
Constraint Optimization over Semirings∗

A. Pavan 1 r© Kuldeep S. Meel, 2 r© N. V. Vinodchandran 3 r© Arnab Bhattacharyya2

1 Iowa State University, USA, 2 National University of Singapore, Singapore, 3 University of Nebraska-Lincoln, USA

Abstract

Interpretations of logical formulas over semirings (other than
the Boolean semiring) have applications in various areas of
computer science including logic, AI, databases, and secu-
rity. Such interpretations provide richer information beyond
the truth or falsity of a statement. Examples of such semirings
include Viterbi semiring, min-max or access control semir-
ing, tropical semiring, and fuzzy semiring.

The present work investigates the complexity of constraint
optimization problems over semirings. The generic optimiza-
tion problem we study is the following: Given a propositional
formula ϕ over n variable and a semiring (K,+, ·, 0, 1), find
the maximum value over all possible interpretations of ϕ over
K. This can be seen as a generalization of the well-known
satisfiability problem (a propositional formula is satisfiable
if and only if the maximum value over all interpretations/as-
signments over the Boolean semiring is 1). A related prob-
lem is to find an interpretation that achieves the maximum
value. In this work, we first focus on these optimization prob-
lems over the Viterbi semiring, which we call optConfVal
and optConf.

We first show that for general propositional formulas in nega-
tion normal form, optConfVal and optConf are in FPNP. We
then investigate optConf when the input formula ϕ is repre-
sented in the conjunctive normal form. For CNF formulae,
we first derive an upper bound on the value of optConf as
a function of the number of maximum satisfiable clauses. In
particular, we show that if r is the maximum number of sat-
isfiable clauses in a CNF formula with m clauses, then its
optConf value is at most 1/4m−r . Building on this we es-
tablish that optConf for CNF formulae is hard for the com-
plexity class FPNP[log]. We also design polynomial-time ap-
proximation algorithms and establish an inapproximability
for optConfVal. We establish similar complexity results for
these optimization problems over other semirings including
tropical, fuzzy, and access control semirings.

∗The authors decided to forgo the old convention of alphabetical
ordering of authors in favor of a randomized ordering, denoted by
r©. The publicly verifiable record of the randomization is available

at https://www.aeaweb.org/journals/policies/random-author-order/
search
Copyright c© 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1 Introduction
Classically, propositional formulae are interpreted over the
Boolean semiring B = ({F,T},∨,∧,F,T) which is the stan-
dard semantics for the logical truth. In this setting, the vari-
ables take one of the two values T (true) or F (false). How-
ever, it is natural to extend the semantics to other semirings.
Here, the idea is to interpret logical formulae when the vari-
ables take values over a semiring K = (K,+, ·, 0, 1). Such
interpretations provide richer information beyond the truth
or falsity of a statement and have applications in several ar-
eas such as databases, AI, logic, and security (see (Imieliński
and Lipski Jr 1989; Fuhr and Rölleke 1997; Zimányi 1997;
Cui, Widom, and Wiener 2000; Cui 2002; Grädel and Tan-
nen 2020) and references therein). In particular, semiring
provenance analysis has been successfully applied in sev-
eral software systems, such as Orchestra and Propolis (see,
e.g., (Amsterdamer, Deutch, and Tannen 2011; Deutch et al.
2014; Foster, Green, and Tannen 2008; Green 2011; Tannen
2013)).

Examples of semirings that are studied in the literature in-
clude Viterbi semiring, fuzzy semiring, min-max or access
control semiring, and tropical semiring. Semantics over the
Viterbi semiring V = ([0, 1],max, ·, 0, 1) has applications
in database provenance, where x ∈ [0, 1] is interpreted as
a confidence score (Grädel and Tannen 2020; Green, Kar-
vounarakis, and Tannen 2007; Tannen 2017; Grädel and
Mrkonjic 2021), in probabilistic parsing, in probabilistic
CSPs, and in Hidden Markov Models (Viterbi 1967; Klein
and Manning 2003; Bistarelli, Montanari, and Rossi 1995).
The access control semiring can be used as a tool in secu-
rity specifications (Grädel and Tannen 2020). Other semir-
ings of interest include the tropical semiring, used in cost
analysis and algebraic formulation for shortest path algo-
rithms (Mohri 2002), and fuzzy semirings used in the con-
text of fuzzy CSPs (Bistarelli, Montanari, and Rossi 1995).

Optimization problems over Boolean interpretations have
been central in many application as well as foundation areas.
Indeed, the classical satisfiability problem is determining
whether a formula φ(x1, · · · , xn) has an interpretation/as-
signment over the Boolean semiring that evaluates to True.
Even though semiring semantics naturally appear in a vari-
ety of applications, the optimization problems over semir-
ings, other than the Boolean semiring, have not received
much attention.

In this work, we introduce and investigate the complex-
ity of optimization problems over semiring semantics. Let
K = (K,+, ·, 0, 1) be a semiring with a total order over K
and ϕ be a propositional formula over a setX of variables. A
K-interpretation π is a function from X to K. Such an inter-
pretation can be naturally extended to formula ϕ, which we
denote by Sem(ϕ, π). We study the following computational
problem: Given a propositional formula ϕ in negation nor-
mal form over a set X of variables, compute the maximum
value of Sem(ϕ, π) over all possible interpretations π. We
call this problem optSemVal. A related problem, denoted
optSem, is to compute an interpretation π that maximizes
Sem(ϕ, π). Refer to Section 2 for a precise formulation of
these problems.

There has been a rich history of work which formulated
the notion of CSP over semirings and investigated local
consistency algorithms in the general framework (Bistarelli
2004; Bistarelli and Gadducci 2006; Bistarelli, Montanari,
and Rossi 1995, 1997; Bistarelli et al. 1999; Meseguer,
Rossi, and Schiex 2006). These works did not involve inter-
pretations and did not focus on the computational complex-
ity of the above-defined problems. Relatedly, the computa-
tional complexity of sum-of-product problems over semir-
ings has been studied recently (Eiter and Kiesel 2021). How-
ever, the problems they study are different from ours. To the
best of our knowledge, optimization problems optSem and
optSemVal that we consider over semirings have not been
studied earlier and there are no characterizations of their
computational complexity.

1.1 Our Results
We comprehensively study the computational complexity of
optSem and the related problem optSemVal over various
semirings such as Viterbi semiring, tropical semiring, ac-
cess control semiring and fuzzy semiring, from both an al-
gorithmic and a complexity-theoretic viewpoint. When the
underlying semiring is the Viterbi semiring, we call these
problems optConf and optConfVal. Our results can be sum-
marized as follows:

1. We establish that both optConf and optConfVal are in
the complexity class FPNP. The crucial underlying ob-
servation is that even though π maps X to real values in
the range [0, 1]; the solution to optConfVal can be rep-
resented using polynomially many bits. We then draw
upon connections to Farey sequences to derive an algo-
rithm with polynomially many NP calls (Theorem 3.2).

2. For CNF formulas, we establish an upper bound on
optConfVal as a function of the number of maximum
satisfiable clauses (Theorem 3.7).

3. We also establish a lower bound on the complexity of
optConfVal and optConf. In particular, we show that
both the problems are hard for the complexity class
FPNP[log]. To this end, we demonstrate a reduction from
MaxSATVal to optConfVal; this reduction crucially re-
lies on the above-mentioned upper bound on optConfVal
in terms of the number of maximum satisfiable clauses
(Theorem 3.9).

4. We design a polynomial-time approximation algorithm
for optConfVal and establish an inapproximability re-
sult. In particular, for 3-CNF formulas with m clauses,
we design a 0.716m-approximation algorithm and show
that the approximation factor can not be improved to
0.845m unless P = NP (Theorems 4.3 and 4.4).

5. Finally, we show that for the access control semiring,
the complexity of these optimization problems is equiv-
alent to the corresponding problems over Boolean semir-
ing (Theorem 5.3).

Remark 1. Since Viterbi semiring and tropical semiring
are isomorphic via the mapping x ↔ − lnx, results estab-
lished for Viterbi semiring also hold for the tropical semir-
ing. Fuzzy semiring can be seen as an “infinite refinement”
of access control semiring with the same algebraic struc-
ture, results that we establish for access control semiring
also hold for fuzzy semiring.

Organization. The rest of the paper is organized as follows.
We give the necessary notation and definitions in Section 2.
Section 3 details our results on the computational complex-
ity of optConf and optConfVal. Section 4 deals with ap-
proximate algorithms and the hardness of approximation of
optConfVal. In Section 5, we give complexity results for op-
timization problems for the access control semiring. Finally,
we conclude in Section 6. Due to space constraints, many of
the involved proofs are omitted and will in the full version.

2 Preliminaries
We assume that the reader is familiar with definition
of a semiring. We denote a generic semiring by K =
(K,+, ·, 0, 1) where K is the underlying set. For interpret-
ing formulas over K, we will add a “negation” function k :
K → K. We assume k is a bijection so that k(k(x)) = x,
and k(0) = 1. For ease of presentation, we use the most nat-
ural negation function (depending on the semiring). How-
ever, many of our results hold for very general interpreta-
tions of negation. Finally, as our focus is on optimization
problems, we will also assume a (natural) total order on the
elements of K.

For a set X = {x1, x2, . . . xn} of variables, we associate
the setX = {¬x1, . . . ,¬xn}. We callX∪X the literals and
formulas we consider are propositional formulas overX∪X
in negation normal form. We also view a propositional for-
mula ϕ in negation normal form as a rooted directed tree
wherein each leaf node is labeled with a literal, 1, or 0 and
each internal node is labeled with conjunction (∧) or dis-
junction ∨. Note that viewing ϕ as a tree ensures a similar
size as its string representation. We call the tree represent-
ing the formula ϕ as formula tree and denote it with Tϕ. For
a propositional formula ϕ(x1, · · · , xn), in negation normal
form we use m to denote the size of the formula, i.e. the to-
tal number of occurrences of each variable and its negation.
When ϕ(x1, · · ·xn) is in CNF form, m denotes the number
of clauses.

We interpret a propositional formula over a semiring K
by mapping the variables to K and naturally extending it.
Formally, a K-interpretation is a function π : X → K. We

extend π to an arbitrary propositional formula ϕ in negation
normal form, which is denoted by Sem(ϕ, π) (Sem stands
for ‘semantics’), as follows.

- Sem(x, π) = π(x)

- Sem(¬x, π) = k(π(x))

- Sem(α ∨ β, π) = Sem(α, π) + Sem(β, π)

- Sem(α ∧ β, π) = Sem(α, π) · Sem(β, π)

2.1 Optimization Problems and Complexity
Classes

For a formula ϕ, we define optSemVal(ϕ) as

optSemVal(ϕ) = max
π
{Sem(ϕ, π)},

where max is taken over all possible K-interpretations from
X to K.

Definition 2.1 (optSem and optSemVal). Given a proposi-
tional formula ϕ in negation normal form, the optSemVal
problem is to compute optSemVal(ϕ). The optSem
problem is to compute a K-interpretation that achieves
optSemVal(ϕ), i.e, output π∗ so that optSemVal(ϕ) =
Sem(ϕ, π∗).

Notice that when K is the Boolean semiring (with 0 < 1
ordering and standard negation interpretation), optSemVal
is the well-known satisfiability problem: the formula ϕ is
satisfiable if and only if optSemVal(ϕ) = 1. Also, the prob-
lem optSem is to output a satisfying assignment if the for-
mula ϕ is satisfiable.

In this work, we consider the following semirings.

1. Viterbi semiring V = ([0, 1],max, ·, 0, 1). As mentioned,
the Viterbi semiring has applications in database prove-
nance, where x ∈ [0, 1] is interpreted as confidence
scores, in probabilistic parsing, in probabilistic CSPs,
and in Hidden Markov Models.

2. The tropical semiring T = (R∪{∞},min,+,∞, 0). The
tropical semiring is isomorphic to the Viterbi semiring
via the mapping x↔ − lnx.

3. The fuzzy semiring F = ([0, 1],max,min, 0, 1).
4. Access control semiring Ak = ([k],max,min, 0, k). In-

tuitively, each i ∈ [k] is associated with an access control
level with natural ordering. Here 0 corresponds to public
access and n corresponds to no access at all. [k] is the set
{0 < 1 < · · · < k}.

Most of our focus will be on complexity of optSem
and optSemVal problems over the Viterbi semiring. We
call the corresponding computational problems optConf and
optConfVal respectively. We call the extended interpretation
function Sem as Conf in this case.

Definition 2.2 (MaxSat and MaxSatVal). Given a propo-
sitional formula ϕ in CNF form, the MaxSat problem is
to compute an assignment of ϕ that satisfies the maximum
number of clauses. Given a propositional formula ϕ in CNF
form, the MaxSatVal problem is to compute the maximum
number of clauses of ϕ that can be satisfied.

We need a notion of reductions between functional prob-
lems. We use the notion of metric reductions introduced by
Krentel (Krentel 1988).
Definition 2.3 (Metric Reduction). For two functions f, g :
{0, 1}∗ → {0, 1}∗, we say that f metric reduces to g if
there are polynomial-time computable functions h1 and h2
where h1 : {0, 1}∗ → {0, 1}∗ (the reduction function)
and h2 : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ so that for any x,
f(x) = h2(x, g(h1(x))).

Definition 2.4. For a function t : N → N, FPNP[t(n)] de-
notes the class of functions that can be solved in polynomial-
time with O(t(n)) queries to an NP oracle where n is the
size of the input. When t(n) is some polynomial, we denote
the class by FPNP.

Metric reductions are used to define notions of complete-
ness and hardness for function classes FPNP and FPNP[log].
The following result due to Krentel (Krentel 1988) charac-
terizes the complexity of the MaxSatVal problem.
Theorem 2.5 ((Krentel 1988)). MaxSatVal is complete for
FPNP[log] under metric reductions.

The following proposition is a basic ingredient in our re-
sults. It can be proved using basic calculus.
Proposition 1. Let f(x) = xa(1 − x)b where a, b are non-
negative integers, the maximum value of f(x) over the do-
main [0, 1] is attained when x = a

a+b . The maximum value
of the function is (a

a+b)
a(b
a+b)

b.

3 Computational Complexity of Confidence
Maximization

For semantics over Viterbi semiring we assume the stan-
dard closed world semantics and use the negation function
k(x) = 1−x. Thus we have Conf(¬x, π)+Conf(x, π) = 1.
However, our upper bound proofs go through for any reason-
able negation function. We discuss this in Remark 2.

Since Conf(ϕ, π) can be computed in polynomial time,
optConf is at least as hard as optConfVal. The following
observation states that computing optConfVal and optConf
are NP-hard.
Observation 3.1. For a formula ϕ, optConfVal(ϕ) =
1 if and only if ϕ satisfiable. Hence both optConf and
optConfVal are NP-hard.

While both optConf and optConfVal are NP-hard, we
would like to understand their relation to other maximiza-
tion problems. In the study of optimization problems, the
complexity classes FPNP and FPNP[log] play a key role. In
this section, we investigate both upper and lower bounds
for these problems in relation to the classes FPNP and
FPNP[log].

3.1 An Upper Bound for General Formulae
We show that optConfVal and optConf can be computed in
polynomial-time with oracle queries to an NP language.
Theorem 3.2. optConfVal for formulas in negation normal
form is in FPNP.

Proof Idea: In order to show that optConfVal is in FPNP, we
use a binary search strategy using a language in NP. One of
the challenges is that the confidence value could potentially
be any real number in [0, 1] and thus apriori we may not be
able to bound the number of binary search queries. How-
ever, we first argue that for any formula ϕ on n variables
and with size m, optConf(ϕ) is a fraction of the form A/B
where 1 ≤ A ≤ B ≤ 2nm logm. Ordered fractions of such
form are known as Farey sequence of order 2nm logm (de-
noted as F2nm log m). Thus our task is to do a binary search
over F2nm log m with time complexity O(nm logm). How-
ever, in general binary search for an unknown element in the
Farey sequence FN with time complexityO(logN) appears
to be unknown. We overcome this difficulty by using an NP
oracle to aid the binary search. We will give the details now.

Definition 3.3. Let ϕ(x1, · · · , xn) be a propositional for-
mula in negation normal form with size m. Let Tϕ be its
formula tree. A proof tree T of Tϕ is a subtree obtained by
the following process: for every OR node v, choose one of
the sub-trees of v. For every AND node v, keep all the sub-
trees.

Note that in a proof tree every OR node has only one child.

Definition 3.4. Let ϕ(x1, · · · , xn) be a propositional for-
mula in negation normal form and let T be a proof tree. We
define the proof tree polynomial pT by inductively defining a
polynomial for the subtree at every node v (denoted by pv):
If the node v is a variable xi, the polynoimal is xi and if it is
¬xi, the polynomial is (1 − xi). If v is an AND node with
children v1, . . . , vs, then pv =

∏s
i=1 ps. If v is an OR node

with a child u, then pv = pu.

Claim 3.4.1. Let ϕ(x1, · · · , xn) be a propositional formula
in negation normal form and let T be a proof tree of ϕ.

1. The proof tree polynomial pT is of the form

n∏
i=1

xaii (1− xi)bi

where 0 ≤ ai + bi ≤ m.
2. For a V-interpretation π,

Conf(T, π) = pT (π(x1), . . . , π(xn)) .

3. Both optConf(T) and optConfVal(T) can be computed
in polynomial-time.

4. optConfVal(T) = Πn
i=1

(
ai

ai+bi

)ai (
bi

ai+bi

)bi
.

The next claim relates optConf of the formula ϕ to
optConf of its proof trees. The proof of this claim follows
from the definition of proof tree and standard induction.

Claim 3.4.2. For a formula ϕ,

optConfVal(ϕ) = max
T

optConfVal(T)

where maximum is taken over all proof trees T of Tϕ. If T ∗
is the proof tree for which optConf(T) is maximized, then
optConf(T ∗) = optConf(ϕ).

The above claim states that optConf(ϕ) can be computed
by cycling through all proof trees T of ϕ and computing
optConf(T). Since there could be exponentially many proof
trees, this process would take exponential time. Our task is
to show that this process can be done in FPNP. To do this
we establish a claim that restricts values that optConfVal(ϕ)
can take. We need the notion of Farey sequence.

Definition 3.5. For any positive integer N , the Farey se-
quence of order N , denoted by FN , is the set of all irre-
ducible fractions p/q with 0 < p < q ≤ N arranged in
increasing order.

Claim 3.5.1. 1. For a propositional formula
ϕ(x1, · · · , xn), optConfVal(ϕ) belongs to the Farey
sequence F2nm log m .

2. For any two fractions u and v from F2nm log m , |u− v| ≥
1/22nm logm

Consider the following language

Lopt = {〈ϕ, v〉 | optConfVal(ϕ) ≥ v}

Claim 3.5.2. Lopt is in NP.

We need a method that given two fractions u and v and
an integer N , outputs a fraction p/q : u ≤ p/q ≤ v, and
p/q ∈ FN . We give an FPNP algorithm that makes O(N)
queries to the NP oracle to achieve this. We first define the
NP language Lfarey . For this we fix any standard encoding
of fraction using the binary alphabet. Such an encoding will
have O(logN) bit representation for any fraction in FN .

Lfarey = {〈N, u, v, z〉 | ∃z′;u ≤ zz′ ≤ v & zz′ ∈ FN}

The following claim is easy to see.

Claim 3.5.3. Lfarey ∈ NP.

Now we are ready to prove the Theorem 3.2.

Proof. (of Theorem 3.2). The algorithm performs a binary
search over the range [0, 1] by making adaptive queries
〈ϕ, v〉 to the NP language Lopt starting with v = 1.
At any iteration of the binary search, we have an interval
I = [Il, Ir] and with the invariant Il ≤ optConfVal(ϕ) <
Ir. The binary search stops when the size of the interval
[Il, Ir] = 1/22nm logm. Since each iteration of the binary
search reduces the size of the interval by a factor of 2,
the search stops after making 2nm logm queries to Lopt .
The invariant ensures that optConfVal(ϕ) is in this inter-
val. Moreover, optConfVal(ϕ) ∈ F2nm log m (by item (1) of
Claim 3.5.1) and there are no other fractions from F2nm log m

in this interval (by item (2) of Claim 3.5.1). Now, by mak-
ing O(nm logm) queries to Lfarey with N = 2nm logm,
u = Il, v = Ir, we can construct the binary representation
of the unique fraction in F2nm log m that lies between Il and
Ir which is optConfVal(ϕ).

Next we show the optimal V-interpretation can also be
computed in polynomial time with queries to an NP oracle.

Theorem 3.6. optConf for formulas in negation normal
form can be computed in FPNP.

Proof. Let ϕ be a propositional formula in negation normal
form. We use a prefix search over the encoding of proof trees
of ϕ using an NP language to isolate a proof tree T such
that optConfVal(ϕ) = optConfVal(T). For this, we fix an
encoding of proof trees of ϕ. Consider the following NP
language Lpt :

{〈ϕ, v, z〉 | ∃z′ :zz′encodes a proof tree T of ϕ
& optConfVal(T) = v}

Claim 3.6.1. Lpt is in NP.

To complete the proof Theorem 3.6, given a propositional
formula ϕ, we first use FPNP algorithm from Theorem 3.2
to compute v∗ = optConfVal(ϕ). Now we can construct a
proof tree T of ϕ so that optConfVal(T) = v∗ by a pre-
fix search using language Lpt . Now by Claim 3.4.1, we
can compute a V-interpretation π∗ so that Conf(T, π∗) =
v∗. Thus π∗ is an optimal V-interpretation for ϕ, by
Claim 3.4.2.

Remark 2. We revisit the semantics of negation. As stated
earlier, by assuming the closed world semantics, we have
k(x) = 1 − x. We note that this assumption is not strictly
necessary for the above proof to go through. Recall that Item
(1) of Claim 3.4.1 states that the proof tree polynomial is of
the form

∏
xaii (1 − xi)bi . For a general negation function

k, the proof tree polynomial is of the form
∏
xaii (k(xi))

bi .
Now if the maximum value of a term xa(k(x))b can be
found, for example when k is an explicit differentiable func-
tion, the result will hold.

3.2 Relation to MaxSat for CNF Formulae
In this section we study the optConfVal problem for CNF
formulae and establish its relation to the MaxSat problem.
We first exhibit an upperbound on the optConfVal(ϕ) us-
ing the maximum number of satisfiable clauses. Building on
this result, in Section 3.3 we show that optConfVal for CNF
formulae is hard for the complexity class FPNP[log].

We first define some notation that will be used in this and
next subsections. Let ϕ(x1, · · ·xn) = C1 ∧ · · · ∧ Cm be
a CNF formula and let π∗ be an optimal V-interpretation.
For each clause C from ϕ, let π∗(C) be the value achieved
by this interpretation, i.e π∗(C) = Conf(C, π∗). Ob-
serve that since C is a disjunction of literals, π∗(C) =
max`∈C{π∗(`)}. For a clause C, let

`C = argmax`∈C{π∗(`)}
In the above, if there are multiple maximums, we take the

smallest literal as `C (By assuming an order x1 < ¬x1 <
x2 < ¬x2 · · · < xn < ¬xn). Observe that, since we are
working over the Viterbi semiring, Conf(C, π∗) = π∗(`C).
A literal ` is maximizing literal for a clause C, if `C = `.

Since ϕ is a CNF formula, for any V-interpretation π
Conf(ϕ, π) is of the form Πm

i=1Conf(Ci, π). Given a col-
lection of clauses D from ϕ, the contribution of D to
Conf(ϕ, π) is defined as Πc∈DConf(C, π).

The following theorem provides an upperbound on
optConfVal(ϕ) using MaxSatVal. This is the main result of
this section.

Theorem 3.7. Let ϕ(x1, · · · , xn) be a CNF formula withm
clauses. Let r be the maximum number of clauses that can
be satisfied. Then optConfVal(ϕ) ≤ 1/4(m−r).

Proof. Let π∗ be an optimal V-interpretation for ϕ. A clause
C is called low-clause if π∗(C) < 1/2, C is called a
high-clause of π∗(C) > 1/2, and C is a neutral-clause if
π∗(C) = 1/2. Let L, H , and N respectively denote the
number of low, high, and neutral clauses.

We start with the following claim that relates the number
of neutral clauses and the number of high-clauses to r.

Claim 3.7.1. N
2 +H ≤ r

Proof. Suppose that the number of low-clauses is strictly
less than m− r, thus number of high-clauses is more than r.

For a variable x, let

px = |{C | C is neutral and `C = x}|

and
qx = |{C | C is neutral and `C = ¬x}|

That is px is the number of neutral clauses for which x
is the maximizing literal and qx is the number of neutral
clauses for which ¬x is the maximizing literal.

Consider the truth assignment that is constructed based
on the following three rules: (1) For every high-clause C,
set `C to True and ¬`C to False, 2) For every variable x, if
one of px or qx is not zero, then if px ≥ qx, then set x to
True, otherwise set x to False. (3) All remaining variables
are consistently assigned arbitrary to True/False values.

We argue that this is a consistent assignment: I.e, for every
literal `, both ` and ¬` are not assigned the same truth value.
Consider a literal `. If there is a high clause C such that
` = `C , then this literal is assigned truth value True and ¬`
is assigned False. In this case, since π∗(`) > 1/2, π∗(¬`) <
1/2. Thus ¬` can not be maximizing literal for any high-
clause and thus Rule (1) does not assign True to ¬`. Again,
since π∗(`) > 1/2, there is no neutral-clause D such that
` = `D or ¬` = `D. Thus Rule (2) does not assign a truth
value to either of ` or ¬`. Since ` and ¬` are assigned truth
values, Rule (3) does not assign a truth value to ` or ¬`.

Consider a variable x where at least one of px or qx is
not zero. In this case x or ¬x is maximizing literal for a
neutral clause. Thus π∗(x) = π∗(¬x) = 1/2 and neither
x nor ¬x is maximizing literal for a high-clause. Thus Rule
(1) does not assign a truth value to x or ¬x. Now x is True if
and only if px ≥ qx, thus the truth value assigned to x (and
¬x) is consistent. Since Rule (3) consistently assigns truth
values of literals that are not covered by Rules (1) and (2),
the constructed assignment is a consistent assignment.

For every high clause C, literal `C is set to true. Thus the
assignment satisfies all the high-clauses. Consider a variable
x and let D be the (non-empty) collection of neutral clauses
for which either x or ¬x is a maximizing literal. As x is as-
signed True if and only if px ≥ qx, at least half the clauses
from D are satisfied. Thus this assignment satisfies at least
H + N

2 clauses. Since r is the maximum number of satisfi-
able clauses, the claim follows.

For a literal `, let a` be the number of low-clauses C for
which ` is a maximizing literal, i.e,

a` = |{C | C is a low-clause and `C = `}|,

and

b` = |{C | C is a high-clause and `C = ¬`}|,

We show the following relation between a` and b`.

Claim 3.7.2. For every literal `, a` ≤ b`.

We next bound the contribution of neutral and low clauses
to optConfVal(ϕ). For every neutral clause C, π∗(C) =
1/2, thus we have the following observation.

Observation 3.8. The contribution of neutral clauses to
Conf(ϕ, π∗) is exactly 1/2N .

We establish the following claim.

Claim 3.8.1.

Conf(ϕ, π∗) =
∏
`

(
π∗(`)a` × (1− π∗(`))b`

)
× 1

2N

Finally, we are ready to complete the proof of Theo-
rem 3.7. For every literal `, By Claim 3.7.2, a` ≤ b`. Let
b` = a` + c`, c` ≥ 0. Consider the following inequalities.

optConfVal(ϕ) = Conf(ϕ, π∗)

=
∏
`

(
π∗(`)a` × (1− π∗(`))b`

)
× 1

2N

=
∏
`

(
π∗(`)a` × (1− π∗(`))a`+c`

)
× 1

2N

≤
∏
`

(π∗(`)a` × (1− π∗(`))a`)× 1

2N

≤
∏
`

(
1

4a`

)
× 1

2N
=

1

4L+N/2

In the above, equality at line 2 is due to Claim 3.8.1. The
inequality at line 4 follows because (1 − π∗(`)) ≤ 1. The
last inequality follows because x(1 − x) is maximized at
x = 1/2. The last equality follows as

∑
a` = L. Note that

the number of clauses m = N +H + L and by Claim 3.7.1
H + N/2 ≤ r. It follows that L + N/2 ≥ m − r. Thus
optConfVal(ϕ) = Conf(ϕ, π∗) ≤ 1

4L+N/2 ≤ 1
4m−r .

3.3 FPNP[log]- Hardness
In this subsection, we show that optConfVal is hard for the
class FPNP[log]. We show this by reducing MaxSatVal to
optConfVal. Since MaxSatVal is complete for FPNP[log],
the result follows. We also show that the same reduction can
be used to compute a MaxSat assignment from an optimal
V-interpretation.

Theorem 3.9. MaxSatVal metric reduces to optConfVal for
CNF formulae. Hence optConfVal is hard for FPNP[log] for
CNF formulae.

Proof. Let ϕ(xi, . . . , xn) = C1∧. . .∧Cm be a formula with
m clauses on variables x1, . . . , xn. Consider the formula ϕ′
with m additional variables y1, . . . , ym constructed as fol-
lows: For each clause Ci of ϕ, add the clause C ′i = Ci ∨ yi
in ϕ′. Also add m unit clauses ¬yi. That is

ϕ′ = (C1 ∨ y1) ∧ . . . ∧ (Cm ∨ ym) ∧ ¬y1 ∧ · · · ∧ ¬ym
Claim 3.9.1. optConfVal(ϕ′) = 1

4m−r where r is the maxi-
mum number of clauses that can be satisfied in ϕ.

Proof. We show this claim by first showing that
optConfVal(ϕ′) ≤ 1

4m−r and exhibiting an interpreta-
tion π∗ so that Conf(ϕ, π∗) = 1

4m−r . We claim that if r is
the maximum number of clauses that can be satisfied in ϕ,
then m + r is the maximum number of clauses that can be
satisfied in ϕ′. We will argue this by contradiction. Let a be
an assignment that satisfies > m + r clause in ϕ′. Let s be
the number of yis that are set to False. This assignment will
satisfy m− s clauses of the form Ci ∨ yi. However the total
number of clauses of the form Ci ∨ yi that are satisfied is
> m+ r− s. Thus there are > r clauses of the form Ci ∨ yi
that are satisfied where yi is set to False. This assignment
when restricted to xis will satisfy more than r clauses of ϕ.
Hence the contradiction.

Thus from Theorem 3.7, it follows that optConfVal(ϕ′) ≤
1

4m−r . Now we exhibit an interpretation π∗ so that
Conf(ϕ, π∗) = 1

4m−r . Consider an assignment a =
a1, . . . , an for ϕ that satisfies r clauses. Consider the fol-
lowing interpretation π∗ over the variable of ϕ′: π∗(xi) = 1
if ai = True and π∗(xi) = 0 if ai = False. π∗(yi) = 0
if and only if Ci is satisfied by a. Else π∗(yi) = 1/2.
For every satisfiable clause Ci, Conf(Ci ∨ yi, π∗) = 1
and Conf(¬yi, π∗) = 1. For all other clauses C in ϕ′,
Conf(C, π∗) = 1/2. Since there are r clauses that are
satisfied, the number of clauses for which Conf(C, π∗) =
1/2 is 2m − 2r. Hence the Conf(ϕ′, π∗) = 1

4(m−r) . Thus
optConfVal(ϕ′) = 1

4m−r .

Since optConfVal(ϕ′) = 1/4m−r, MaxSatVal for ϕ can
be computed by knowing the optConfVal.

While the above theorem shows that MaxSatVal can be
computed from optConfVal, the next theorem shows that
a maxsat assignment can be computed from an optimal V-
interpretation.
Theorem 3.10. MaxSat metric reduces to optConf.

Proof. Consider the same reduction as from the previous
theorem. Our task is to construct a MaxSat assignment for
ϕ, given an optimal V-interpretation π for ϕ′. By the ear-
lier theorem, Conf(ϕ′, π) = 1

4m−r , where r is the maximum
number of satisfiable clauses of ϕ. We first state a set of
claims without proof.

Claim 3.10.1. For every i, if yi is not maximizing literal for
clause C ′i, then π(yi) = 0.

Claim 3.10.2. For all yi; π(yi) ∈ {0, 1/2}.
Claim 3.10.3. For all xi, if xi or¬xi is a maximizing literal,
then π(xi) ∈ {0, 1, 1/2}

Claim 3.10.4. For every xi with π(xi) = 1/2, xi and
¬xi are maximizing literals for exactly the same number of
clauses.

We will show how to construct a MaxSat assignment from
π: If π(xi) = 0, set the truth value of xi to False, else set the
truth value of xi to True.

By Claim 3.10.3, π(xi) = {0, 1/2, 1}. LetH be the num-
ber of clauses for which maximizing literal ` is a x-variable
and π(`) = 1. Note that the above truth assignment will
satisfy all the H clauses. Let N be number of clauses for
which maximizing literal ` is a x-variable and π(`) = 1/2.
By Claim 3.10.4, in exactly N/2 clauses a positive literal is
maximizing, and thus all these N/2 clauses are satisfied by
our truth assignment. Thus the total number of clauses satis-
fied by the truth assignment isN/2+H . Let Y the number of
clauses in which yi is maximizing literal. By Claim 3.10.2,
π(yi) = 1/2 when yi is maximizing literal. Thus

Conf(ϕ′, π) = 1H × (
1

2
)N × (

1

2
)2Y =

1

4N/2+Y
=

1

4m−r

The last equality follows from Claim 3.9.1. Thus m − r =
N/2 + Y , combining this with m = H +N + Y , we obtain
that N/2 + H = r. Thus the truth assignment constructed
will satisfy r clauses and is thus a MaxSat assignment.

4 Approximating optConfVal
We study the problem of approximating optConfVal effi-
ciently. Below, a k-SAT formula is a CNF formula with ex-
actly k distinct variables in any clause. We start with the
following proposition.

Lemma 4.1. Let a1, · · · an be an assignment, that satisfies
r clauses of a CNF formula ϕ(x1, · · ·xn). There is an inter-
pretation π so that Conf(ϕ, π) is

(
m−r
m

)m−r (r
m

)r
Hence, for example, if ϕ is a 3-SAT formula, since a

random assignment satisfies 7/8 fraction of the clauses in
expectation, for a random assignment r ≥ 7m/8, and
by Lemma 4.1, optConfVal(ϕ) > 0.686m. The follow-
ing lemma shows that one can get a better lower bound on
optConfVal in terms of the clause sizes for CNF formulae.

Lemma 4.2. For every CNF formula ϕ, optConfVal(ϕ) ≥
e
−

∑
i

1
ki where ki is the arity of the i’th clause in ϕ.

This yields a probabilistic algorithm. For example, if ϕ is
a 3-SAT formula, optConfVal(ϕ) > 0.716m and thus im-
proving on the result of Lemma 4.1. In fact, we can de-
sign a deterministic polynomial time algorithm that finds
an interpretation achieving the trust value guaranteed by
Lemma 4.2, using the well-known ‘method of conditional
expectation’ to derandomize the construction in the proof
(For example, see (Alon and Spencer 2008; Goemans and
Williamson 1994)).

Theorem 4.3. There is a polynomial-time, e−m/k-
approximation algorithm for optConf, when the input for-
mulas are k-CNF formulas with m-clauses.

Next, we show that the approximation factor e−m/k can
not be significantly improved.

Theorem 4.4. There is no polynomial-time 1

4m(2−k−ε)
-

approximation algorithm for optConf for k-SAT formulae,
unless P = NP.

Thus, for example for 3-SAT formulas, while we have
a polynomial-time, 0.716m-approximation algorithm (by
Theorem 4.3), we cannot expect an efficient 0.845m-
approximation algorithm by the above result unless P equals
NP. It remains an interesting open problem to determine the
optimal approximation ratio for this problem achievable by
a polynomial time algorithm.

5 Complexity of Access Maximization
In this section, we study the optimization problems for
the access control semiring Ak = ([k],max,min, 0, k).
We refer to the corresponding computational problems as
optAccessVal and optAccess. For this section we first as-
sume the negation function is the additive inverse modulo k.
That is k(a) = b such that a+ b ≡ 0 (mod k).
Theorem 5.1. Let ϕ(x1, · · ·xn) be a propositional formula
in negation normal form and Ak = ([k],max,min, 0, k).
The following statement holds.
• If ϕ is satisfiable, then optAccessVal(ϕ) = k.
• If ϕ is not satisfiable, then optAccessVal(ϕ) = bk2 c.

For a general negation function, we can establish an anal-
ogous theorem. For this, we define the notion of the index of
negation. Given a negation function k, its index denoted by
Index (k) is the largest ` for which there exists a ∈ [k], such
that both a and k(a) are at least `.
Theorem 5.2. Let ϕ(x1, · · ·xn) be a propositional formula
in negation normal form and Ak = ([k],max,min, 0, k).
The following statement holds.
• If ϕ is satisfiable, then optAccessVal(ϕ) = k.
• If ϕ is not satisfiable, then optAccessVal(ϕ) =
Index(k).

The following is a corollary to the above result and its
proof which states that the complexity of optimization prob-
lems over access control semiring is equivalent to their com-
plexity over the Boolean semiring.
Theorem 5.3. The problem optAccessVal and SAT are
equivalent under metric reductions. Similarly, the problem
optAccess and the problem of computing a satisfying as-
signment of a given Boolean formula are equivalent under
metric reductions.

6 Conclusion
In this work, we provided a comprehensive study of the com-
putational complexity of optSem and the related problem
optSemVal over various semirings such as Viterbi semiring,
tropical semiring, access control semiring and fuzzy semir-
ing, from both an algorithmic and a complexity-theoretic
viewpoint. An exciting recent development in the field of
CSP/SAT solving has been the development of solvers for
LexSAT, which seeks to find the smallest lexicographic sat-
isfying assignment of a formula (Marques-Silva et al. 2011).
In this regard, Theorem 3.2 opens up exciting directions of
future work to develop efficient techniques for optConf.

7 Acknowledgements
We thank the anonymous reviewers of AAAI-23 for valu-
able comments. This research is supported by the Na-
tional Research Foundation under the NRF Fellowship
Programme[NRF-NRFFAI1-2019-0004] and Campus for
Research Excellence and Technological Enterprise (CRE-
ATE) programme. Bhattacharyya was supported in part
by the NRF Fellowship Programme [NRF-NRFFAI1-
2019-0002] and an Amazon Research Award. Vinod
was supported in part by NSF CCF-2130608 and NSF
HDR:TRIPODS-1934884 awards. Pavan was supported in
part by NSF CCF-2130536, and NSF HDR:TRIPODS-
1934884 awards.

References
Alon, N.; and Spencer, J. H. 2008. The Probabilistic
Method, Third Edition. Wiley-Interscience series in discrete
mathematics and optimization. Wiley.
Amsterdamer, Y.; Deutch, D.; and Tannen, V. 2011. Prove-
nance for aggregate queries. In Proc. of PODS, 153–164.
Bistarelli, S. 2004. Semirings for soft constraint solving and
programming, volume 2962. Springer Science & Business
Media.
Bistarelli, S.; and Gadducci, F. 2006. Enhancing constraints
manipulation in semiring-based formalisms. In ECAI, vol-
ume 141, 63–67.
Bistarelli, S.; Montanari, U.; and Rossi, F. 1995. Constraint
solving over semirings. In IJCAI (1), 624–630. Citeseer.
Bistarelli, S.; Montanari, U.; and Rossi, F. 1997. Semiring-
based constraint satisfaction and optimization. J. ACM,
44(2): 201–236.
Bistarelli, S.; Montanari, U.; Rossi, F.; Schiex, T.; Verfaillie,
G.; and Fargier, H. 1999. Semiring-based CSPs and val-
ued CSPs: Frameworks, properties, and comparison. Con-
straints, 4(3): 199–240.
Cui, Y. 2002. Lineage tracing in data warehouses. Ph.D.
thesis, Stanford University.
Cui, Y.; Widom, J.; and Wiener, J. L. 2000. Tracing the
lineage of view data in a warehousing environment. ACM
Transactions on Database Systems (TODS), 25(2): 179–227.
Deutch, D.; Milo, T.; Roy, S.; and Tannen, V. 2014. Cir-
cuits for Datalog Provenance. In Proc. of ICDT, 201–212.
OpenProceedings.org.
Eiter, T.; and Kiesel, R. 2021. On the Complexity of Sum-of-
Products Problems over Semirings. In Proc. of AAAI, 6304–
6311. AAAI Press.
Foster, J. N.; Green, T. J.; and Tannen, V. 2008. Anno-
tated XML: queries and provenance. In Proceedings of
the twenty-seventh ACM SIGMOD-SIGACT-SIGART sym-
posium on Principles of database systems, 271–280.
Fuhr, N.; and Rölleke, T. 1997. A probabilistic rela-
tional algebra for the integration of information retrieval and
database systems. ACM Transactions on Information Sys-
tems (TOIS), 15(1): 32–66.

Goemans, M. X.; and Williamson, D. P. 1994. New 3/4-
Approximation Algorithms for the Maximum Satisfiability
Problem. SIAM J. Discret. Math., 7(4): 656–666.
Grädel, E.; and Mrkonjic, L. 2021. Elementary Equivalence
Versus Isomorphism in Semiring Semantics. In Proc. of
ICALP, volume 198 of LIPIcs, 133:1–133:20.
Grädel, E.; and Tannen, V. 2020. Provenance analysis for
logic and games. Moscow Journal of Combinatorics and
Number Theory, 9(3): 203 – 228.
Green, T. J. 2011. Containment of conjunctive queries on
annotated relations. Theory of Computing Systems, 49(2):
429–459.
Green, T. J.; Karvounarakis, G.; and Tannen, V. 2007. Prove-
nance semirings. In Proc. of PODS, 31–40.
Imieliński, T.; and Lipski Jr, W. 1989. Incomplete informa-
tion in relational databases. In Readings in Artificial Intelli-
gence and Databases, 342–360. Elsevier.
Klein, D.; and Manning, C. D. 2003. A* Parsing: Fast Ex-
act Viterbi Parse Selection. In Hearst, M. A.; and Ostendorf,
M., eds., Proc. of HLT-NAACL. The Association for Com-
putational Linguistics.
Krentel, M. W. 1988. The Complexity of Optimization Prob-
lems. J. Comput. Syst. Sci., 36(3): 490–509.
Marques-Silva, J.; Argelich, J.; Graça, A.; and Lynce, I.
2011. Boolean lexicographic optimization: algorithms &
applications. Annals of Mathematics and Artificial Intelli-
gence, 62(3): 317–343.
Meseguer, P.; Rossi, F.; and Schiex, T. 2006. Soft con-
straints. In Foundations of Artificial Intelligence, volume 2,
281–328. Elsevier.
Mohri, M. 2002. Semiring Frameworks and Algorithms for
Shortest-Distance Problems. J. Autom. Lang. Comb., 7(3):
321–350.
Tannen, V. 2013. Provenance propagation in complex
queries. In In Search of Elegance in the Theory and Practice
of Computation, 483–493. Springer.
Tannen, V. 2017. Provenance analysis for FOL model check-
ing. ACM SIGLOG News, 4(1): 24–36.
Viterbi, A. 1967. Error bounds for convolutional codes
and an asymptotically optimum decoding algorithm. IEEE
transactions on Information Theory, 13(2): 260–269.
Zimányi, E. 1997. Query evaluation in probabilistic rela-
tional databases. Theoretical Computer Science, 171(1-2):
179–219.

