewer Monte
Carlo samples than KL Counter.

Recently, Chakraborty et al. [10] showed that the hashing-based framework,
which was originally proposed for approximate counting of CNF formulas, lends
to an FPRAS scheme for #DNF as well. In particular, Chakraborty et al. pro-
posed a hashing-based scheme called DNFApproxMC, whose time complexity was
significantly worse than that of KLM Counter. Building on Chakraborty et al.,
Meel et al. [24] proposed an improvement to DNFApproxMC, which we refer to
as SymbolicDNFApproxMC. The time complexity of SymbolicDNFApproxMC is
Õ(mn log(1/δ)/ε2), which is within polylog factors of that of KLM Counter.

Two key questions however, are still unanswered: 1) Is it possible to remove
the polylog factors in the complexity of SymbolicDNFApproxMC? 2) How do the
various approaches perform empirically? The desire to make an inquiry into the
runtime performance of different FPRAS is not just intellectual; it stems from
the fruitful results such a study has produced in the development of theory and
tools for approximate CNF-Counting [15,25]. Despite the fact that some FPRAS
have been around for over 30 years, a comprehensive experimental evaluation has
not been performed for #DNF, to the best of our knowledge.

In this paper, we propose a new search technique for hashing-based algo-
rithms that improves the complexity of SymbolicDNFApproxMC toO(mn log(1/δ)/ε2),
which is the same as KLM Counter. Further, we present the first empirical study
of runtime behavior of different FPRASs for #DNF. Similar to previous studies
for SAT solvers, we conduct our study on classes of randomly generated DNF
formulas covering a broad range of distribution parameters. The result of our
study produces a nuanced picture. First of all, we observe that there is no single
best algorithm that outperforms all other algorithms for all classes of formulas
and input parameters. Second, we observe that the algorithm with the worst
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time complexity, DNFApproxMC, solves the largest number of benchmarks. We
believe that the above two results are significant as they demonstrate a gap
between runtime performance and theoretical time complexity of approximate
techniques for #DNF. Similar to studies of #CNF, this gap should serve as a
guiding light for designing new #DNF algorithms, and for analyzing the struc-
ture of solution space of DNF formulas.

The rest of the paper is organized as follows: we introduce some notation
in Section 2 and briefly review the various approaches to approximate DNF-
Counting in Section 3. We present our new search procedure for hashing algo-
rithms in Section 4. We describe experimental methodology in Section 5 and
report on the results in Section 6. We offer our interpretation of these results in
Section 7, and conclude in Section 8.

2 Preliminaries

A literal is a variable or the negation of a variable. A formula F over boolean
variables is in Disjunctive Normal Form (DNF) if it is a disjunction over con-
junctions of literals. Disjuncts in the formula are called cubes and we denote the
ithcube by F i. Thus F = F 1 ∨ F 2 ∨ · · · ∨ Fm. We will use n and m to denote
the number of variables and number of cubes in the input DNF formula, respec-
tively. The width of a cube F i refers to the number of literals in cube F i and is
denoted by width(F i). We use w to denote the minimum of width over all the
cubes of the formula, i.e. w = mini width(F i).

We use Pr[A] to denote probability of an event A. For a given random variable
Y , we use E[Y ] and V[Y ] to denote expectation and variance of Y .

We use capital boldface letters A,B, . . . to denote matrices, small boldface
letters u, v, w, . . . to denote vectors. We denote by A(p) the sub-matrix of A
consisting of the first p rows. Similarly, b(p) denotes the sub-vector of b consisting
of the first p elements of b. We refer to A(p) and b(p) as “prefix-slices” of A and
b respectively.

An assignment (vector) x of truth values to variables of F is called a satis-
fying assignment or witness if it makes F evaluate to true. Finding a satisfying
assignment if one exists can be accomplished in polynomial time for DNF for-
mulas. We denote the set of all satisfying assignments of F by RF . Given F , the
constrained counting problem is to compute |RF |. A fully polynomial random-
ized approximation scheme (FPRAS) is a randomized algorithm that takes as
input a formula F , a tolerance ε ∈ (0, 1) and confidence parameter δ ∈ (0, 1) and
outputs a random variable Y such that Pr[ 1

1+ε |RF | ≤ Y ≤ (1 + ε)|RF |] ≥ 1− δ
and the running time of the algorithm is polynomial in |F |, 1/ε, log(1/δ).

A hash function h : {0, 1}q → {0, 1}p partitions the elements of the domain
{0, 1}q into 2p cells. h(x) = y implies that h maps the assignment x to the cell
y. h−1(y) = {x|h(x) = y} is the set of assignments that map to the cell y. We
will be interested in calculating the cardinality of RF ∩ h−1(y) for a randomly
chosen h.

Hash functions of the form h(x) = A(p)x ⊕ b(p) are commonly used in ap-
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proximate counting. A base matrix A of dimension q × q is randomly sampled
from a special set called a hash family. Similarly, base vectors b and y are chosen
uniformly at random from {0, 1}q. To obtain a hash function h : {0, 1}q → {0, 1}p
and a cell in {0, 1}p, the prefix-slices A(p), b(p) and y(p) are constructed. Thus
the hash function and the cell h(x) = y is a system of linear equations modulo
2: A(p)x⊕ b(p) = y(p). The solutions to this system of linear equations are the
elements of the set h−1(y).

We will use the triple A(p), b(p),y(p) to denote a hash function and a cell. We
obtain different families of hash functions depending on the constraints imposed
on the structure of the matrix A. For example, if each element of A is chosen
uniformly at random, we obtain a hash function from the random XOR family [8].
If A is sampled from the set of matrices in Reduced Row Echelon form, we
obtain a hash function from the Row Echelon XOR family [24]. The technique
for enumerating solutions in a cell also depends on the family of the hash function
under consideration.

3 Approximation Algorithms for #DNF

Beginning with the seminal work of Karp and Luby [21], three Monte Carlo
FPRASs for #DNF have been designed over the years [22,35]. Two more FPRASs
were designed using the new hashing-based approach [10,24]. Besides developing
FPRASs, considerable effort has also gone into developing deterministic approx-
imation algorithms for #DNF [23,33,18] and the closely related problem of de-
signing pseudo-random generators with short seeds [2,28,13]. The development
of a fully polynomial time deterministic approximation algorithm for #DNF is
still an open problem [18].

Motivated by applications of #DNF to probabilistic databases, several ap-
proaches to the design of approximate #DNF counters have been investigated
from the perspective of query evaluation as well [29,16,17]. Such algorithms,
however, either take exponential time in the worst case [29,17] or are designed
to work on restricted classes of formulas such as monotone, read-once etc. [16].
An FPRAS similar to KL Counter was developed in the Multi-Instance Learning
community for evaluating SVM kernels [31]. The FPRAS is designed to count
the number of axis-parallel boxes that contain given points. However, the algo-
rithm is identical to KL Counter when the problem instance is reduced from a
DNF formula. This procedure and related benchmarks are thus not useful for
our purposes.

In summary, there is intense interest in practical applications of #DNF and
a number of algorithmic schemes have been designed towards that end. The
strongest guarantees on worst-case running time are provided by FPRASs, yet
there does not exist a comprehensive experimental evaluation comparing them.
In this work, we perform the first such empirical study of runtime behavior of
different FPRASs. Before delving into experimental setup, we briefly review the
five FPRASs from an algorithmic perspective. The purpose is two-fold:

1. to provide a unified overview of the state-of-the-art FPRASs for #DNF, and
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Algorithm 1 Monte-Carlo-Count(A, U)

1: Y ← 0
2: repeat N times
3: Select an element t ∈ U uniformly at random
4: if t ∈ A then
5: Y ← Y + 1

N

6: Z ← Y × |U|
7: return Z

2. to shed some light on the subtle differences within each variant algorithm of
the Monte Carlo and Hashing frameworks. While the differences may seem
inconsequential from a distance, our experiments show that they make a
significant difference in practice.

3.1 Monte Carlo Framework

Algorithms built on Monte Carlo framework are randomized algorithms whose
output can be wrong with a certain (usually small) probability [4]. Typically,
these algorithms rely on drawing independent random samples to obtain nu-
merical results. We refer the reader to [27] for further details. In the context of
counting, the abstract Monte Carlo framework for finding cardinality of a set A
in the universe U is shown in Algorithm 1.

In Algorithm 1, Y is an unbiased estimator for ρ = |A|/|U|. ρ is called
the density of solutions. Also, Z is an unbiased estimator for |A|. If N =

O( V[Z]
E[Z]2 log(1/δ)/ε2), we have Pr[ 1

1+ε |A| ≤ Z ≤ (1 + ε)|A|] ≥ 1− δ.
Algorithm 1 is an FPRAS if the number of samples N , and the time taken

by line 3 and 4 are polynomial in the size of input3.
In the context of this work, we have A = RF . If F is a DNF formula with n

variables and m cubes, we can employ Algorithm 1 by defining U to be the set
of all assignments over n variables. A naive lower bound on |RF | is 2n−w, where
w is the minimum over width of all the cubes of F . If w is a small constant, then
1
ρ ≥

1
2w which is polynomial in n and m and hence we require polynomially many

samples. But if w is O(n), then the lower bound does not polynomially bound the
number of samples required which implies that this naive Monte Carlo counter
is not an FPRAS.

The key insight by Karp et al. is to transform RF and U into R′F and U ′
such that 1

ρ′ = |U ′|/|RF | is polynomially bounded, and it is also possible to

recover |RF | from |R′F |. We now discuss various transformations proposed over
the years and the FPRASs these transformations yield.

KL Counter Karp and Luby [21] developed the first FPRAS for #DNF, which
we refer to as KL Counter. They defined a new universe U ′ = {(x, F i) | x |= F i},
3 Note that A is typically represented implicitly such as using constraints in DNF in

the context of this paper
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and the corresponding solution space R′F as R′F = {(x, F i) | x |= F i and ∀j <
i,x 6|= F j} for a fixed ordering of the cubes. They showed that |RF | = |R′F |
and that the ratio |U ′|/|R′F | ≤ m and is therefore polynomially bounded. Con-
sequently, the time complexity of the algorithm is O(m2n log(1/δ)/ε2). For our
experiments, we employ an enhancement suggested in [11] which ensures optimal
estimation of N . The enhancement is applicable, since the estimator used by KL
Counter is a 0–1 estimator.

KLM Counter Karp et al. [22] proposed an improvement of KL Counter by
employing a non 0–1 estimator. To this end, the concept of ’coverage’ of an
assignment x in U ′ is introduced as cover(x) = {j|x |= F j}. The first key
insight is that |R′F | =

∑
(x,F i)∈U ′

1
|cover(x)| . The second insight was to define an

estimator for 1/|cover(x)| using the geometric distribution. It is shown that the
time complexity of KLM Counter is O(mn log(1/δ)/ε2), which is an improvement
over KL Counter.

Vazirani Counter A variant of KLM Counter was described in Vazirani [35],
where |cover(x)| is computed exactly by iterating over all cubes, avoiding the
use of the geometric distribution. The advantage of Vazirani Counter, is that it is
able to utilize the enhancement proposed in [11]. Consequently, Vazirani Counter
requires fewer samples than KL Counter to achieve the same error bounds. The
time for generating a sample, however, can be considerably more since the check
for x |= F j has to be performed for all cubes.

3.2 Hashing Framework

The key idea behind hashing-based counting is to partition the solution space
of a given formula into roughly equal small cells of solutions, using randomly
chosen 2-universal hash functions [8]. The crux of the framework is a search for
the right number of hash constraints such that the number of solutions in a cell –
Ycell = |RF∩h−1(y)| – is not too large, yet the tolerance and confidence obtained
are as required. To calculate Ycell, all the solutions in a randomly chosen cell
are enumerated. If Ycell is greater than a threshold hiThresh ∈ O(1/ε2), then the
number of constraints are increased. The search ends when the number of hash
constraints p is such that (1) Ycell < hiThresh and (2) Ycell ≥ hiThresh when
number of hash constraints is p − 1. The usage of 2-universal hash functions
guarantees that the random variable Ycell has low variance. Therefore, the final
estimate Ycell×2p, where 2p is the total number of cells, is a good approximation
of |RF |.

The abstract hashing-based counting framework is shown in Algorithms 2,3,4,
and 5. The procedure ApproxMCCore is invoked t ∈ O(log(1/δ)) times in Algo-
rithm 2, to get the required confidence δ using majority vote. ApproxMCCore (Al-
gorithm 3) assumes access to a sub-procedure SampleHashFunction for sampling
the base matrix and vectors A, b,y. This procedure depends on the particular
hash family used. A search sub-procedure is invoked in line 2 which returns the
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number of hash constraints p and the corresponding Ycell. A binary search can
be employed for this purpose, which is shown in Algorithm 4. The list FailRecord
maintains the values of p for which Ycell < hiThresh with FailRecord[p] = 0 and
those p for which Ycell ≥ hiThresh by FailRecord[p] = 1. The search returns when
p is found such that FailRecord[p] = 0 and FailRecord[p− 1] = 1. The procedure
BSAT (Algorithm 5) is invoked for calculating Ycell. Note that at most hiThresh
solutions have to be enumerated in any call. The procedure EnumerateNextSol
depends on the type of formula F , as well as the family of the hash function
A, b. The hash family also determines how a prefix slice is obtained from the
call to Extract.

DNFApproxMC Concrete counting algorithms for a class of formulas can be ob-
tained from the above framework by choosing an appropriate family of hash func-
tions along with the corresponding procedures SampleHashFunction, Extract and
EnumerateNextSol. For example, Chakraborty et al. [10] obtained an FPRAS for
DNF formulas with complexity O((mn3 +mn2/ε2) log n log(1/δ)), using Random
XOR hash functions along with Gaussian Elimination for EnumerateNextSol. We
denote the resulting algorithm as DNFApproxMC. In our experiments, we aug-
mented DNFApproxMC with Row-Echelon Hash family (proposed in [24]), which
improves the complexity from cubic to quadratic in n leading to better perfor-
mance on all benchmarks.

SymbolicDNFApproxMC The algorithm SymbolicDNFApproxMC proposed in
[24] achieves better worst-case time complexity, made possible by three im-
provements over the original DNFApproxMC algorithm. First, the usage of Row
Echelon hash functions eliminates the need for expensive Gaussian Elimination
procedure. The concept of Symbolic Hashing enables hashing over a transformed
solution space without modifying the input formula. Lastly, it was shown that a
probabilistic estimate of Ycell can be used in place of an exact count. The com-
plexity of SymbolicDNFApproxMC is Õ(mn log(1/δ)/ε2), which stems from the
use of BinarySearch. We now present a new search technique called ReverseSearch
(Algorithm 6), that removes the polylog factors (hidden in the Õ notation) from
the complexity of SymbolicDNFApproxMC to make it at par with the complexity
achieved KLM Counter, and also improves its running time in practice.

4 Reverse Search for Hashing-Based Algorithms

A close inspection of the SymbolicDNFApproxMC algorithm in [24] reveals that
the polylog factors in the complexity analysis arise due to redundancy in enu-
merating solutions in successive calls to BSAT. In particular, the fact that the
set {x |A(p)x ⊕ b(p) = y(p)} is a subset of {x |A(p−1)x ⊕ b(p−1) = y(p−1)}
is not exploited. Each call to BSAT is agnostic of the previous ones, result-
ing in repeated enumeration of solutions. One work-around could be to buffer
solutions from a call to BSAT in order to reuse them in the future. However,
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Algorithm 2 ApproxMC(F, ε, δ)

1: hiThresh← O( 1
ε2

);
2: t← O(log( 1

δ
));

3: EstimateList← emptyList;
4: repeat t times
5: (numCells, Ycell)←ApproxMCCore(F, hiThresh);
6: AddToList(EstimateList, Ycell × numCells);

7: finalEstimate← FindMedian(EstimateList);
8: return finalEstimate

Algorithm 3 ApproxMCCore(F, hiThresh)

1: A, b,y ← SampleHashFunction();
2: Ycell, p← Search(F,A, b,y, hiThresh);
3: return (2p, Ycell)

this involves additional space overhead and is not suitable when constraints are
removed during binary search. Instead, we propose a different search technique
which guarantees that every solution to the hash function is enumerated at most
once, by eliminating redundancy during search space exploration. The technique
makes use of the fact that the set {x |A(p−1)x⊕ b(p−1) = y(p−1)} can be par-
titioned into {x |A(p)x ⊕ b(p) = y(p)} and {x |A(p)x ⊕ b(p) = y(∗p)}, where
y(∗p) is the vector y(p) with the pth (last) bit negated.

Algorithm 6 depicts procedure ReverseSearch. Ytotal maintains the count of
all the solutions enumerated so far. In lines 2-3, the prefix slice with p = q −
log hiThresh constraints is obtained, where q is the number of variables in the
hash function. The corresponding cell-count is obtained in line 4. If this count
exceeds hiThresh, then it implies that the true count is within (1 + ε) factor
of 2n with high probability, and the algorithm returns (hiThresh, p). Otherwise,
the for-loop in line 7 is executed. An invariant of the for-loop is Ytotal = |RF ∩
{x |A(p)x⊕ b(p) = y(p)}|. In lines 8-9, Ycell = |RF ∩{x |A(p)x⊕ b(p) = y(∗p)}|
is evaluated and added to Ytotal. Thus, at the end of each iteration, Ytotal =
|RF ∩ {x |A(p−1)x ⊕ b(p−1) = y(p−1)}|. When Ytotal exceeds hiThresh, p + 1
and the corresponding cell-count are returned in line 11.

Theorem 1. The complexity of SymbolicDNFApproxMC, when invoked with ReverseSearch
is O(mn log(1/δ)/ε2)

Proof Sketch The core sub-procedure of SymbolicDNFApproxMC is to obtain a
probabilistic estimate of Ycell in each invocation of BSAT. This is done as follows:
1) A solution x of the hash function is enumerated 2) Cubes of the input formula
F are randomly sampled until a cube F i is found such that x |= F i 3) The
number of steps required to find such a cube is used to calculate an estimator
for Ycell. The complexity of each such sample-and-check is O(n).

The effect of the use of binary search in [24] was two-fold. Firstly, BSAT
was invoked O(log logm) times. Secondly, each call to BSAT possibly required
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Algorithm 4 BinarySearch(F,A, b,y, hiThresh)

1: lowerFib← 0; upperFib← q;
2: FailRecord[0]← 1; FailRecord[q]← 0;
3: FailRecord[i]← ⊥ for all i other than 0 and q;
4: while true do
5: p← (upperFib + lowerFib)/2;
6: Ap, bp,yp ← Extract(A, b,y,p);
7: Ycell ← BSAT(F,Ap, bp,yp, hiThresh);
8: if (Ycell ≥ hiThresh) then
9: if (FailRecord[p + 1] = 0) then

10: Ycell ← BSAT(F,Ap+1, bp+1,yp+1, hiThresh);
11: return Ycell, p + 1;

12: FailRecord[i]← 1 for all i ∈ {1, . . . p};
13: lowerFib← p;
14: else
15: if (FailRecord[p− 1] = 1) then return Ycell, p;

16: FailRecord[i]← 0 for all i ∈ {p, . . . q};
17: upperFib← p;

Algorithm 5 BSAT(F,Ap, bp,yp, hiThresh)

1: Ycell ← 0;
2: while true do
3: s← EnumerateNextSol(F,Ap, bp,yp);
4: if s 6= ⊥ then
5: Ycell = Ycell + 1;
6: else
7: return Ycell;

8: if Ycell ≥ hiThresh then
9: return hiThresh;

the sampling of m × hiThresh cubes. The use of ReverseSearch, however, en-
sures that each call to BSAT is over a previously unexplored part of the so-
lution space. This in turn ensures that exactly m × hiThresh cubes are sam-
pled in total, instead of m × hiThresh × log logm as in [24]. Since sample-and-
check is O(n), hiThresh ∈ O(1/ε2) and SymbolicDNFApproxMCCore is invoked
O(log(1/δ)) times, the overall complexity is O(mn log(1/δ)/ε2). ut

Naturally, one wonders whether employing ReverseSearch leads to gains in
performance in practice. We compared the running times of SymbolicDNFApproxMC
with BinarySearch and with ReverseSearch over wide classes of randomly gen-
erated DNF formulas with 100, 000 variables, number of cubes ranging from
10, 000 to 800, 000 and cube widths ranging from 3 to 43. Figure 1 shows a
scatter-plot of the results. A point (in blue) in the plot corresponds to one
DNF formula in our test set. Its y-coordinate represents the time taken by
SymbolicDNFApproxMC using ReverseSearch, while its x-coordinate represents
time taken using BinarySearch. It can be seen that SymbolicDNFApproxMC with
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Algorithm 6 ReverseSearch(F,A, b,y, hiThresh)

1: Ytotal = 0;
2: p← (q− log hiThresh)
3: A(p), b(p),y(p) ← Extract(A, b,y,p, flip = false);
4: Ycell ← BSAT(F,A(p), b(p),y(p), hiThresh);
5: Ytotal = Ytotal + Ycell;
6: if (Ytotal ≥ hiThresh) then return hiThresh, p;

7: for p = (q− log hiThresh); p ≥ 0; p = p− 1 do
8: A(p), b(p),y(∗p) ← Extract(A, b,y,p, flip = true);
9: Ycell ← BSAT(F,A(p), b(p),y(∗p), hiThresh);

10: Ytotal = Ytotal + Ycell;
11: if (Ytotal ≥ hiThresh) then return (Ytotal − Ycell), p + 1;
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Fig. 1. Comparison of Running time of
SymbolicDNFApproxMC with BinarySearch
and ReverseSearch
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Fig. 2. Comparison of Running time
of DNFApproxMC with LinearSearch and
ReverseSearch

ReverseSearch is roughly four or five times faster than with BinarySearch. There-
fore in the empirical study we describe next, we use ReverseSearch in all experi-
ments involving SymbolicDNFApproxMC. Henceforth, we denote SymbolicDNFApproxMC
with ReverseSearch as just SymbolicDNFApproxMC. Note, however, that DNFApproxMC
does not benefit from ReverseSearch (Fig. 2). In fact, a simple linear search works
best since our implementation uses efficient data structures for buffering solu-
tions that obviate the need for reverse or binary searches.

5 Experimental Methodology

The objective of our experimental evaluation was to seek an answer for the
following four key questions:

1. Runtime Variation: How does the running time of the algorithms vary across
different benchmarks?
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2. Benchmarks Solved: How many benchmarks can the algorithms solve overall?
3. Accuracy: How accurate are the counts returned by the algorithms?
4. ε− δ Scalability: How do the algorithms scale with the input tolerance and

confidence?

For ease of exposition, we henceforth refer to the experiments corresponding
to these questions as Runtime Variation, Benchmarks Solved, Accuracy and ε− δ
Scalability respectively. A fair comparison requires careful consideration of several
parameters, such as programming language of implementation, usage of libraries,
configuration of the cluster, benchmark suite, measures of performance, and the
like. Given a long list of parameters, performing experimental evaluation of all
possible combinations quickly becomes infeasible. Therefore, we had to arrive at
choices for several parameters. We explain our rationale for all such choices and
analyze the experimental results obtained.

5.1 Experimental Setup

We ran all experiments on a cluster. Each experiment had exclusive access to a
node with Intel(R) Xeon(R) CPU E5-2650 v2 processors running at 2.60GHz.
Only 1 core out of the 16 available on each node was used with a memory limit of
4GB. All algorithms were implemented in C++ and compiled with GCC version
5.4 with the O3 flag. To mitigate implementation bias, we used existing code
and third-party libraries wherever possible. For instance, we used a library called
M4RI [3] for implementing hash functions, GNU Bignum library for maintaining
large counts. We adapted implementations of ApproxMC and Dagum et al.’s
Monte Carlo enhancement from the ApproxMC and MayBMS [19] code-bases,
respectively4. For a given algorithm and an input formula, we set the timeout
to 500 seconds.

Table 1. Parameters used for generating random formulas and as input to algorithms

Experiment Formula Generation Parameters Input Parameters

#Vars
n

#Cubes
m

Width
w

Tolerance
ε

Confidence
δ

Benchmarks
Solved,
Runtime
Variation

100,000

104 ≤ m < 9× 104

steps of 2× 104 &
105 ≤ m ≤ 8× 105

steps of 2× 104

3 ≤ w ≤ 43
steps of 10

0.8 0.36

Accuracy

100 ≤ n < 1000 &
1000 ≤ n ≤ 7000

variable step
size

30 ≤ m ≤ 7000 &
300 ≤ m ≤ 35, 000
variable step size

3 ≤ w ≤ 2450
variable step

size
0.8 0.36

ε Scalability
100,000 50,000 12

[0.04, 0.8] 0.36
δ Scalability 0.8 [0.03, 0.36]

4 Code and results can be accessed at https://gitlab.com/Shrotri/DNF_Counting

https://gitlab.com/Shrotri/DNF_Counting
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5.2 Benchmark Generation

To the best of our knowledge, there are no publicly-available standardized set
of benchmarks for #DNF. We contacted the authors of works on probabilistic
databases, but were unable to obtain non-synthetic benchmarks. This is because
most works tend to rely on random data generators such as TPC-H [1] for testing
prototype implementations of probabilistic databases [29,17].

Another approach could have been to use the complement of CNF formulas
arising from works on CNF-Counting. Such CNF formulas, however, typically
have counts that are exponentially smaller than 2n. The DNF complements of
those formulas thus have counts extremely close to 2n. So naive Monte Carlo
techniques would suffice.

There is a chicken-and-egg problem – lack of real-world benchmarks for test-
ing prevents adoption of algorithms in practice, which in turn affects benchmark
availability. A salient goal of this work is to break this vicious cycle. A common
trend in the CSP community is to use random benchmarks for empirical studies,
when real-world problem instances are unavailable [26]. In the same vein, owing
to a lack of publicly-available meaningful benchmarks, we conduct our study on
random DNF formulas. Each formula was sampled as follows: To sample a cube,
w variables were sampled uniformly at random, out of n possible choices and
negated with probability 0.5. This process was repeated m times to get the final
formula with uniform width cubes.

5.3 Parameters Used

The parameters used for generating random benchmarks for the various exper-
iments is shown in Table 1. We used a set of 900 benchmarks for experiments
on Runtime Variation and Benchmarks Solved, covering a broad range of values
of n, m, and w. We generated a different set of 600 much smaller formulas for
the Accuracy experiment, as exact counts are needed to measure accuracy and
the exact counter SharpSAT [32] timed out on most large formulas. For ε and δ
Scalability, the idea was to find a setting of n, m, and w for which all FPRAS
would take similar time with inputs ε = 0.8, δ = 0.36, so as to provide a level
playing field.

For all experiments besides Accuracy, the benchmark sets comprised of 20
random instances for each setting of n, m, and w. This was sufficient as we ob-
served that the running time of all five algorithms tended to not vary much
between instances. In particular, the median coefficient-of-variation for all algo-
rithms was less than 5%; ergo the distribution of running times is sufficiently
captured by the mean and adding more instances would provide no further in-
sight.

Following previous studies of approximate counting techniques [9,6], we used
ε = 0.8 as base value for tolerance. Since the dependence of algorithms on δ is
log( 1

δ ), we studied all the algorithms to find value of δ so that any value of δ
smaller than that would simply require the algorithms more repetitions of the
core algorithm. The value of δ computed from the above was 0.36, which we use



Not All FPRASs are Equal: Demystifying FPRASs for DNF-Counting 13

in our experiments. For ε− δ Scalability, the respective value was varied while
fixing the other to its base value.

6 Results

We ran experiments on Runtime Variation, Benchmarks Solved, Accuracy and ε− δ
Scalability over a combined total of 1500+ benchmarks, requiring well over 3000
hours of computational effort on dedicated nodes.

6.1 Runtime Variation

We present a graph of the running time vs. the number of cubes for w = 3, 13, 23.
This is shown in Figs. 3, 4 and 5 respectively5. The graphs for w = 33, 43 are
very similar to Fig. 5, and we omit them here for lack of space. Each data
point in the graphs represents the average running time of an algorithm over
the 20 random formulas that were generated with the corresponding n, m and
w. A note of caution should be exercised while interpreting results for small
widths, as these formulas are easy for naive Monte Carlo strategies. For w = 3,
we see that DNFApproxMC vastly outperforms other algorithms, taking under a
second to solve all formulas (see: Fig. 3). Rest of the algorithms time out for
formulas with number of cubes m ≥ 100, 000. For w = 13, it can be seen from
Fig. 4 that DNFApproxMC and KLM Counter are the best performers. However,
DNFApproxMC scales better with m. Vazirani Counter is the only algorithm to
time out. For w = 23, we see that Monte Carlo algorithms, in particular KL
Counter and KLM Counter, outperform the hashing-based algorithms. These al-
gorithms also scale well with respect to m for w = 23. We observed the same
trend for w = 33 and 43.

In summary, the performance of the Monte Carlo algorithms and SymbolicDNFApproxMC,
improves with the width of cubes, while the runtime of DNFApproxMC remains
relatively consistent across different w.

6.2 Benchmarks Solved

Fig. 6 shows the cactus plot of all the different algorithms. We present the
number of benchmarks on x–axis and the total time taken on y–axis. A point
(x, y) implies that x benchmarks took less than or equal to y seconds to solve.
We see that DNFApproxMC completes all 900 benchmarks in under 350 seconds
which is well within the time limit of 500 seconds. All the other algorithms time
out on at least 100 benchmarks.

6.3 Accuracy

Out off the 600 formulas we generated for measuring accuracy, SharpSAT was

5 Figures are best viewed online in color
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Fig. 3. Runtime Variation: DNFApproxMC
is the best performer. Rest timeout.
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Fig. 4. Runtime Variation: DNFApproxMC
and KLM Counter are the best performers

0 100000 200000 300000 400000 500000 600000 700000 800000

Number of cubes

0

100

200

300

400

500

T
im

e
 (
in
 s
e
co

n
d
s)

Comparison of Running Times (Cube Width = 23)
DNFApproxMC
SymbolicDNFApproxMC
KLM Counter
KL Counter
Vazirani Counter

Fig. 5. Runtime Variation: KLM Counter
and KL Counter are the best performers
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Fig. 6. Benchmarks Solved:
DNFApproxMC solved all benchmarks

able to return exact counts of 228 within a timeout of 8 hours for each. The
observed mean and max errors of the counts returned by the five FPRAS for
the 228 formulas, is shown in Table 2. If C is the exact count for a formula
and Y is its estimate, then the error is calculated as |C − Y |/C. The errors for
all algorithms are well within the tolerance ε = 0.8, that the algorithms were
invoked with.

6.4 ε - δ Scalability

Fig. 7 shows the average time taken by the five algorithms over 20 instances when
ε is varied between 0.04 and 0.8, keeping δ fixed at 0.36. The time complexity
of all algorithms varies quadratically with 1/ε, which also can be seen in the
plotted curves. Nevertheless, DNFApproxMC scales better with 1/ε than all other
algorithms.

Fig. 8 depicts the average time taken by the algorithms over the same 20
instances when δ is varied between 0.03 and 0.36, keeping ε fixed at 0.8. The
time complexity of all five FPRAS has a O(log(1/δ)) factor. However, the Monte
Carlo algorithms scale extremely well for small δ, while SymbolicDNFApproxMC
quickly times out, and DNFApproxMC also loses steam.
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Table 2. Accuracy of algorithms (invoked with ε = 0.8, δ = 0.36)

Algorithm Mean Error Max Error

DNFApproxMC 0.09 0.36
SymbolicDNFApproxMC 0.21 0.42
KLM Counter 0.11 0.55
KL Counter 0.007 0.20
Vazirani Counter 0.001 0.04
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Fig. 7. ε Scalability: DNFApproxMC scales
better than other algorithms
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Fig. 8. δ Scalability: Monte Carlo FPRAS
scale better

7 Discussion

The experiments on Runtime Variation and Benchmarks Solved make sense in the
light of two key observations:

1. The counts of random DNF formulas tend to be extremely close to the upper-
bound, i.e. |RF | ≈ min(2n,m ∗ 2n−w), a trend which was confirmed by the
exact counts of SharpSAT

2. No. of samples required by the Monte Carlo FPRAS varies inversely with

the solution density in the transformed space, i.e. N ∝ 1
ρ′ where ρ′ = |RF |

m∗2n−w

Together these imply that ρ′ is close to 1 for all random formulas with large
cube widths. In such cases Monte Carlo FPRAS perform exceedingly well. Con-
versely, ρ′ is low for small cube widths and the Monte Carlo FPRAS time out.
SymbolicDNFApproxMC too is affected adversely by small ρ′ because of the sym-
bolic space transform. In contrast, the running time of DNFApproxMC does not
depend as heavily on either ρ or ρ′, and therefore does not timeout on any
formula (Fig. 6). Thus DNFApproxMC is more robust.

The Monte Carlo algorithms perform substantially better than the hashing-
based approaches in terms of δ Scalability. This can be attributed to the fact that
the core sub-procedure of the hashing variants has to be repeated in order to
boost confidence, which incurs a significant overhead. In contrast, for the Monte
Carlo algorithms, only the number of samples required increases, which has low
overhead. However, the marginal utility obtained by using small values for δ is
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debatable, as Table 2 shows that the counts returned by all five FPRAS are well
within the input tolerance even for δ = 0.36.

DNFApproxMC scales better with ε than the other FPRAS as seen in Fig. 7.
We believe this is due to the use of efficient data structures for buffering solutions,
in the implementation of DNFApproxMC . Algorithmic differences preclude the
use of these data structures in the other FPRAS.

The best accuracy is obtained by Vazirani Counter (Table 2). However, this
comes at a price. Vazirani Counter is markedly slower than KLM Counter and
KL Counter despite requiring fewer samples. This is due to the additional time
required by Vazirani Counter to generate a sample.

In summary, KLM Counter and KL Counter are the algorithms of choice when
ρ′ is known to be high. Naive Monte Carlo is sufficient when ρ is close to 1.
However, when there is no information about the formula or when ρ and ρ′ are
known to be low, DNFApproxMC is a safe bet.

8 Concluding Remarks

Designing model counters for DNF formulas has been of practical as well as
theoretical interest owing to applications in diverse domains in AI and beyond.
Building on Chakraborty et al. [10], Meel et al. [24] proposed a hashing-based
algorithm, SymbolicDNFApproxMC, whose time complexity was shown to be
within polylog factors of the best known Monte Carlo schemes. Meel et al. left
two key questions answered: (1) Are hashing-based techniques as powerful as
Monte Carlo, i.e. is it possible to remove the polylog factors in the complexity
of SymbolicDNFApproxMC?, and (2) How do the various approaches perform?

This paper provides positive answers to these questions. In particular, we
first introduced a new reverse-search technique that makes the time complexity
of a hashing-based FPRAS at par with the state-of-the art Monte Carlo tech-
niques. Furthermore, our proposed scheme leads to up to 4− 5× gains over the
previous scheme proposed by Meel et al. [24]. Moreover, the reverse-search is
an enhancement of the general hashing-based counting framework, and is not
limited to DNF-Counting, thereby opening future directions of research of its
application to #CNF.

We also provided the first empirical study of the various FPRASs for #DNF.
We compared three algorithms from the classical Monte Carlo framework, and
two from the recently proposed hashing-based framework. Our experimental
analysis leads to two important observations, which are not apparent from the
theoretical analysis of these algorithms: (1) There is no panacea; different algo-
rithms are well suited for different formula types and input parameters, and (2)
DNFApproxMC solves the most the number of benchmarks and is most robust.

Owing to comprehensive testing on a wide array of formula classes and in-
put parameters, we believe that these observations will carry over to real-world
benchmarks as well. These observations illustrate a gap between theory and
practice of #DNF which we hope will kick-start further empirical investigations
and serve as a blueprint for future work on DNF-Counting.
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