
Projected Model Counting: Beyond Independent
Support ⋆

Jiong Yang1, Supratik Chakraborty2, and Kuldeep S. Meel1

1 School of Computing, National University of Singapore, Singapore
2 Indian Institute of Technology Bombay, India

Abstract. Given a system of constraints over a set X of variables, pro-
jected model counting asks us to count satisfying assignments of the
constraint system projected on a subset P of X. A key idea used in mod-
ern projected counters is to first compute an independent support, say I,
that is often a small subset of P, and to then count models projected
on I instead of on P. While this has been effective in scaling perfor-
mance of counters, the question of whether we can benefit by projecting
on variables beyond P has not been explored. In this paper, we study
this question and show that contrary to intuition, it can be beneficial to
project on variables even beyond P. In several applications, a good up-
per bound of the projected model count often suffices. We show that in
several such cases, we can identify a set of variables, called upper bound
support (UBS), that is not necessarily a subset of P, and yet counting
models projected on UBS guarantees an upper bound of the projected
model count. Theoretically, a UBS can be exponentially smaller than
the smallest independent support. Our experiments show that even oth-
erwise, UBS-based projected counting can be faster than independent
support-based projected counting, while yielding bounds of high qual-
ity. Based on extensive experiments, we find that UBS-based projected
counting can solve many problem instances that are beyond the reach of
a state-of-the-art independent support-based projected model counter.

1 Introduction

Given a Boolean formula φ over a set X of variables, and a subset P of X, the
problem of projected model counting asks us to determine the number of satisfy-
ing assignments of φ projected on P. Projected model counting is # NP-complete
in general [33]3, and has several important applications ranging from verification
of neural networks [4], hardware and software verification [32], reliability of power
grids [11], probabilistic inference [25], and the like. This problem has therefore
attracted significant attention from both theoreticians and practitioners over the
years [7, 9, 18, 27, 28, 30, 34]. While an ideal projected model counter offers high
scalability and strong quality guarantees for computed counts, these goals are
⋆ The resulting tool is available open-source at https://github.com/meelgroup/
arjun

3 A special case where P = X is known to be #P-complete [34]

2 J. Yang et al.

often hard to achieve simultaneously in practice. A pragmatic approach in sev-
eral applications is therefore to use counters that offer good scalability and good
quality of counts in practice, even if worst-case quality guarantees are weaker
than ideal. Unfortunately, designing such counters is not easy either, and this
motivates our current work.

Over the past decade, hashing-based techniques have emerged as a promising
approach to projected model counting, since they scale moderately in practice,
while providing strong approximation guarantees [6, 7, 13, 18, 27]. For proposi-
tional model counting, the hash functions are implemented using random XOR
clauses over variables in P. Starting from a formula φ in conjunctive normal
form (CNF), these techniques construct a CNF+XOR formula φ′ consisting of a
conjunction of CNF clauses from φ and random XOR clauses implementing the
hash functions. If each variable in P is chosen with probability 1/2 the expected
size of a random XOR clause is |P|/2. If the projection set is large, this can
indeed result in large XOR clauses – a known source of poor performance of
modern SAT solvers on CNF+XOR formulas [8, 16]. Researchers have therefore
explored the use of hash functions with sparse XOR clauses [1, 12, 16, 19, 23]
with moderate success.

A practically effective idea to address the problem of large XOR clauses was
introduced in [8], wherein the notion of an independent support I (⊆ P), was
introduced. Specifically, it was shown in [8] that (a) random XOR clauses over
I suffice to provide strong guarantees for computed bounds, and (b) for a large
class of practical benchmarks, |I| is much smaller than |P|. Hence, constructing
random XOR clauses over I instead of over P reduces the expected size of a
random XOR clause, thereby improving the runtime performance of hashing-
based counters [19]. Subsequently, independent supports have also been found
to be useful in the context of exact projected model counting [21, 22, 26].

The runtime performance improvements achieved by (projected) model coun-
ters over the past decade have significantly broadened the scope of their appli-
cations, which, in turn, has brought the focus sharply back on performance scal-
ability. Importantly, for several crucial applications such as neural network veri-
fication [4], quantified information flow [5], software reliability [32], reliability of
power grids [11], etc. we are primarily interested in good upper bound estimates
of projected model counts. As aptly captured by Achlioptas and Theodoropou-
los [1], while obtaining “lower bounds are easy” in the context of projected model
counting, such is not the case for good upper bounds. Therefore, scaling up to
large problem instances while obtaining good upper bound estimates remains an
important challenge in this area.

The primary contribution of this paper is a new approach to selecting vari-
ables on which to project solutions, with the goal of improving scalability of
hashing-based projected counters when good upper bounds of projected counts
are of interest. Towards this end, we generalize the notion of an independent
support I. Specifically, we note that the restriction I ⊆ P ensures a two-way im-
plication: if two solutions agree on I, then they also agree on P, and vice-versa.
Since we are interested in upper bounds, we relax this requirement to a one-sided

Projected Model Counting: Beyond Independent Support 3

implication, i.e., we wish to find a set U ⊆ X (not necessarily a subset of P) such
that if two solutions agree on U , then they agree on P, but not necessarily vice
versa. We call such a set U an Upper Bound Support, or UBS for short. We show
that using random XOR clauses over UBS in hashing-based projected counting
yields provable upper bounds of the projected counts. We also show some im-
portant properties of UBS, including an exponential gap between the smallest
UBS and the smallest independent support for a class of problems. Our study
suggests a simple algorithm, called FindUBS, to determine UBS, that can be
fine-tuned heuristically.

To evaluate the effectiveness of our idea, we augment a state-of-the-art model
counter, ApproxMC4, with UBS to obtain UBS+ApproxMC4. Through an exten-
sive empirical evaluation on 2632 benchmark instances arising from diverse do-
mains, we compare the performance of UBS+ApproxMC4 with IS+ApproxMC4,
i.e. ApproxMC4 augmented with independent support computation. Our exper-
iments show that UBS+ApproxMC4 is able to solve 208 more instances than
IS+ApproxMC4. Furthermore, the geometric mean of the absolute value of
log-ratio of counts returned by UBS+ApproxMC4 and IS+ApproxMC4 is 1.32,
thereby validating the claim that using UBS can lead to empirically good upper
bounds. In this context, it is worth remarking that a recent study [2] comparing
different partition function4 estimation techniques labeled a method with the
absolute value of log-ratio of counts less than 5 as a reliable method.

The rest of the paper is organized as follows. We present notation and prelim-
inaries in Section 2. To situate our contribution, we present a survey of related
work in Section 3. We then present the primary technical contributions of our
work, including the notion of UBS and an algorithmic procedure to determine
UBS, in Section 4. We present our empirical evaluation in Section 5, and finally
conclude in Section 6.

2 Notation and Preliminaries

Let X = {x1, x2 . . . xn} be a set of propositional variables appearing in a propo-
sitional formula φ. The set X is called the support of φ, and denoted Sup(φ). A
literal is either a propositional variable or its negation. The formula φ is said to be
in Conjunctive Normal Form (CNF) if φ is a conjunction of clauses, where each
clause is disjunction of literals. An assignment σ of X is a mapping X → {0, 1}.
If φ evaluates to 1 under assignment σ, we say that σ is a model or satisfying
assignment of φ, and denote this by σ |= φ. For every P ⊆ X, the projection of
σ on P, denoted σ↓P , is a mapping P → {0, 1} such that σ↓P(v) = σ(v) for all
v ∈ P. Conversely we say that an assignment σ̂ : P → {0, 1} can be extended to
a model of φ if there exists a model σ of φ such that σ̂ = σ↓P . The set of all

4 The problem of partition function estimation is known to be #P-complete and re-
duces to model counting; the state of the art techniques for partition function esti-
mates are based on model counting [10].

4 J. Yang et al.

models of φ is denoted sol(φ), and the projection of this set on P ⊆ X is denoted
sol(φ)↓P . We call the set P a projection set in our subsequent discussion5.

The problem of projected model counting is to compute |sol(φ)↓P | for a given
CNF formula φ and projection set P. An exact projected model counter is a
deterministic algorithm that takes φ and P as inputs and returns |sol(φ)↓P | as
output. A probably approximately correct (or PAC) projected model counter is a
probabilistic algorithm that takes as additional inputs a tolerance ε > 0, and a
confidence parameter δ ∈ (0, 1], and returns a count c such that Pr

[
|sol(φ)↓P |

(1+ε) ≤

c ≤ (1 + ε) · |sol(φ)↓P |
]
≥ 1− δ, where Pr[E] denotes the probability of event E.

Definition 1. Given a formula φ and a projection set P ⊆ Sup(φ), a subset of
variables I ⊆ P is called an independent support (IS) of P in φ if for every
σ1, σ2 ∈ sol(φ), we have

(
σ1↓I = σ2↓I

)
⇒

(
σ1↓P = σ2↓P

)
.

Since
(
σ1↓P = σ2↓P

)
⇒

(
σ1↓I = σ2↓I

)
holds trivially when I ⊆ P, it fol-

lows from Definition 1 that if I is an independent support of P in φ, then(
σ1↓I = σ2↓I

)
⇔

(
σ1↓P = σ2↓P

)
. Empirical studies have shown that the size of

an independent support I is often significantly smaller than that of the original
projection set P [8, 19, 21, 26]. In fact, the overhead of finding a small indepen-
dent support I is often more than compensated by the efficiency obtained by
counting projections of satisfying assignments on I, instead of on the original
projection set P.

3 Related Work

As mentioned in Section 1, state-of-the-art hashing-based projected model coun-
ters work by adding random XOR clauses over the projection set P to a given
CNF formula φ before finding satisfying assignments of the CNF+XOR formula.
There are several inter-related factors that affect the runtime performance of
such counters, and isolating the effect of any one factor is difficult. Nevertheless,
finding satisfying assignments of the CNF+XOR formula is among the most sig-
nificant bottlenecks. Among other things, the average size (i.e. number of literals)
in XOR clauses correlates positively with the time taken to solve CNF+XOR
formulas using modern conflict-driven clause learning (CDCL) SAT solvers [19].

The idea of using random XOR clauses over an independent support I (⊆ P)
that is potentially much smaller than P was introduced in [8]. This is particu-
larly effective when a small subset of variables functionally determines the large
majority of variables in a formula, as happens, for example, when Tseitin encod-
ing is used to transform a non-CNF formula to an equisatisfiable CNF formula.
State-of-the-art hashing-based model counters, viz. ApproxMC4 [27], therefore
routinely use random XOR clauses over the independent support. While the
naive way of choosing each variable in I with probability 1/2 gives a random
XOR clause with expected size |I|/2, specialized hash functions can also be
5 Projection set has also been referred to as sampling set in prior work [8, 27].

Projected Model Counting: Beyond Independent Support 5

defined such that the expected size of a random XOR clause is p · |I|, with
p < 1/2 [1, 12, 23]. The works of [1, 12] achieved this goal while guaranteeing a
constant factor approximation of the reported count. The work of [23] achieved
a similar reduction in the expected size of XOR clauses, while guaranteeing
PAC-style bounds.

All earlier work focused on random XOR clauses chosen over subsets of the
projection set P. While this is a natural choice, we break free from this re-
striction and allow XOR clauses to be constructed over any subset of variables
as long as the model count projected on the chosen subset bounds the model
count projected on P from above. This allows us more flexibility in construct-
ing CNF+XOR formulas, which as our experiments confirm, leads to improved
overall performance of projected model counting in several cases. Since we guar-
antee upper bounds of the desired counts, our approach yields an upper bounding
projected model counter. Nevertheless, as our experiments show, the bounds ob-
tained using our approach are consistently very close to the projected counts
reported using independent support. Therefore, in practice, our approach gives
high quality bounds on projected model counts more efficiently than state-of-
the-art hashing-based techniques that use independent supports.

It is worth mentioning that several bounding model counters have been re-
ported earlier in the literature. These counters produce a count that is at least as
large (or, as small, as the case may be) as the true model count of a given CNF
formula with a specified confidence. Notable examples are SampleCount [17],
BPCount [20], MBound and Hybrid-MBound [18] and MiniCount [20]. Owing
to several technical reasons, however, these bounding counters scale poorly com-
pared to state-of-the-art hashing-based counters like ApproxMC4 [27] in practice.
Unlike earlier bounding counters, we first carefully identify a subset of variables
(not restricted to be a subset of P), and then use state-of-the-art hashing-based
approximate projected counting using this subset as the new projection set.
Therefore, our approach directly benefits from improvements in performance
of hashing-based projected counting achieved over the years. Furthermore, by
carefully controlling the chosen subset of variables, we can also control the qual-
ity of the bound. As an extreme case, if all variables are chosen from P, then
our approach produces counts with true PAC-style guarantees.

4 Technical Contribution

In this section, we generalize the notion of independent support, and give tech-
nical details of projected model counting using this generalization.

Definition 2. Given a CNF formula φ and a projection set P, let S ⊆ Sup(φ)
be such that for every σ1, σ2 ∈ sol(φ), we have

(
σ1↓S = σ2↓S

)
▷◁

(
σ1↓P = σ2↓P

)
,

where ▷◁ ∈ {⇒,⇐,⇔}. Then S is called a
1. generalized independent support (GIS) of P in φ if ▷◁ is ⇔
2. upper bound support (UBS) of P in φ if ▷◁ is ⇒
3. lower bound support (LBS) of P in φ if ▷◁ is ⇐

6 J. Yang et al.

Note that in the above definition, S need not be a subset of P. In fact, if S
is restricted to be a subset of P, the definitions of GIS and UBS coincide with
that of IS (Definition 1), while LBS becomes a trivial concept (every subset of
P is indeed an LBS of P in φ). The following lemma now follows immediately.

Lemma 1. Let G, U and L be GIS, UBS and LBS, respectively, of P in φ. Then
|sol(φ)↓L| ≤ |sol(φ)↓P | = |sol(φ)↓G | ≤ |sol(φ)↓U |.

Let UBS,LBS,GIS and IS be the set of all UBS, LBS, GIS and IS respec-
tively of a projection set P in φ. It is easy to see that IS ⊆ GIS ⊆ UBS,
and GIS ⊆ LBS. While each of the notions of GIS, UBS and LBS are of in-
dependent interest, this paper focuses primarily on UBS because we found this
notion particularly useful in practical projected model counting. Additionally, as
the above inclusion relations show, UBS and LBS are the largest classes among
UBS,LBS,GIS and IS; hence, finding an UBS is likely to be easier than finding
a GIS. Furthermore, the notion of UBS continues to remain interesting (but not
so for LBS) even when I is chosen to be a subset of P.

We call a UBS U (resp. LBS L, GIS G and IS I) of P in φ minimal if there
is no other UBS (resp. LBS, GIS and IS) of P in φ that is a strict subset of U
(resp. of L, G and I).

Example 1. Consider a CNF formula φ(x1, x2, x3, x4) ≡ (x3 ∨ x4)∧ (x1 ∨ x4)∧
(x2∨x3)∧ (x2∨x4)∧ (¬x1∨¬x2∨¬x4)∧ (¬x3∨¬x4∨¬x2). There are four satisfy-
ing assignments of φ, given by (x1, x2, x3, x4) ∈ {(0, 0, 1, 1), (0, 1, 0, 1), (1, 0, 1, 1),
(1, 1, 1, 0)}. If P = {x1, x3, x4}, it can be seen that the only minimal IS of P in φ
is {x1, x3, x4}, whereas {x1, x2} is a minimal UBS and also GIS of P in φ. Any
single variable subset of {x1, x2, x3, x4} serves as a minimal LBS of P in φ.

In the remainder of this section, we first explore some interesting theoretical
properties of GIS and UBS, and then proceed to develop a practical algorithm
for computing a UBS from a given formula φ and projection set P. Finally, we
present an algorithm for computing bounds of projected model counts using the
UBS thus computed.

4.1 Extremal properties of GIS and UBS

We first show that by allowing variables on which to project to lie beyond the
projection set P, we can obtain an exponential reduction in the count of variables
on which to project.

Theorem 1. For every n > 1, there exists a propositional formula φn on (n−
1) + ⌈log2 n⌉ variables and a projection set Pn with |Pn| = n− 1 such that
– The smallest GIS of Pn in φn is of size ⌈log2 n⌉.
– The smallest UBS of Pn in φn is of size ⌈log2 n⌉.
– The smallest IS of Pn in φn is Pn itself, and hence of size n− 1.

Projected Model Counting: Beyond Independent Support 7

Proof:

x1 x2 · · · xn−1 y1 y2 · · · ylog2 n

σ0 0 0 · · · 0 0 · · · 0 0
σ1 1 0 · · · 0 0 · · · 0 1

...
...

...
...

...
...

...
...

σn−1 0 0 · · · 1 1 · · · 1 1

For notational convenience, we as-
sume n to be a power of 2. Consider a
formula φn on propositional variables
x1, . . . xn−1, y1, . . . ylog2 n with n satis-
fying assignments, say σ0, . . . σn−1, as
shown in the table below. Thus, for all

i ∈ {1, . . . n−1}, the values of y1 . . . ylog2 n in σi encode i in binary (with y1 being
the most significant bit), the value of xi is 1, and the values of all other xj ’s are
0. For the special satisfying assignment σ0, the values of all variables are 0.

Let Pn = {x1, . . . xn−1}. Clearly, |sol(φn)| = |sol(φn)↓Pn
| = n. Now consider

the set of variables Gn = {y1, . . . ylog2 n}. It is easy to verify that for every pair
of satisfying assignments σi, σj of φn,

(
σi↓Gn = σj↓Gn

)
⇔

(
σi↓Pn

= σj↓Pn

)
.

Therefore, Gn is a GIS, and hence also a UBS, of Pn in φn, and |Gn| = log2 n.
Indeed, specifying y1, . . . ylog2 n completely specifies the value of all variables for
every satisfying assignment of φn. Furthermore, since |sol(φn)↓Pn

| = n, every
GIS and also UBS of Pn must be of size at least log2 n. Hence, Gn is a smallest-
sized GIS, and also a smallest-sized UBS, of Pn in φn.

Let us now find how small an independent support (IS) of Pn in φ can be.
Recall that |sol(φn)↓Pn

| = n. If possible, let there be an IS of Pn, say In ⊆ Pn,
where |In| < n−1. Therefore, at least one variable in Pn, say xi, must be absent
in In. Now consider the satisfying assignments σi and σ0. Clearly, both σi↓In
and σ0↓In are the all-0 vector of size |In|. Therefore, σi↓In = σ0↓In although
σi↓Pn

̸= σ0↓Pn
. It follows that In cannot be an IS of Pn in φn. This implies that

the smallest IS of Pn in φn is Pn itself, and has size n− 1. ⊓⊔
Observe that the smallest GIS/UBS Gn above is disjoint from Pn. Therefore,

it can be beneficial to look outside the projection set when searching for a GIS
or UBS. The next theorem shows that the opposite can also be true. The proof
is deferred to the detailed technical report [?].

Theorem 2. For every n > 1, there exist formulas φn and ψn on (n − 1) +
⌈log2 n⌉ variables and a projection set Qn with |Qn| = n−⌈log2 n⌉− 1 such that
the only GIS of Qn in φn is Qn, and the smallest UBS of Qn in ψn is also Qn.

Theorems 1 and 2 indicate that the search for the smallest GIS or UBS is
likely to be hard, since it has to potentially consider subsets of X ranging from
those completely overlapping with P to those disjoint from P. Below, we present
an algorithm to compute a minimal (as opposed to smallest) UBS, for use in
projected model counting.

4.2 Algorithm to compute projected count using UBS

We now describe an algorithm to compute a minimal UBS for a given CNF
formula φ and projection set P. We draw our motivation from Padoa’s theo-
rem [24], which provides a necessary and sufficient condition for a variable in
the support of φ to be functionally determined by other variables in the support.

8 J. Yang et al.

Let Sup(φ) = X = {x1, x2, . . . xt}; we also write φ(X) to denote this. We create
another set of fresh variables X ′ = {x′1, x′2, . . . x′t}. Let φ(X 7→ X ′) represent the
formula where every xi ∈ X in φ is replaced by x′i ∈ X ′.

Lemma 2 (Padoa’s Theorem [24]). Let ψ(X,X ′, i) be defined as φ(X) ∧
φ(X 7→ X ′) ∧

∧t
j=1
j ̸=i

(xj ⇔ x′j) ∧ xi ∧ ¬x′i. The variable xi is defined by X \ {xi}
in the formula φ iff ψ(X,X ′, i) is unsatisfiable.

Padoa’s theorem has been effectively used in state-of-the-art hashing-based
projected model counters such as ApproxMC4 [27] to determine small indepen-
dent supports of given projection sets. In our setting, we need to modify the
formulation since we seek to compute an upper bound support.

Given P, we first partition X = Sup(φ) into sets J , D and Q as follows.
The set J contains variables already determined to be in a minimal UBS of
P in φ. The set D contains variables not necessarily in a minimal UBS of P
in φ obtainable by adding elements from Q to J . Finally, Q contains all other
variables in X.

Initially, J and D are empty sets, and Q = X. As the process of computation
of a minimal UBS proceeds, we maintain the invariant that J ∪Q is a UBS (not
necessarily minimal) of P in φ. Notice that this is trivially true initially.

Let z be a variable in Q for which we wish to determine if it can be added to
the partially computed minimal UBS J . In the following discussion, we use the
notation φ(J,Q \ {z}, D, z) to denote φ with its partition of variables, and with
z specially identified in the partition Q. Recalling the definition of UBS from
Section 2, we observe that if z is not part of a minimal UBS containing J , and
if J ∪Q is indeed a UBS of P ∈ φ, then as long as values of variables other than
z in J ∪Q are kept unchanged, the projection of a satisfying assignment of φ on
P must also stay unchanged. This suggests the following check to determine if
z is not part of a minimal UBS containing J .

Define ξ(J,Q \ {z}, D, z,D′, z′) as φ(J,Q \ {z}, D, z)∧φ(J,Q \ {z}, D′, z′)∧∨
xi ∈ P∩(D∪{z})(xi ̸⇔ x′i), where D′ and z′ represent fresh and renamed in-

stances of variables in D and z, respectively. If ξ is unsatisfiable, we know that
as long as the values of variables in J ∪ (Q \ {z}) are kept unchanged, the pro-
jection of the satisfying assignment of φ on P cannot change. This allows us to
move z from the set Q to the set D.

Theorem 3. If ξ(J,Q \ {z}, D, z,D′, z′) is unsatisfiable, then J ∪ (Q \ {z}) is
a UBS of P in φ.

The proof of Theorem 3 is deferred to the extended version [?]. The above
check suggests a simple algorithm for computing a minimal UBS. We present
the pseudocode of our algorithm for computing UBS below.

After initializing J , Q and D, FindUBS chooses a variable z ∈ Q and checks
if the formula ξ in Theorem 3 is unsatisfiable. If so, it adds z to D and re-
moves it from Q. Otherwise, it adds z to J . The algorithm terminates when Q
becomes empty. On termination, J gives a minimal UBS of P in φ. The strat-
egy for choosing the next z from Q, implemented by sub-routine ChooseNextVar,

Projected Model Counting: Beyond Independent Support 9

Algorithm 1 FindUBS(φ,P)

1: J ← ∅;Q← Sup(φ);D ← ∅;
2: repeat
3: z ← ChooseNextVar(Q);

4: ξ ←
(

φ(J,Q \ z,D, z) ∧ φ(J,Q \ z,D′, z′) ∧∨
xi ∈ P∩(D∪{z}) ¬(xi ⇔ x′

i)

)
;

5: if ξ is UNSAT then
6: D ← D ∪ {z};
7: else
8: J ← J ∪ {z};
9: Q← Q \ {z};
10: until Q is ∅;
11: return J;

clearly affects the quality of UBS obtained from this algorithm. We require that
ChooseNextVar(Q) return a variable from Q as long as Q ̸= ∅. Choosing z from
outside P gives a UBS that is the same as an IS of P in φ. In our experiments,
we therefore bias the choice of z to favour those in P.

In our prototype implementation, ChooseNextVar chooses variables from within
P before variables outside P. Note that this policy heuristically prioritizes re-
moval of variables in P from the set J . To see why this is so, suppose x1 ↔ x2
is entailed by φ, and x1 ∈ P while x2 ̸∈ P. Suppose neither x1 nor x2 have been
chosen so far. If we first choose x1 as z, the formula ξ in line 4 of Algorithm 1
will be UNSAT, and x1 will be moved to D and finally x2 will be added to J
(and hence to UBS). However, if we first choose x2 as z, x2 will be moved to D
while x1 will subsequently get added to J , and hence to UBS. We hope to leave
x2 (outside P) in UBS and thereby first choose x1 (within P).

We further use an incidence-based heuristic to prioritize variables within P,
or outside P (after all variables in P have been considered). The incidence for
each variable is defined as the number of clauses containing the variable or its
negation in the given CNF. ChooseNextVar always returns the variable with the
smallest incidence (within P, or outside P, as the case may be) that has not been
considered so far. This is based on our observation that these variables often do
not belong to upper bound support in practice.

We now state some key properties of Algorithm FindUBS. All proofs are
deferred to the extended version [?].

Lemma 3. There exists a minimal UBS U∗ of P in φ such that J ⊆ U∗ ⊆ J∪Q,
where J and Q refer to the respective sets at the loop head (line 2) of Algorithm 1.

Theorem 4. Algorithm 1, when invoked on φ and P, terminates and computes
a minimal UBS of P in φ.

The overall algorithm for computing an upper bound of the projected model
count of a CNF formula using UBS is shown in Algorithm 2. This algorithm
takes a timeout parameter τpre to limit the time taken for computing a UBS U
using algorithm FindUBS. If FindUBS times out, it uses the projection set P
itself for U . It also invokes a PAC-style projected model counter ComputeCount
to estimate the count of φ projected on U .

10 J. Yang et al.

Algorithm 2 UBCount(φ,P, ε, δ, τpre)
1: U ← FindUBS(φ,P) with timeout τpre;
2: if call to FindUBS times out then
3: U ← P;
4: return ComputeCount(φ,U, ε, δ)

Theorem 5. Given a CNF formula φ, a projection set P, timeout parameter
τpre > 0, parameters ε (> 0) and δ (0 < δ ≤ 1), and given access to a (ε, δ)-PAC
projected counter ComputeCount, suppose Algorithm UBCount returns a count c.
Then for every choice of sub-routine ChooseNextVar in Algorithm FindUBS, we
have Pr [|sol(φ)↓P | ≤ (1 + ε) · c] ≥ 1− δ.

Theorem 5 provides the weakest worst-case guarantee for Algorithm UBCount,
over all possible choices of sub-routine ChooseNextVar. In practice, the specifics
of ChooseNextVar can be factored in to strengthen the guarantee, including PAC-
style guarantees in the extreme case if ChooseNextVar always chooses variables
from the projection set P. A more detailed analysis of UBCount, taking into
account the specifics of ChooseNextVar, is beyond the scope of this paper. Note,
however, that despite the apparent weakness of worst-case guarantees, Algo-
rithm UBCount consistently computes high quality bounds for projected counts
in practice, as detailed in the next section.

5 Experimental Evaluation

To evaluate the practical performance of UBCount, we implemented a prototype
in C++. Our prototype implementation6 builds on Arjun [29], a state of the art
independent support computation tool, which is shown to significantly improve
over prior state of the art approaches for computation of independent support [21,
22]. For projected model counting, we employ the version of ApproxMC4 that
was used as a winning entry to the model counting competition 2020 [14] 7. Since
all prior applications and benchmarking for approximation techniques have been
presented with ε = 0.8 in the literature, we continue to use the same value of ε
in this work. Note, however, that UBS can be used with any backend tool that
computes projected model counts, and the benefits of UBS are orthogonal to
those of choosing the backend projected model counter.

We use UBS+ApproxMC4 to denote the case when ApproxMC4 is invoked
with the computed UBS as the projection set, while we use IS+ApproxMC4 to
refer to the version of ApproxMC4 invoked with IS as the projection set.

Benchmarks. Our benchmark suite consists of 2632 instances, which are
categorized into four categories: BNN, Circuit, QBF-exist and QBF-circuit. The
6 The tool is available open-source at https://github.com/meelgroup/arjun.
7 The ApproxMC4-based entry achieved 3rd place in the 2021 competition, with

the tolerance for error (ε) set to 0.01. As mentioned during the competitive event
presentation at the SAT 2021 conference, had ε been set to 0.05, the ApproxMC4-
based entry would have indeed won the competition.

Projected Model Counting: Beyond Independent Support 11

’BNN’ benchmarks are adapted from [4]. Each instance contains CNF encoding
of a binarized neural network (BNN) and constraints from properties of interest
such as robustness, cardinality, and parity. The projection set P is set to variables
from a chosen layer in the BNN. The class ‘Circuit’ refers to instances from [8],
which encode circuits arising from ISCAS85/ISCAS89 benchmarks conjuncted
with random parity constraints imposed on output variables. The projection
set, as set by authors in [8], corresponds to output variables. The ’QBF’ bench-
marks are based on instances from the Prenex-2QBF track of QBFEval-178,
QBFEval-189, and disjunctive decomposition [3], arithmetic [31] and factoriza-
tion [3] benchmarks for Boolean functional synthesis. Each ‘QBF-exist’ bench-
mark is a CNF formula transformed from a QBF instance. We remove quantifiers
for the (2-)QBF instances and set the projection set to the variables originally
existentially quantified. The class ‘QBF-circuit’ refers to circuits synthesized us-
ing the state-of-the-art functional synthesis tool, Manthan [15]. The projection
set here is set to output variables.

Our choice of benchmark categories is motivated by the observation that UBS-
based approximate model counting is likely to perform well when the variables in
a problem instance admit partitioning into a sequence of “layers”, with variables
in each layer functionally determined by those in preceding layers. Note that
this may not hold for arbitrary model counting benchmarks. We defer additional
discussion on this to [?] for lack of space.

Experiments were conducted on a high-performance computer cluster, each
node consisting of 2xE5-2690v3 CPUs with 2x12 real cores and 96GB of RAM.
For each benchmark, the projected model counter with each preprocessing tech-
nique runs on a single core. We set the time limit to 5000 seconds for each of
preprocessing and counting, and the memory limit to 4GB. The maximal number
of conflicts in SAT solver calls during pre-processing is set to 100k. To compare
runtime performance, we use PAR-2 scores, which is the de-facto standard in the
SAT community. Each benchmark contributes a score that is the time in seconds
taken by the corresponding tool to successfully complete execution or in case of
a timeout or memory out, twice the timeout in seconds. We then calculate the
average score for all benchmarks, obtaining the PAR-2 score.

We seek to answer the following research questions:

RQ 1 Does the usage of UBS enable ApproxMC4 to solve more benchmarks in
comparison to the usage of IS ?

RQ 2 How does the quality of counts computed by UBS+ApproxMC4 vary in
comparison to IS+ApproxMC4?

RQ 3 How does the runtime behavior of UBS+ApproxMC4 compare with that
of IS+ApproxMC4?

Summary. In summary, UBS+ApproxMC4 solves 208 more instances than
IS+ApproxMC4. Furthermore, while computation of UBS takes 777 more sec-
onds, the PAR-2 score of UBS+ApproxMC4 is 817 seconds less than that of
8 http://www.qbflib.org/qbfeval17.php
9 http://www.qbflib.org/qbfeval18.php

12 J. Yang et al.

IS+ApproxMC4. Finally, for all the instances where both UBS+ApproxMC4 and
IS+ApproxMC4 terminated, the geometric mean of log-ratio of counts returned
by IS+ApproxMC4 and UBS+ApproxMC4 is 1.32, indicating that UBS+ApproxMC4
provides good upper bound estimates. Therefore, UBS+ApproxMC4 can be used
instead of IS+ApproxMC4 for applications that really care about upper bounds
of projected counts.

In this context, it is worth highlighting that since there has been considerable
effort in recent years in optimizing computation of IS, one would expect that
further engineering efforts would lead to even more runtime savings for UBS.

Benchmarks Total VBS IS+ApproxMC4 UBS+ApproxMC4

BNN 1224 868 823 823
Circuit 522 455 407 435

QBF-exist 607 314 156 291
QBF-circuit 279 152 100 145

Table 1. The number of solved benchmarks.

Number of Solved Benchmarks Table 1 compares the number of bench-
marks solved by IS+ApproxMC4 and UBS+ApproxMC4. Observe that the us-
age of UBS enables ApproxMC4 to solve 435, 291, and 145 instances on Cir-
cuit, QBF-exist, and QBF-circuit benchmark sets respectively while the usage of
IS+ApproxMC4 solved 407, 156 and 100 instances. In particular, UBS+ApproxMC4
solved almost twice as many instances on QBF-exist benchmarks.

The practical adoption of tools for NP-hard problems often relies on portfolio
solvers. Therefore, from the perspective of practice, one is often interested in
evaluating the impact of a new technique to the portfolio of existing state of
the art. To this end, we often focus on Virtual Best Solver (VBS), which can be
viewed as an ideal portfolio. An instance is considered to be solved by VBS if is
solved by at least one solver in the portfolio. Observe that in our experiments
on BNN benchmarks, while UBS+ApproxMC4 and IS+ApproxMC4 solved the
same number (not same set) of instances, VBS solves 45 more instances since
there were instances solved by one solver and not the other.

Time Analysis To analyze the runtime behavior, we separate the preprocessing
time (computation of UBS and IS) and the time taken by ApproxMC4. Table 2
reports the mean of preprocessing time over benchmarks and the PAR-2 score
for counting time. The usage of UBS reduces the PAR-2 score for counting from
from 3680, 2206, 7493, and 6479 to 3607, 1766, 5238, and 4829 respectively on
the four benchmark sets. Remarkably, UBS reduces PAR-2 score by over 2000
seconds on QBF-exist benchmarks and over by 1000 seconds on QBF-circuit – a
significant improvement!

Projected Model Counting: Beyond Independent Support 13

Preprocessing time PAR-2 score of counting time

Benchmarks IS (s) UBS (s) IS (s) UBS (s)

BNN 2518 2533 3680 3607
Circuit 229 680 2206 1766

QBF-exist 70 2155 7493 5238
QBF-circuit 653 2541 6479 4829
Table 2. The mean of preprocessing time and PAR-2 score of counting time

Observe that the mean pre-processing time taken by UBS is higher than that
of IS across all four benchmark classes. Such an observation may lead one to won-
der whether savings due to UBS are indeed useful; in particular, one may wonder
what would happen if the total time of IS+ApproxMC4 is set to 10,000 seconds
so that the time remaining after IS computation can be used by ApproxMC4.
We observe that even in such a case, IS+ApproxMC4 is able to solve only four
more instances than Table 1. To further emphasize, UBS+ApproxMC4 where
ApproxMC4 is allowed a timeout of 5000 seconds can still solve more instance
than IS+ApproxMC4 where ApproxMC4 is allowed a timeout of 10, 000 − tIS
where tIS is time taken to compute IS with a timeout of 5000 seconds.

IS+ApproxMC4 UBS+ApproxMC4

Benchmarks |X| |P| |IS| Time (s) Count |UBS| Time (s) Count

amba2c7n.sat 1380 1345 313 0.24+2853 50 ∗ 265 73 17+1 63 ∗ 267
bobtuint31neg 1634 1205 678 0.37+5000 − 417 148+16 64 ∗ 2411

ly2-25-bnn_32-bit-5-id-11 131 32 32 1313+3416 94 ∗ 29 59 2113+1034 63 ∗ 210
ly3-25-bnn_32-bit-5-id-10 131 32 32 1389+5000 − 61 2319+841 60 ∗ 29

floor128 891 879 254 0.07+5000 − 256 9+6 64 ∗ 2250
s15850_10_10.cnf 10985 684 605 0.50+5000 − 600 41+2070 50 ∗ 2566

arbiter_10_5 23533 129 118 0.71+4 64 ∗ 2112 302 7+5000 −
cdiv_10_5 101705 128 60 102+50 72 ∗ 250 − 5000+5000 −

rankfunc59_signed_64 5140 4505 1735 3+274 43 ∗ 21727 − 5000+5000 −
Table 3. Performance comparison of UBS vs. IS. The runtime is reported in seconds
and “−’ in a column reports timeout after 5000 seconds.

Detailed Runtime Analysis Table 3 presents the results over a subset of
benchmarks. Column 1 of the table gives the benchmark name, while columns
2 and 3 list the size of support X and the size of projection set P, respectively.
Columns 4-6 list the size of computed IS, runtime of IS+ApproxMC4, and model
count over IS while columns 7-9 correspond to UBS. Note that the time is rep-
resented in the form tp + tc where tp refers to the time taken by IS (resp. UBS)
and tc refers to the time taken by ApproxMC4. We use ‘−’ in column 6 (resp.
column 9) for the cases where IS+ApproxMC4 (resp. UBS+ApproxMC4) times
out.

14 J. Yang et al.

The benchmark set was chosen to showcase different behaviors of interest:
First, we observe that the smaller size of UBS for amba2c7n.sat helps UBS+ApproxMC4
while IS+ApproxMC4 times out. It is, however, worth emphasizing that the size
of UBS and IS is not the only factor. To this end, observe that for the two
benchmarks arising from BNN, represented in the third and fourth row, even
though the size of UBS is large, the runtime of ApproxMC4 is still improved.
Furthermore, in comparison to IS (which is heavily optimized in Arjun [29],
our implementation for UBS did not explore engineering optimizations, which
explains why UBS computation times out in the presence of the large size of sup-
port. Therefore, an important direction of future research is to further optimize
the computation of UBS to fully unlock the potential of UBS.

Quality of Upper Bounds To evaluate the quality of computed upper bounds,
we compare the counts computed by UBS+ApproxMC4 with those of IS+ApproxMC4
for 1376 instances where both IS+ApproxMC4 and UBS+ApproxMC4 termi-
nated. Suppose CIS and CUBS denote the model count using IS and UBS respec-
tively. The error is computed as Error = log2 CUBS − log2 CIS, using common
comparing convention for model counters. Figure 1 shows the Error distribu-
tion over our benchmarks. A point (x, y) represents Error ≤ y on the first x
benchmarks. For example, the point (1000, 2.2) means that Error ≤ 2.2 on 1000
benchmarks. Overall, the geometric mean of Error is 1.32. Furthermore, for more
than 67% benchmarks, Error is less than 1, and for 81% benchmarks, Error is
less than 5. Only 11% benchmarks have Error larger than 10. We intend to in-
vestigate heuristics for ChooseNextVar to reduce Error in these extremal cases
as part of future work. To put the significance of Error in context, we refer to
the recent survey [2] comparing several partition function estimation techniques,
wherein a method with Error less than 5 is considered a reliable method. It is
known that partition function estimation reduces to model counting, and the
best performing technique identified in that study relies on model counting.

0 250 500 750 1000 1250
Benchmarks

0

100

200

300

Er
ro

r

(1000, 2.2)

Fig. 1. Error of upper bound.

Projected Model Counting: Beyond Independent Support 15

6 Conclusion

In this work, we introduced the notion of Upper Bound Support (UBS), which
generalizes the well-known notion of independent support. We then observed that
the usage of UBS for generation of XOR constraints allows the computation of
upper bound of projected model counts. Our empirical analysis demonstrates
that UBS+ApproxMC leads to significant runtime improvement in terms of the
number of instances solved as well as the PAR-2 score. Since identification of
the importance of IS in the context of counting led to follow-up work focused
on efficient computation of IS, we hope our work will excite the community to
work on efficient computation of UBS.

References

1. Achlioptas, D., Theodoropoulos, P.: Probabilistic model counting with short
xors. In: Proc. of SAT. pp. 3–19 (2017)

2. Agrawal, D., Pote, Y., Meel, K.S.: Partition function estimation: A quanti-
tative study. In: Proc. of IJCAI (8 2021)

3. Akshay, S., Chakraborty, S., John, A.K., Shah, S.: Towards parallel boolean
functional synthesis. In: Proc. of TACAS. pp. 337–353 (2017)

4. Baluta, T., Shen, S., Shine, S., Meel, K.S., Saxena, P.: Quantitative verifica-
tion of neural networks and its security applications. In: Proc. of CCS (11
2019)

5. Biondi, F., Enescu, M., Heuser, A., Legay, A., Meel, K.S., Quilbeuf, J.: Scal-
able approximation of quantitative information flow in programs. In: Proc.
of VMCAI (1 2018)

6. Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable and nearly uniform
generator of sat witnesses. In: Proc. of CAV. pp. 608–622 (7 2013)

7. Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable approximate model
counter. In: Proc. of CP. pp. 200–216 (9 2013)

8. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Balancing scalability and unifor-
mity in sat-witness generator. In: Proc. of DAC. pp. 60:1–60:6 (6 2014)

9. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Algorithmic improvements in ap-
proximate counting for probabilistic inference: From linear to logarithmic
SAT calls. In: Proc. of IJCAI (2016)

10. Chavira, M., Darwiche, A.: Compiling bayesian networks with local structure.
In: IJCAI. vol. 5, pp. 1306–1312 (2005)

11. Duenas-Osorio, L., Meel, K.S., Paredes, R., Vardi, M.Y.: Counting-based
reliability estimation for power-transmission grids. In: Proc. of AAAI (2
2017)

12. Ermon, S., Gomes, C., Sabharwal, A., Selman, B.: Low-density parity con-
straints for hashing-based discrete integration. In: Proc. of ICML (2014)

13. Ermon, S., Gomes, C.P., Sabharwal, A., Selman, B.: Taming the curse of
dimensionality: Discrete integration by hashing and optimization. In: Proc.
of ICML (6 2013)

16 J. Yang et al.

14. Fichte, J.K., Hecher, M., Hamiti, F.: The model counting competition 2020.
arXiv preprint arXiv:2012.01323 (2020)

15. Golia, P., Roy, S., Meel, K.S.: Manthan: A data-driven approach for boolean
function synthesis. In: Proc. of CAV (7 2020)

16. Gomes, C., Hoffmann, J., Sabharwal, A., Selman, B.: Short xors for model
counting: From theory to practice. In: Proc. of SAT (2007)

17. Gomes, C., Hoffmann, J., Sabharwal, A., Selman, B.: From sampling to
model counting. pp. 2293–2299 (01 2007)

18. Gomes, C.P., Sabharwal, A., Selman, B.: Model counting: A new strategy
for obtaining good bounds. In: Proc. of AAAI (2006)

19. Ivrii, A., Malik, S., Meel, K.S., Vardi, M.Y.: On computing minimal inde-
pendent support and its applications to sampling and counting. Constraints
21(1) (9 2016)

20. Kroc, L., Sabharwal, A., Selman, B.: Leveraging belief propagation, back-
track search, and statistics for model counting. In: Proc. of CPAIOR (2008)

21. Lagniez, J.M., Lonca, E., Marquis, P.: Improving model counting by lever-
aging definability. In: IJCAI. pp. 751–757 (2016)

22. Lagniez, J.M., Lonca, E., Marquis, P.: Definability for model counting. Ar-
tificial Intelligence 281, 103229 (2020)

23. Meel, K.S., Akshay, S.: Sparse hashing for scalable approximate model count-
ing: Theory and practice. In: Proc. of LICS (7 2020)

24. Padoa, A.: Essai d’une théorie algébrique des nombres entiers, précédé d’une
introduction logique à une théorie déductive quelconque. Bibliothèque du
Congrès International de Philosophie 3, 309 (1901)

25. Sang, T., Bearne, P., Kautz, H.: Performing bayesian inference by weighted
model counting. In: Proc. of AAAI. AAAI’05, vol. 1, p. 475–481 (2005)

26. Sharma, S., Roy, S., Soos, M., Meel, K.S.: Ganak: A scalable probabilistic
exact model counter. In: IJCAI. vol. 19, pp. 1169–1176 (2019)

27. Soos, M., Gocht, S., Meel, K.S.: Tinted, detached, and lazy cnf-xor solving
and its applications to counting and sampling. In: Proc. of CAV (7 2020)

28. Soos, M., Meel, K.S.: Bird: Engineering an efficient cnf-xor sat solver and
its applications to approximate model counting. In: Proc. of AAAI (1 2019)

29. Soos, M., Meel, K.S.: Arjun: An efficient independent support computation
technique and its applications to counting and sampling. arXiv preprint
arXiv:2110.09026 (2021)

30. Stockmeyer, L.: The complexity of approximate counting. In: Proc. of STOC
(1983)

31. Tabajara, L.M., Vardi, M.Y.: Factored boolean functional synthesis. In: Proc.
of FMCAD. p. 124–131. FMCAD ’17 (2017)

32. Teuber, S., Weigl, A.: Quantifying software reliability via model-counting.
In: Proc. of QEST. pp. 59–79 (2021)

33. Valiant, L.G.: The complexity of computing the permanent. Theoretical
Computer Science 8(2), 189–201 (1979)

34. Valiant, L.G.: The complexity of enumeration and reliability problems.
SIAM Journal on Computing 8(3), 410–421 (1979)

