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Abstract

A promising approach to probabilistic inference that has at-
tracted recent attention exploits its reduction to a set of model
counting queries. Since probabilistic inference and model
counting are #P-hard, various relaxations are used in practice,
with the hope that these relaxations allow efficient computa-
tion while also providing rigorous approximation guarantees.
In this paper, we show that contrary to common belief, sev-
eral relaxations used for model counting and its applications
(including probablistic inference) do not really lead to compu-
tational efficiency in a complexity theoretic sense. Our argu-
ments proceed by showing the corresponding relaxed notions
of counting to be computationally hard. We argue that approx-
imate counting with multiplicative tolerance and probabilistic
guarantees of correctness is the only class of relaxations that
provably simplifies the problem, given access to an NP-oracle.
Finally, we show that for applications that compare probability
estimates with a threshold, a new notion of relaxation with
gaps between low and high thresholds can be used. This new
relaxation allows efficient decision making in practice, given
access to an NP-oracle, while also bounding the approxima-
tion error.

1 Introduction
Decision making with uncertain data is increasingly becom-
ing common in today’s world. In this setting, techniques like
probabilistic inference (Koller and Friedman 2009) and statis-
tical hypothesis testing (Moyé 2006; Walpole et al. 1993) are
crucial for informed decision making. Probabilistic graphical
models, viz. Bayesian networks, Markov logic networks and
the like provide an elegant formalism for representing condi-
tional independences between variables in a system (Koller
and Friedman 2009). Probabilistic inference on graphical
models gives algorithmic techniques to determine the posteri-
ori probability of an event, given observations or evidence. It
is well known that probabilistic inference can be reduced to a
set of (literal-weighted) model counting queries1 (Roth 1996;
Chavira and Darwiche 2008). Recent advances in model
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1Literal-weighted model counting, in turn, can be reduced to
(unweighted) model counting (Chakraborty et al. 2015).

counting techniques (Chakraborty, Meel, and Vardi 2013b;
Chakraborty et al. 2014; Ermon et al. 2013; Chakraborty,
Meel, and Vardi 2016; Meel et al. 2016) therefore yield a
promising approach for probabilistic inference that is com-
plementary to variational methods (Wainwright and Jordan
2008), loopy belief propagation (Murphy, Weiss, and Jor-
dan 1999), Markov Chain Monte Carlo (MCMC)-based tech-
niques (Neal 1993) and the like. Indeed, the model counting
formulation has recently been hailed as a promising assembly
language for inferencing in probabilistic graphical models.

Unfortunately, model counting and probabilistic inference
are computationally hard (Valiant 1979; Roth 1996). Hence it
is unlikely that efficient algorithms exist for exact probabilis-
tic inference, and various approximations and relaxations
are used in practice (viz. (Neal 1993; Sarkhel et al. 2016;
Fink, Huang, and Olteanu 2013; Wexler and Meek 2008;
Gordon et al. 2014)). The widespread use of relaxations
is premised on the belief that such relaxations offer com-
putational simplicity vis-a-vis exact inference, while being
reasonably accurate in practice. Indeed, informal arguments
and experimental measurements on benchmarks are often
presented as “proof” of effectiveness of these relaxations.
While this may be acceptable in several contexts, it is clearly
not in others where the consequence of machine-computed
probabilistic inference can be dramatic, viz. clinical diagno-
sis (Seixas, B. Zadrozny, and Saade 2014) or military decision
support systems (Antonucci et al. 2013). In such cases, it is
imperative that we are cognizant of worst-case bounds on
approximation errors, when choosing a relaxation based on
the belief that it offers computational simplicity.

As machine intelligence affects increasing aspects of our
lives, some with far-reaching consequences, a deeper un-
derstanding of such precision-complexity tradeoff provided
by different relaxations is almost a necessity. The appro-
priateness of the tradeoff offered by a relaxation may dif-
fer from one context to another; hence a data scientist
must know where on the tradeoff curve a specific relax-
ation lies, before using it in an application. For example,
Bayesian network models have been studied for diagnosis
of serious diseases (Seixas, B. Zadrozny, and Saade 2014;
Onisko, Druzdzel, and Wasyluk 1999; Cruz-Ramirez et al.
2007). Diagnosing an individual as having (or not having) a
disease based on such complex probabilistic models, and ask-
ing “what-if” questions with respect to the treatment regime



requires choosing a relaxation that does not permit large ap-
proximation errors, even if the computational time required
is moderately high. The price of mis-classification (a disease-
free person being labeled as diseased or vice versa) due to
large approximation errors can indeed be very high in such
cases. On the other hand, a biometric access-control sys-
tem must decide in real-time whether to allow an individual
access to a facility, depending on the percentage match of
the stored fingerprint data with the noisy output of a finger-
print scanner. Depending on the facility, occasional denial of
access to authorized individuals may not have significant ram-
ifications; hence relaxations that are computationally efficient
may be preferred in such applications. Thus, depending on
the application, relaxations with different accuracy/efficiency
tradeoffs may be appropriate, which is why it is critical to
understand this tradeoff.

The literature contains several approximation techniques
that buy efficiency by sacrificing guarantees of bounded
error, but often work well in practice. Examples include
loopy belief propagation (Murphy, Weiss, and Jordan 1999;
Ihler, III, and Willsky 2005) and algorithms that use MCMC
sampling but truncate the steps well before theoretical (expo-
nential) bounds guaranteeing convergence are reached (Neal
1993). We exclude such techniques from the scope of our
study, since approximations without guarantees of bounded
errors do not permit a fair comparison of accuracy vs com-
plexity. Furthermore, performing probabilistic inference with
no error bound guarantees is simply inappropriate in many
contexts, e.g., for the diagnosis of a life-threatening disease
with a high-risk therapy.

Yet another category of relaxations provide guarantees
of bounded approximation errors, and are commonly be-
lieved to be computationally more efficient than exact tech-
niques. In this paper, we undertake a rigorous study of the
complexity-accuracy tradeoffs of a variety of such relaxation
techniques. Surprisingly, we find that most relaxations used in
the probabilistic-inference (via model counting) literature ac-
tually do not provide any computational simplification from
a complexity theoretic perspective. Our arguments proceed
by showing the corresponding relaxations of model counting
to be computationally hard. The inter-reducibility of prob-
abilistic inference and model counting then establishes the
hardness of the relaxed versions of inference as well.

Recently, an excellent survey of parameterized complex-
ity of approximate Bayesian inference techniques has been
provided by Kwisthout (Kwisthout 2018). In this work,
Kwisthout considers only (randomized) polynomial time
algorithms as “efficient”, and shows that most variants of
inferencing cannot be solved efficiently, unless constraints
are imposed on several parameters. In view of the spectacular
progress made in propositional satisfiability (SAT) solving
technology over the past three decades, and inspired by the
success of randomized counting and inferencing algorithms
that use SAT solvers as oracles/black boxes, we expand the no-
tion of practically “efficient” algorithms to include the com-
plexity class BPPNP. Informally, this class admits algorithms
that run in polynomial time modulo calls to a black-box SAT
solver, while guaranteeing a low probability of error. With
this notion of efficiency, not all hope is lost in the search for

meaningful relaxations. We propose a new relaxation suitable
for settings like statistical hypothesis testing where a prob-
ability measure is compared with a threshold to arrive at a
decision. We show that by introducing a gap between the low
and high thresholds used for comparison, we can provably
simplify the decision making problem, while also providing
strong guarantees of approximation. A salient feature of our
study is that our arguments largely employ standard tools and
techniques. This strengthens the case for demanding rigorous
complexity-accuracy tradeoff analyses (as opposed to infor-
mal arguments and experimental observations) when new
relaxations are proposed by researchers.

The remainder of the paper is organized as follows. We
discuss notations and preliminaries in Section 2, and present
a survey of related work in Section 3.We then discuss hard-
ness of counting relaxations in Section 4, where we show
that several relaxations used in the probabilistic-inference
literature actually do not provide any computational simplifi-
cation from a complexity theoretic perspective. In Section 5,
we propose a new computationally efficient relaxation with
provable error bounds for use in applications that compare
probability estimates with a threshold. Finally, we conclude
the paper in Section 6

2 Preliminaries
We denote a propositional constraint or formula by ϕ and
call the set of variables in ϕ the support of ϕ, or Sup(ϕ).
A satisfying assignment or model of ϕ is an assignment of
truth values to all variables in Sup(ϕ) such that ϕ evaluates
to True. We use Sol(ϕ) to denote the set of all models of ϕ.
The model counting problem can now be stated as follows.

1. Model Counting (MC): Given ϕ, find |Sol(ϕ)|.

Let Z be a random variable with a specified probability
distribution. Let ./ ∈ {=,≤, <,>,≥} be a relational
operator and let a be a value in the range of Z. We use
Pr [ Z ./ a ] to denote the probability that Z ./ a holds. We
also use E [Z] and Var [Z] to denote the expectation and
variance, respectively, of Z.

We study several relaxations of the model counting prob-
lem. Broadly, we divide these relaxations into three cate-
gories: additive, multiplicative and threshold. We now dis-
cuss each of these categories in detail. In the following, c
denotes an estimate of |Sol(ϕ)|, ε represents an additive tol-
erance bound, ρ represents a multiplicative tolerance factor,
and 1− δ (0 < δ ≤ 1) represents a probabilistic confidence
bound.

2.1 Additive relaxations
Relaxations in this category focus on approximating the
model count within an additive error bound provided as an
input. Two sub-categories of additive relaxations can be iden-
tified, depending on whether the approximation is determin-
istic or randomized.

2. Additively-Approximate Model Counting (AAMC):
Given ϕ and ε, find a deterministic estimate c (≥ 0) such
that (|Sol(ϕ)| − ε) ≤ c ≤ (|Sol(ϕ)|+ ε).



3. Probably Additively-Approximate Model
Counting (PAAMC): Given ϕ, ε and δ,
find a random estimate c (≥ 0) such that
Pr [ (|Sol(ϕ)| − ε) ≤ c ≤ (|Sol(ϕ)|+ ε) ] ≥ 1− δ

AAMC and PAAMC relaxations have been used in different
contexts in the literature, viz. (Sarkhel et al. 2016) and (Fink,
Huang, and Olteanu 2013) among others.

2.2 Multiplicative relaxations
In this category, the relaxations focus on obtaining a multi-
plicative approximation of the count. Once again, two sub-
categories can be identified, depending on whether the ap-
proximation is deterministic or randomized.

4. Multiplicatively-Approximate Model Counting
(MAMC): Given ϕ and ρ, find a deterministic esti-
mate c (≥ 0) such that |Sol(ϕ)|

1+ρ ≤ c ≤ |Sol(ϕ)| · (1 + ρ)

5. Probably Approximately Correct Model Counting
(PACMC): Given ϕ, ε and δ, find a random estimate c (≥
0) such that Pr

[
|Sol(ϕ)|
1+ρ ≤ c ≤ |Sol(ϕ)| · (1 + ρ)

]
≥

1− δ
MAMC relaxations are used in (Fink, Huang, and Olteanu
2013; Wexler and Meek 2008) among others, while PACMC
relaxations are used in several recent work, viz. (Zhu and
Ermon 2015; Ermon et al. 2013; Chakraborty, Meel, and
Vardi 2013b; 2016; Chakraborty et al. 2016).

2.3 Threshold relaxations
These relaxations are probabilistic in nature and seek to in-
quire the probability of an estimate (or threshold) satisfying
a relation with the exact count. The relation is denoted by an
operator in {<,≤, >,≥}.

6. Probabilistic Model Thresholding (PMT):. Given ϕ, c,
δ, and a relational operator ./∈ {<,≤, >,≥}, output a
random variable Y ∈ {0, 1} such that Pr [ Y = 1 ] ≥ 1−δ
if |Sol(ϕ)| ./ c holds, and Pr [ Y = 1 ] ≤ δ otherwise.

PMT is used in different applications, viz. statistical hypoth-
esis testing in diverse contexts (Moyé 2006; King, Rosopa,
and Minium 2010; Zongming 2009), reasoning in prob-
abilistic programming frameworks (Gordon et al. 2014;
Bornholt, Mytkowicz, and McKinley 2014) and the like.

2.4 Complexity classes
We briefly review notions from computational complexity
theory that are of relevance to our work. For a more detailed
exposition, the reader is referred to (Arora and Barak 2009).

A probabilistic Turing machine is a non-deterministic Tur-
ing machine that can choose between alternative transitions
at every step based on a probability distribution. For our pur-
poses, the probability distribution is assumed to be uniform.
A decision problem is said to be in the complexity class BPP
if there exists a probabilistic Turing machine M such that
for all instances of the problem of size n, the machine M
runs in time polynomial in n, and provides an answer that
is correct with probablity strictly greater than 0.5 (the exact
value is unimportant). For a problem in BPP, the probability

of error can be reduced exponentially by running the proba-
bilistic Turing machine multiple times independently and by
accepting the majority decision output by these runs. Hence,
BPP represents a large class of problems that admit efficient
practical algorithms. It is easy to see that P ⊆ BPP.

An oracle machine is an abstract computational machine
that can be viewed as a (probabilistic) Turing machine
equipped with a black-box oracle that can be queried at any
step, and that answers each such query correctly in one unit
of time. If C1 and C2 represent two complexity classes, CC21
is the complexity class representing problems that can be
solved by a (probabilistic) Turing machine for a problem in
C1 if it is equipped with an oracle for a problem in C2.

The complexity classes P and NP are well-known and
not described further here. coNP is the class of decision
problems, the complement of which are in NP. For exam-
ple, propositional satisfiability is in NP, while propositional
unsatisfiability is in coNP. The polynomial hierarchy gen-
eralizes the classes P, NP and coNP to oracle machines.
Specifically, we define two (related) hierarchies ΣP

i and ΠP
i

as follows: ΣP
0 = ΠP

0 = P, and for all i ≥ 0, ΣP
i+1 = NPΣP

i

and ΠP
i+1 = coNPΣP

i . Thus, NP = ΣP
1 and coNP = ΠP

1 .
It is also known that ΣP

i (resp. ΠP
i ) represents exactly the

set of decision problems that can be polynomially reduced
to checking the satisfiability of quantified Boolean formu-
las (QBF) of the form Q1x1 . . . Qnxnϕ(x1, . . . , xn), where
each Qi ∈ {∃,∀} and there are i levels of quantifier alter-
nations starting with an ∃ (resp. ∀) block. The polynomial
hierarchy PH is the union of all classes ΣP

i and ΠP
i for i ≥ 0.

It is a long-standing open question whether the classes ΣP
i+1

and ΠP
i+1 strictly generalize ΣP

i and ΠP
i respectively, for any

i ≥ 0.
Given an instance of a problem in NP, the corresponding

counting problem asks how many accepting paths exist in the
non-deterministic Turing machine that solves the problem.
The complexity class #P is defined to be the set of counting
problems associated with all decision problems in NP. By a
result of Toda (Toda 1989)), one call to #P is sufficient to
solve every problem in the polynomial hierarchy; formally,
PH ⊆ P#P. It is therefore widely believed that problems in
#P are significantly harder than those in PH.

A complexity class of immense interest to us in this
paper is BPPNP. A seminal result of Sipser, Gács and
Lautemann states that BPP ⊆ ΣP

2 ∩ ΠP
2 (Sipser 1983;

Lautemann 1983). Therefore, BPPNP lies in ΣP
3 ∩ΠP

2 – fairly
low in the polynomial hierachy.

2.5 Remark on weighted model counting
While the MC problem introduced earlier simply counts the
number of solutions of ϕ, one can also assign a non-negative
weight to each assignment of variables in Sup(ϕ) and ask for
the total weight of all satisfying assignments of ϕ. This is
called weighted model counting, also denoted as WMC. Note
that MC is a special case of WMC, where the weight of every
assignment is 1. Therefore, hardness results for MC, such as
the ones presented in Section 4, immediately lift to WMC as
well. The reduction of probabilistic inference to model count-



ing queries (Roth 1996; Chavira and Darwiche 2008) uses
a specific form of WMC, known as literal-weighted model
counting. In literal-weighted WMC, weights are assigned to
literals, and the weight of an assignment is the product of
weights of its literals. Chakraborty et al (2015) showed that
literal-weighted WMC can be reduced to MC in time polyno-
mial in the number of bits used to represent weights of literals.
Therefore, (polynomial or higher) complexity upper bounds
of model-counting relaxations, such as the one presented in
Section 5, also apply to literal-weighted WMC with binary
representation of literal weights.

3 Related work
Probabilistic inference and model counting are known to be
#P-hard (Roth 1996; Chavira and Darwiche 2008); in addi-
tion, approximating probabilistic inference within given error
bounds is also NP-hard (Dagum and Luby 1993). Therefore,
several approximate inferencing techniques have been de-
veloped over the past few decades. The reader is referred
to (Kwisthout 2018) for an excellent survey of parameter-
ized complexity of different approximate Bayesian inference
techniques.

In statistical hypothesis testing (Walpole et al. 1993;
Moyé 2006; King, Rosopa, and Minium 2010; Zongming
2009), we have a null hypothesis and an alternative hypoth-
esis. Based on the system’s characteristics, we must then
estimate the probability (p-value) of making an observation
that is more extreme in the direction of the alternative hypoth-
esis than is actually observed, assuming the null hypothesis
was true. If the p-value thus estimated is below a threshold,
we reject the null hypothesis and accept the alternative hy-
pothesis; otherwise, the null hypothesis cannot be rejected.
Therefore, the central problem is to determine if the con-
ditional probability of a hypothesized event is below (or
above) a threshold (i.e., PMT). The same problem arises in
the analysis of probabilistic programs (Gordon et al. 2014;
Bornholt, Mytkowicz, and McKinley 2014), where we
must determine whether a conditional statement must ex-
ecute based on a randomly sampled value. The complexity-
accuracy tradeoff of relaxation techniques that estimate if the
probability of an event exceeds (or falls below) a threshold is
therefore useful for these applications.

In (Sarkhel et al. 2016), a technique for training Markov
logic networks is presented that uses approximate counting
to “simplify” the most computationally expensive step of
estimating the number of groundings of a first-order logic
formula that evaluates to True given a truth assignment of
all random variables. The authors assume access to an ap-
proximate counting procedure that returns the model count
of a formula to within a specified additive tolerance ε. They
presume implicitly, and perhaps naturally, that counting mod-
els within a specified additive tolerance (i.e., AAMC and
PAAMC) is computationally simpler than computing the ex-
act count. Unfortunately, as we show later, this presumption
is false for values of ε below a threshold. Thus, although
performance improvements have been reported in (Sarkhel et
al. 2016), using approximate counts with additive tolerance
doesn’t really yield efficient algorithms in the worst-case.

Similarly, in (Fink, Huang, and Olteanu 2013), a determin-
istic iterative anytime-approximate algorithm for relational
query evaluation in probabilistic databases is presented. In-
stead of computing exact probabilities of results to a query,
the proposed algorithm achieves efficiency by reporting prob-
abilities that are within a specified tolerance ε (both additive
and multiplicative tolerances are supported). Once again, the
implicit premise is that deterministically computing approxi-
mate counts with specified additive/multiplicative tolerances
(i.e., AAMC and MAMC) is computationally simpler than
computing the exact count. We show that none of these relax-
ations yield efficient algorithms in the worst-case, even if we
have access to a practically efficient SAT solver.

In (Wexler and Meek 2008), a multiplicative approxima-
tion scheme (MAS) for various probabilistic inferencing tech-
niques is proposed. At the heart of this scheme is the notion
of ε-decomposition, which allows the desired probability
estimate to be calculated within a specified multiplicative tol-
erance. The authors show by means of experiments that this
leads to significant performance improvements over existing
inferencing techniques on a set of benchmarks. Our results,
however, show that this cannot lead to efficient algorithms
in the worst-case, even with access to a practically efficient
SAT solver.

4 Hardness of Counting Relaxations
In his seminal work, Valiant defined the class #P and showed
that MC is #P-complete (Valiant 1979). Since PH ⊆ P#P, it
is unlikely that there is an efficient algorithm for any problem
in #P. Therefore, MC is among the computationally hardest
variants of counting in our list. At the other end of the spec-
trum, MAMC is known to be solvable in polynomial time
with access to a ΣP

2 oracle (Stockmeyer 1983). This would
yield an efficient algorithm if we had access to an efficient
2QBF solver that decides quantified Boolean formulas with
∃∗∀∗ quantifier prefix. Unfortunately, the gap between the
empirical performance of 2QBF and SAT solvers is still large;
so we don’t yet have any practically efficient algorithm for
MAMC.

Building on (Stockmeyer 1983), Jerrum, Valiant and
Vazirani (Jerrum, Valiant, and Vazirani 1986) showed that
PACMC can be solved in probabilistic polynomial time with
access to an NP oracle. Given the impressive progress made
over the past two decades in the development of satisfiability
solvers for propositional formulas, there has been significant
recent interest in developing practical algorithms for prob-
lems that can be solved with polynomially many calls to
an NP oracle. For example, a practically efficient algorithm
for PACMC was proposed in (Chakraborty, Meel, and Vardi
2016), where the number of invocations of the NP oracle is
restricted to be in O

(
1
ε2 · log(1/δ) · log n

)
.

In this section, we investigate whether the various relax-
ations discussed in Section 2 are amenable to efficient algo-
rithms that have access to an NP oracle. Specifically, we show
that MAMC and PACMC are the only counting relaxations
in our list that are known to lie in the polynomial hierarchy.
Of these, MAMC requires a 2QBF oracle, while PACMC can
be solved using an NP oracle. All other relaxations are either



as hard as MC, or lie beyond the polynomial hierarchy unless
the hierarchy itself collapses.

The hardness results imply that it is unlikely that efficient
algorithms exist for these relaxations, even if we had access
to efficient QBF solvers. This separates the class of relax-
ations that can benefit from the significant advances made in
practical SAT solving from those that cannot. In situations
where one must choose between alternate probabilistic relax-
ations, our results can provide a rigorous basis to help guide
the choice depending on the context.

In the remainder of this section, we first investigate the
hardness of PMT, and then use this result to establish the
hardness of AAMC and PAAMC.

4.1 Hardness of PMT

In order to show the hardness of PMT, we first show that a
related problem (that isn’t really used in any application we
are aware of) is hard. Specifically, given ϕ, c and δ, suppose
we wish to output a random variable Y ∈ {0, 1} such that
Pr [ Y = 1 ] ≥ 1 − δ if |Sol(ϕ)| = c, and Pr [ Y = 1 ] ≤ δ
otherwise. For notational convenience, we call this problem
PMC (for probabilistic model counting). We first show that a
PMC-oracle is as powerful as a #P-oracle, when used with
an algorithm for a problem in BPP. Subsequently, we use this
result to prove that PMT lies beyond PH unless PH collapses.
We use Turing reductions in the proofs below.

Lemma 1. BPP#P = BPPPMC

Proof. Since every query to a PMC-oracle can be answered
by a #P-oracle, it is easy to see that BPPPMC ⊆ BPP#P.

To show inclusion in the other direction, consider a lan-
guage L in BPP#P. Choosing the probability threshold
(> 0.5) to be 2/3, there exists a probabilistic Turing ma-
chine M , and a polynomial p(·) such that given a string x,
the following hold:

• M takes p(|x|) steps to run, where one or more of these
steps make a query to a #P-oracle.

• M outputs 1 with probability ≥ 2/3 if x ∈ L.
• M outputs 1 with probability ≤ 1/3 if x 6∈ L.

Now consider a probabilistic Turing machine M ′ that
mimics the steps of M on x, except when making
a query to a #P-oracle. Every query MC(ϕ) to the
#P-oracle in M is replaced by r independent queries
PMC1(ϕ, δ), . . .PMCr(ϕ, δ) to a PMC-oracle, where r =
d4.74 + 1.36 log p(|x|)e, and δ = 1

k for a suitably large con-
stant k, viz. 10. After the r queries to the PMC-oracle are
made, M ′ computes the majority of the resulting estimates,
breaking ties arbitrarily if needed, and proceeds exactly as
in M . Since each oracle query takes one unit of time, the
machine M ′ takes O (p(|x|) log p(|x|)) steps to run on input
x. Hence it is a polynomial-time Turing machine relative to a
PMC oracle.

Suppose the estimates returned by the independent oracle
queries PMC1(ϕ, δ), . . . PMCr(ϕ, δ) are c1, . . . cr, and let c
be the majority estimate. We wish to bound the probability
that c is incorrect. Clearly, if c is incorrect, at least r/2 of the
estimates must be incorrect. For notational convenience, let

η(n,m, p) denote Σnj=m
(
n
j

)
pj(1− p)n−j , where 0 ≤ p ≤ 1.

Therefore, Pr [ c is incorrect ] = η(r, r/2, δ). Since δ = 1
k =

0.1 in our case, we have Pr [ c is incorrect ] ≤ η(r, r/2, 0.1)
≤ 9

8 .(0.6)r. The last inequality follows from bounds of the
binomial coefficient and from summation of a geometric
series. Since r ≥ 4.74 + 1.36 log p(|x|), it is easy to see
that Pr [ c is incorrect ] ≤ 1

10·p(|x|) .
Therefore, the probability that the machine M ′ gives a

correct answer is ≥ 2
3 × (Pr [ c is correct ])

p(|x|). This is at
least as large as 2

3 · (1−
1

10.p(|x|) )
p(|x|) ≥ 2

3 · (1−
1
10 ) ≥ 0.59.

Thus, for every x, the machine M ′ runs in time
O (p(|x|) log p(|x|)) relative to a PMC oracle, and returns a
correct answer with probability ≥ 0.59.

Theorem 2. PH ⊆ BPPPMT, and hence PMT lies beyond
PH unless PH collapses.

Proof. We first show that PH ⊆ BPPPMC. From Toda’s
theorem (Toda 1989), we know that PH ⊆ P#P ⊆ BPP#P.
From Lemma 1, it then follows that PH ⊆ BPPPMC.

Next, we reduce an arbitrary instance of PMC to poly-
nomially many instances of PMT. Specifically, consider
an instance PMC(ϕ, δ), with n being |Sup(ϕ)|. Since 0 ≤
|Sol(ϕ)| ≤ 2n, we can use binary search with at most n invo-
cations of PMT (using any relational operator ./ ∈ {≤, <
,≥, >}) to determine |Sol(ϕ)|. Each such invocation of PMT
is of the form PMT(ϕ, c′, δ′), where c′ is determined by the
current status of the binary search, and δ′ = δ

n . Let c∗ be the
estimate of the model count obtained by this binary search.
It is then easy to see that Pr [ |Sol(ϕ)| = c∗ ] ≥ (1− δ′)n ≥
1− n.δ′ = 1− δ.

An invocation of PMC(ϕ, c′, δn ) can be simulated by tak-
ing the majority answer fromO (log(n/δ)) independent runs
of PMT(ϕ, c′, β), where β is any positive constant less than
0.5. Thus, every instance of PMC(ϕ, δ) can be reduced to
O (n. log(n/δ)) instances of PMT(ϕ, c′, β), where c′ varies
for different instances, as required by the binary search.

We have already shown above that PH ⊆ BPPPMC. It
now follows that PH ⊆ BPPPMT. If possible, let PMT be
in PH. Then, there exists a k ≥ 0 such that PMT is in ΣPk .
Since BPP ⊆ ΣP2 , this implies that PH ⊆ BPPPMT ⊆ ΣPk+2.
Thus, if PMT is in PH, the whole of PH collapses to a finite
hierarchy.

4.2 Hardness of AAMC and PAAMC

We now show that AAMC is as hard as MC, and PAAMC is as
hard as PMC. Therefore it is unlikely that efficient algorithms
exist for these problems. Recall that an instance of AAMC
has a specified additive tolerance ε ≥ 0. If ε = 0, AAMC
trivially reduces to MC. We show below that AAMC reduces
to MC even for exponentially larger values of ε. We believe
the following theorem to be a folklore result (de Campos,
Stamoulis, and Weyland 2017) but provide the proof for
completeness. Again, we rely on Turing reductions to prove
the next two theorems.

Theorem 3. AAMC with ε ≤ 2
n
2−2 is #P-complete, where

n denotes the size of the support of the input formula.



Proof. It is easy to see that AAMC is in #P, since
AAMC(ϕ, ε) can be solved by computing |Sol(ϕ)|. To show
that AAMC is #P-hard, we reduce MC to AAMC.

Let MC(ϕ) be an arbitrary instance of MC, and let n be
|Sup(ϕ)|. Let x be a variable not in Sup(ϕ). Construct the
formula ϕ′ defined as (x ⇒ ϕ), and let ϕ′′ be a version of
ϕ′ in which all variables (including x) have been renamed to
fresh variables. Finally, let ψ be the formula ϕ′ ∧ ϕ′′.

It is easy to see that ϕ′ and ϕ′′ are formulas with disjoint
supports of size n+ 1 each, while ψ is a formula with sup-
port of size 2(n + 1). Moreover, |Sol(ϕ′)| = |Sol(ϕ′′)| =
|Sol(ϕ)|+ 2n ≥ 2n, and |Sol(ψ)| = |Sol(ϕ′)|2.

We now invoke AAMC(ψ, ε), where ε is a non-negative
constant ≤ 2n−1, represented using O (n) bits. Clearly,
the input to AAMC is of size O (|ϕ|). Note also that
n − 1 = |Sup(ψ)|

2 − 2, thereby satisfying the condi-
tion for the additive tolerance in the statement of the
theorem. Suppose the estimate returned by an algo-
rithm for this instance of AAMC is c. By definition,
we have (|Sol(ψ)| − ε) ≤ c ≤ (|Sol(ψ)| + ε). Since
|Sol(ψ)| = |Sol(ϕ′)|2 and since ε ≤ 2n−1 ≤ |Sol(ϕ′)|/2,
we also have (|Sol(ψ)| − ε) ≥ |Sol(ϕ′)|2 − |Sol(ϕ′)|/2 =

|Sol(ϕ′)| · (|Sol(ϕ′)| − 1/2) > (|Sol(ϕ′)| − 1/2)
2
, and

(|Sol(ψ)| + ε) ≤ |Sol(ϕ′)|2 + |Sol(ϕ′)|/2 =

|Sol(ϕ′)| · (|Sol(ϕ′)|+ 1/2) < (|Sol(ϕ′)|+ 1/2)
2
.

Therefore,
(
|Sol(ϕ′)| − 1

2

)2
< c <

(
|Sol(ϕ′)|+ 1

2

)2
. It

follows that (|Sol(ϕ′)| − 1/2) <
√
c < (|Sol(ϕ′)| + 1/2),

Hence, rounding
√
c to the nearest integer gives |Sol(ϕ′)|.

The desired count, Sol(ϕ), is then obtained as
√
c− 2n.

Theorem 4. Let PAAMC[τ ] denote PAAMC with ε ≤ τ .
Then PH ⊆ BPPPAAMC[2n/2−2], where n denotes the size of
the support of the input formula for PAAMC. Hence, unless
PH collapses, PAAMC[2n/2 − 2] lies beyond PH,

Proof. The proof of Theorem 3 can be easily adapted to
give a polynomial time reduction from PMC to PAAMC
with ε ≤ 2

n
2−2. The result then immediately follows from

Theorem 2.

5 Balancing Accuracy and Complexity
The discussion in the previous section tells us that not all
relaxations of model counting admit the existence of effi-
cient algorithms, even if they have access to practically ef-
ficient propositional satisfiability solvers. Hence, it is im-
portant to carefully balance accuracy and complexity when
choosing relaxations. The literature contains several studies
(viz. (Sarkhel et al. 2016; Fink, Huang, and Olteanu 2013;
Wexler and Meek 2008) among others) that used relaxations
as a means to avoid the complexity of exact counting and
reported increased efficiency, although our analysis shows
that the worst-case complexity of the relaxed problem con-
tinued to be high. We believe there are two possible expla-
nations: (1) The soundness guarantees on relaxations were
not crucial for the underlying applications, and therefore, the
relaxations were good enough even though they may not have
provided provably sound answers. (2) The specific problems

of interest for those relaxations belonged to a subclass that
was amenable to efficient techniques. We believe that in the
context of our results, further investigation is warranted to
better explain the success of relaxations with high worst-case
complexity that have nevertheless been used in the literature.

It is natural to ask if there are relaxations that allow a fine
balance between theoretical approximation guarantees and
complexity. In recent years, PACMC has received a lot of
attention, and algorithms that scale to formulas with almost a
million variables in their support, while providing PAC-style
guarantees (Valiant 2013), have been designed. We believe
algorithms such as those in (Chakraborty, Meel, and Vardi
2013a; Ermon et al. 2013; Chakraborty, Meel, and Vardi
2016; Meel 2014) represent a “sweet spot” in the quest for
balancing relaxations of counting requirements and devel-
opment of practical algorithms. In this section, we present
another promising “sweet spot” that is obtained by relax-
ing the requirements of PMT. Since PMT is widely used
in several applications (see Sec 2.3), this contributes to the
few known algorithms that provide guarantees required for
important applications, and also scale to practical problems.

5.1 A Relaxation of PMT

Recall from Section 2 that if Y is a random variable denoting
the output of PMT(ϕ, c, ./, δ), then we require the follow-
ing: (i) if Sol(ϕ) ./ c, then Pr [ Y = 1 ] ≥ 1− δ, and (ii) if
Sol(ϕ) 6./ c, then Pr [ Y = 0 ] ≥ 1− δ. Note that this defini-
tion requires the random variable Y to change from being 1
with high probability to being 0 with high probablity, when c
changes from Sol(ϕ)− ε to Sol(ε) + ε, even for vanishingly
small values of ε. Intuitively, this requires an algorithm for
PMT to be aware of Sol(ϕ) with a high degree of certainty,
making it computationally hard. The relaxation we propose
introduces a gap in the ranges of c for which Y is required
to be 1 (resp. 0) with high probability. We formally state this
relaxed version of PMT below.

Definition 1 (α - PMT). Given ϕ, an integer c ≥ 0, a frac-
tion α (0 ≤ α < 1), and δ (0 < δ ≤ 1), output a random
variable Y ∈ {0, 1} such that

• If |Sol(ϕ)| ≥ c, then Pr [ Y = 1 ] ≥ 1− δ
• If |Sol(ϕ)| ≤ α · c, then Pr [ Y = 0 ] ≥ 1− δ.

Note that Definition 1 says nothing about the random vari-
able Y when α · c < Sol(ϕ) < c. For the subsequent discus-
sion, we say that an algorithm for relaxed PMT reports an
incorrect answer if it either outputs Y = 0 when |Sol(ϕ)| ≥ c
or outputs Y = 1 when |Sol(ϕ) ≤ α · c. At this point, it is
important to discuss the relation of α - PMT with PACMC.
Recall that PACMC effectively conjoins two inequalities, i.e.
whether c ≥ |Sol(()φ)|

1+ε and c ≤ (1 + ε)(|Sol(()φ)|), and can
be solved efficiently with the help of an NP oracle. Our def-
inition of α - PMT separates out the two inequalities in the
definition of PACMC. As we show below, we can provide an
answer with high confidence efficiently (with the help of an
NP oracle) even in this case.

Theorem 5. For α < 1/4, α - PMT ∈ BPPNP and can be
solved using O

(
log 1

δ

)
calls to an NP-oracle.



Proof. Towards a randomized algorithm for α - PMT, we
propose using a 2-universal XOR-based hash function h :
{0, 1}n → {0, 1}m, comprised of m = blog2 cc random par-
ity constraints (Carter and Wegman 1977). Let β ∈ {0, 1}m
be a randomly chosen cell, and let Solϕ,h,β denote the set
of solutions of ϕ that are hashed to the cell β by h, i.e.
Solϕ,h,β = {w ∈ {0, 1}n | ϕ(w) = True and h(w) = β}.
Let Z denote the random variable |Solϕ,h,β |. We propose to
output Y = 1 if Z > 0, and Y = 0 otherwise. We now
analyze the probability of the above algorithm reporting an
incorrect answer. It is easy to see that E [Z] = |Sol(ϕ)|/2m.
Since m = blog2 cc, we have c/2 < 2m ≤ c. Furthermore,
it can be shown that Var [Z] < E [Z]. We have two cases to
consider:

• If |Sol(ϕ)| ≥ c, then sincem = blog2 cc, we have E [Z] =
|Sol(ϕ)|/2m ≥ 1.
By Paley-Zygmund inequality, we also know that for
0 ≤ θ ≤ 1, Pr [ Z > θ.E [Z] ] > 1

1+
Var[Z]

(1−θ)2.E[Z]2

. Since

Var [Z] < E [Z], the denominator on the right hand side of
the above inequality is<

(
1 + 1

(1−θ)2.E[Z]

)
. Furthermore

since E [Z] ≥ 1, the denominator is <
(

1 + 1
(1−θ)2

)
.

Hence Pr [ Z > θ.E [Z] ] > 1
1+ 1

(1−θ)2
. Letting θ = 0, we

get Pr [ Z > 0 ] > 1/2. Therefore, if |Sol(ϕ)| ≥ c, we
have Pr [ Y = 1 ] > 1/2, or equivalently Pr [ Y = 0 ] <
1/2.
• If |Sol(ϕ)| ≤ c/4, then E [Z] = |Sol(ϕ)|/2m < 1/2.

By Markov inequality, we also know that Pr [ Z ≥ 1 ] ≤
E[Z]
1 < 1/2. Therefore, if |Sol(ϕ)| ≤ c/4, we have

Pr [ Y = 1 ] < 1/2.

Note that in both cases above, the error probability is < 1/2.
Therefore, by repeating the above algorithm O (log(1/δ))
times, and by choosing Y to be the majority output obtained
from these runs, the error probability can be reduced to ≤ δ.
This gives us a BPPNP algorithm.The number of times an
NP-oracle is invoked is in O (log(1/δ)).

Interestingly, a direct reduction of α - PMT to PACMC
is also possible. However, this does not yield an algo-
rithm that solves α - PMT with O (log(1/δ)) calls to an
NP-oracle. The best known techniques for PAAMC require
O(log n log( 1

δ )) calls to an NP oracle (Meel 2017). As noted
earlier, literal-weighted WMC can be polynomially reduced
to MC (Chakraborty et al. 2015). It follows from Theorem 5
that the literal-weighted version of α - PMT is also in BPPNP

and can be solved with O (log(1/δ)) calls to an NP-oracle.
We believe that (weighted and unweighted) α - PMT is likely
to be useful in thredholding applications (viz. hypothesis test-
ing), since it buys us significant computational efficiency by
trading off confidence in only a restricted range of counts.

6 Concluding Remarks
Probabilistic inference forms the core of several decision
making tools today; yet it is provably computationally hard.

In this work, we formalize several relaxations based on
model-counting that have been used earlier, and show that
not all of them yield worst-case complexity benefits. In view
of the significant progress made in SAT solving, and inspired
by the success of randomized algorithms that make poly-
nomially many SAT calls, we expand our space of efficient
algorithms to include the class BPPNP. This permits separat-
ing relaxations (viz. PACMC) that benefit from advances in
SAT-solvers from those (viz. AAMC, PAAMC, MAMC) that
are inherently much harder. We also propose a new relaxation
called α - PMT that is in BPPNP and useful in settings like
hypothesis testing. We hope that our results will enable the
probablistic inference community to make relaxation choices
grounded in rigorous complexity theoretic arguments.

While our work establishes that the worst-case complex-
ity of algorithms implementing several counting relaxations
(with strong guarantees) must be high, the observed be-
haviour of algorithms in prior work depends on several fac-
tors: mix of benchmarks, presence of structure/symmetry in
benchmarks that render the problem easier to solve, match of
heuristics with mix of benchmarks, performance of libraries
used in the tool and the like. We believe our work highlights
the need for investigating the root causes of discrepancy
between worst-case and observed runtime performance of
algorithms in prior work more closely. Note that such dis-
crepancy is not uncommon in other domains, e.g. simplex vs
interior points in linear programming, conflict-driven clause
learning in SAT solving (Malik and Zhang 2009) etc.
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