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Abstract. Given an unsatisfiable formula F in CNF, i.e. a set of clauses,
the problem of Minimal Unsatisfiable Subset (MUS) seeks to identify
a minimal subset of clauses N ⊆ F such that N is unsatisfiable. The
emerging viewpoint of MUSes as the root causes of unsatisfiability has
led MUSes to find applications in a wide variety of diagnostic approaches.
Recent advances in identification and enumeration of MUSes have mo-
tivated researchers to discover applications that can benefit from rich
information about the set of MUSes. One such extension is that of count-
ing the number of MUSes. The current best approach for MUS counting
is to employ a MUS enumeration algorithm, which often does not scale
for the cases with a reasonably large number of MUSes.

Motivated by the success of hashing-based techniques in the context of
model counting, we design the first approximate MUS counting proce-
dure with (ε, δ) guarantees, called AMUSIC. Our approach avoids ex-
haustive MUS enumeration by combining the classical technique of uni-
versal hashing with advances in QBF solvers along with a novel usage
of union and intersection of MUSes to achieve runtime efficiency. Our
prototype implementation of AMUSIC is shown to scale to instances that
were clearly beyond the realm of enumeration-based approaches.

1 Introduction

Given an unsatisfiable Boolean formula F as a set of clauses {f1, f2, . . . fn}, also
known as conjunctive normal form (CNF), a set N of clauses is a Minimal Un-
satisfiable Subset (MUS) of F iff N ⊆ F , N is unsatisfiable, and for each f ∈ N
the set N \ {f} is satisfiable. Since MUSes can be viewed as representing the
minimal reasons for unsatisfiability of a formula, MUSes have found applications
in wide variety of domains ranging from diagnosis [45], ontologies debugging [1],
spreadsheet debugging [29], formal equivalence checking [20], constrained count-
ing and sampling [28], and the like. As the scalable techniques for identification
of MUSes appeared only about decade and half ago, the earliest applications
primarily focused on a reduction to the identification of a single MUS or a
small set of MUSes. With an improvement in the scalability of MUS identifica-
tion techniques, researchers have now sought to investigate extensions of MUSes
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and their corresponding applications. One such extension is MUS counting, i.e.,
counting the number of MUSes of F . Hunter and Konieczny [26], Mu [45], and
Thimm [56] have shown that the number of MUSes can be used to compute
different inconsistency metrics for general propositional knowledge bases.

In contrast to the progress in the design of efficient MUS identification tech-
niques, the work on MUS counting is still in its nascent stages. Reminiscent of
the early days of model counting, the current approach for MUS counting is to
employ a complete MUS enumeration algorithm, e.g., [55,34,12,3], to explicitly
identify all MUSes. As noted in Section 2, there can be up to exponentially
many MUSes of F w.r.t. |F |, and thus their complete enumeration can be prac-
tically intractable. Indeed, contemporary MUS enumeration algorithms often
cannot complete the enumeration within a reasonable time [12,34,10,47]. In this
context, one wonders: whether it is possible to design a scalable MUS counter
without performing explicit enumeration of MUSes?

The primary contribution of this paper is a probabilistic counter, called
AMUSIC, that takes in a formula F , tolerance parameter ε, confidence parameter
δ, and returns an estimate guaranteed to be within (1 + ε)-multiplicative factor
of the exact count with confidence at least 1− δ. Crucially, for F defined over n
clauses, AMUSIC explicitly identifies only O(log n · log(1/δ) · (ε)−2) many MUSes
even though the number of MUSes can be exponential in n.

The design of AMUSIC is inspired by recent successes in the design of efficient
XOR hashing-based techniques [15,17] for the problem of model counting, i.e.,
given a Boolean formula G, compute the number of models (also known as
solutions) of G. We observe that both the problems are defined over a power-set
structure. In MUS counting, the goal is to count MUSes in the power-set of F ,
whereas in model counting, the goal is to count models in the power-set that
represents all valuations of variables of G. Chakraborty et al. [18,52] proposed an
algorithm, called ApproxMC, for approximate model counting that also provides
the (ε, δ) guarantees. ApproxMC is currently in its third version, ApproxMC3 [52].
The base idea of ApproxMC3 is to partition the power-set into nCells small cells,
then pick one of the cells, and count the number inCell of models in the cell. The
total model count is then estimated as nCells × inCell . Our algorithm for MUS
counting is based on ApproxMC3. We adopt the high-level idea to partition the
power-set of F into small cells and then estimate the total MUS count based on a
MUS count in a single cell. The difference between ApproxMC3 and AMUSIC lies
in the way of counting the target elements (models vs. MUSes) in a single cell;
we propose novel MUS specific techniques to deal with this task. In particular,
our contribution is the following:

– We introduce a QBF (quantified Boolean formula) encoding for the problem
of counting MUSes in a single cell and use a ΣP

3 oracle to solve it.

– Let UMUF and IMUF be the union and the intersection of all MUSes of F ,
respectively. We observe that every MUS of F (1) contains IMUF and (2) is
contained in UMUF . Consequently, if we determine the sets UMUF and IMUF ,
then we can significantly speed up the identification of MUSes in a cell.



– We propose a novel approaches for computing the union UMUF and the in-
tersection IMUF of all MUSes of F .

– We implement AMUSIC and conduct an extensive empirical evaluation on
a set of scalable benchmarks. We observe that AMUSIC is able to compute es-
timates for problems clearly beyond the reach of existing enumeration-based
techniques. We experimentally evaluate the accuracy of AMUSIC. In partic-
ular, we observe that the estimates computed by AMUSIC are significantly
closer to true count than the theoretical guarantees provided by AMUSIC.

Our work opens up several new interesting avenues of research. From a the-
oretical perspective, we make polynomially many calls to a ΣP

3 oracle while
the problem of finding a MUS is known to be in FPNP , i.e. a MUS can be
found in polynomial time by executing a polynomial number of calls to an NP-
oracle [19,39]. Contrasting this to model counting techniques, where approximate
counter makes polynomially many calls to an NP-oracle when the underlying
problem of finding satisfying assignment is NP-complete, a natural question is
to close the gap and seek to design a MUS counting algorithm with polynomially
many invocations of an FPNP oracle. From a practitioner perspective, our work
calls for a design of MUS techniques with native support for XORs; the pursuit
of native support for XOR in the context of SAT solvers have led to an exciting
line of work over the past decade [53,52].

2 Preliminaries and Problem Formulation

A Boolean formula F = {f1, f2, . . . , fn} in a conjunctive normal form (CNF)
is a set of Boolean clauses over a set of Boolean variables Vars(F ). A Boolean
clause is a set {l1, l2, . . . , lk} of literals. A literal is either a variable x ∈ Vars(F )
or its negation ¬x. A truth assignment I to the variables Vars(F ) is a mapping
Vars(F ) → {1, 0}. A clause f ∈ F is satisfied by an assignment I iff I(l) = 1
for some l ∈ f or I(k) = 0 for some ¬k ∈ f . The formula F is satisfied by I
iff I satisfies every f ∈ F ; in such a case I is called a model of F . Finally, F is
satisfiable if it has a model; otherwise F is unsatisfiable.

A QBF is a Boolean formula where each variable is either universally (∀) or
existentially (∃) quantified. We write Q1 · · ·Qk-QBF, where Q1, . . . Qk ∈ {∀,∃},
to denote the class of QBF with a particular type of alternation of the quantifiers,
e.g., ∃∀-QBF or ∃∀∃-QBF. Every QBF is either true (valid) or false (invalid).
The problem of deciding validity of a formula in Q1 · · ·Qk-QBF where Q1 = ∃
is ΣP

k -complete [43].
When it is clear from the context, we write just formula to denote either

a QBF or a Boolean formula in CNF. Moreover, throughout the whole text, we
use F to denote the input Boolean Formula in CNF. Furthermore, we will use
capital letters, e.g., S,K,N , to denote other CNF formulas, small letters, e.g.,
f, f1, fi, to denote clauses, and small letters, e.g., x, x′, y, to denote variables.

Given a set X, we write P(X) to denote the power-set of X, and |X| to denote
the cardinality of X. Finally, we write Pr [O : P] to denote the probability of an
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Fig. 1: Illustration of the power set of the formula F from the Example 1. We
denote individual subsets of F using the bit-vector representation. The subsets
with a dashed border are the unsatisfiable subsets, and the others are satisfiable
subsets. The MUSes are filled with a background color.

outcome O when sampling from a probability space P. When P is clear from the
context, we write just Pr [O].

Minimal Unsatisfiability

Definition 1 (MUS). A set N , N ⊆ F , is a minimal unsatisfiable subset
(MUS) of F iff N is unsatisfiable and for all f ∈ N the set N \{f} is satisfiable.

Note that the minimality concept used here is set minimality, not minimum
cardinality. Therefore, there can be MUSes with different cardinalities. In gen-
eral, there can be up to exponentially many MUSes of F w.r.t. |F | (see the
Sperner’s theorem [54]). We use AMUF to denote the set of all MUSes of F . Fur-
thermore, we write UMUF and IMUF to denote the union and the intersection of all
MUSes of F, respectively. Finally, note that every subset S of F can be expressed
as a bit-vector over the alphabet {0, 1}; for example, if F = {f1, f2, f3, f4} and
S = {f1, f4}, then the bit-vector representation of S is 1001.

Definition 2. Let N be an unsatisfiable subset of F and f ∈ N . The clause f
is necessary for N iff N \ {f} is satisfiable.

The necessary clauses are sometimes also called transition [6] or critical [2]
clauses. Note that a set N is a MUS iff every f ∈ N is necessary for N . Also,
note that a clause f ∈ F is necessary for F iff f ∈ IMUF .

Example 1. We demonstrate the concepts on an example, illustrated in Fig. 1.
Assume that F = {f1 = {x1}, f2 = {¬x1}, f3 = {x2}, f4 = {¬x1,¬x2}}. In this
case, AMUF = {{f1, f2}, {f1, f3, f4}}, IMUF = {f1}, and UMUF = F .

Hash Functions

Let n and m be positive integers such that m < n. By {1, 0}n we denote the set
of all bit-vectors of length n over the alphabet {1, 0}. Given a vector v ∈ {1, 0}n



and i ∈ {1, . . . , n}, we write v[i] to denote the i-th bit of v. A hash function h
from a family Hxor(n,m) of hash functions maps {1, 0}n to {1, 0}m. The family
Hxor(n,m) is defined as {h |h(y)[i] = ai,0⊕(

⊕n
k=1(ai,k∧y[k])) for all 1 ≤ i ≤ m},

where ⊕ and ∧ denote the Boolean XOR and AND operators, respectively, and
ai,k ∈ {1, 0} for all 1 ≤ i ≤ m and 1 ≤ k ≤ n.

To choose a hash function uniformly at random from Hxor(n,m), we ran-
domly and independently choose the values of ai,k. It has been shown [24]
that the family Hxor(n,m) is pairwise independent, also known as strongly 2-
universal. In particular, let us by h ← Hxor(n,m) denote the probability space
obtained by choosing a hash function h uniformly at random from Hxor(n,m).
The property of pairwise independence guarantees that for all α1, α2 ∈ {1, 0}m
and for all distinct y1, y2 ∈ {1, 0}n, Pr [

∧2
i=1 h(yi) = αi : h ← Hxor(n,m)] =

2−2m.
We say that a hash function h ∈ Hxor(n,m) partitions {0, 1}n into 2m cells.

Furthermore, given a hash function h ∈ Hxor(n,m) and a cell α ∈ {1, 0}m of h,
we define their prefix-slices. In particular, for every k ∈ {1, . . . ,m}, the kth prefix
of h, denoted h(k), is a map from {1, 0}n to {1, 0}k such that h(k)(y)[i] = h(y)[i]
for all y ∈ {1, 0}n and for all i ∈ {1, . . . , k}. Similarly, the kth prefix of α, denoted
α(k), is an element of {1, 0}k such that α(k)[i] = α[i] for all i ∈ {1, . . . , k}.
Intuitively, a cell α(k) of h(k) originates by merging the two cells of h(k+1) that
differ only in the last bit.

In our work, we use hash functions from the family Hxor(n,m) to partition
the power-set P(F ) of the given Boolean formula F into 2m cells. Furthermore,
given a cell α ∈ {0, 1}m, let us by AMU〈F,h,α〉 denote the set of all MUSes in the
cell α; formally, AMU〈F,h,α〉 = {M ∈ AMUF |h(bit(M)) = α}, where bit(M) is the
bit-vector representation of M . The following observation is crucial for our work.

Observation 1 For every formula F , m ∈ {1, . . . , |F | − 1}, h ∈ Hxor(|F |,m),
and α ∈ {0, 1}m it holds that: AMU〈F,h(i),α(i)〉 ⊇ AMU〈F,h(j),α(j)〉 for every i < j.

Example 2. Assume that we are given a formula F such that |F | = 4 and a hash
function h ∈ Hxor(4, 2) that is defined via the following values of individual ai,k:

a1,0 = 0, a1,1 = 1, a1,2 = 1, a1,3 = 0, a1,4 = 1
a2,0 = 0, a2,1 = 1, a2,2 = 0, a2,3 = 0, a2,4 = 1

The hash function partitions P(F ) into 4 cells. For example, h(1100) = 01
since h(1100)[1] = 0⊕ (1 ∧ 1)⊕ (1 ∧ 1)⊕ (0 ∧ 0)⊕ (1 ∧ 0) = 0 and h(1100)[2] =
0⊕ (1∧1)⊕ (0∧1)⊕ (0∧0)⊕ (1∧0) = 1. Figure 2 illustrates the whole partition
and also illustrates the partition given by the prefix h(1) of h.

2.1 Problem Definitions

In this paper, we are concerned with the following problems.

Name: (ε, δ)-#MUS problem
Input: A formula F , a tolerance ε > 0, and a confidence 1− δ ∈ (0, 1].
Output: A number c such that Pr [|AMUF |/(1 + ε) ≤ c ≤ |AMUF | · (1 + ε)] ≥ 1− δ.
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(a) Illustration of h(2) = h with 4 cells:
α1 = 00 , α2 = 01 , α3 = 10 ,

α4 = 11 .
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(b) Illustration of h(1) with 2 cells:
α1 = 0 , α2 = 1 .

Fig. 2: Illustration of the partition of P(F ) by h = h(2) and h(1) from Example 2.
In the case of h, we use 4 colors, orange, pink, white, and blue, to highlight its
four cells. In case of h(1), there are only two cells: the white and the blue cells
are merged into a white cell, and the pink and the orange cells are merged into
an orange cell.

Name: MUS-membership problem
Input: A formula F and a clause f ∈ F .
Output: True if there is a MUSM ∈ AMUF such that f ∈M and False otherwise.

Name: MUS-union problem
Input: A formula F .
Output: The union UMUF of all MUSes of F .

Name: MUS-intersection problem
Input: A formula F .
Output: The intersection IMUF of all MUSes of F .

Name: (ε, δ)-#SAT problem
Input: A formula F , a tolerance ε > 0, and a confidence 1− δ ∈ (0, 1].
Output: A number m such that Pr [m/(1 + ε) ≤ c ≤ m · (1 + ε)] ≥ 1− δ, where
m is the number of models of F .

The main goal of this paper is to provide a solution to the (ε, δ)-#MUS prob-
lem. We also deal with the MUS-membership, MUS-union and MUS-intersection

problems since these problems emerge in our approach for solving the (ε, δ)-#MUS
problem. Finally, we do not focus on solving the (ε, δ)-#SAT problem, however
the problem is closely related to the (ε, δ)-#MUS problem.

3 Related Work

It is well-known (see e.g., [21,51,36]) that a clause f ∈ F belongs to IMUF iff f is
necessary for F . Therefore, to compute IMUF , one can simply check each f ∈ F
for being necessary for F . We are not aware of any work that has focused on the
MUS-intersection problem in more detail.



The MUS-union problem was recently investigated by Mencia et al. [42]. Their
algorithm is based on gradually refining an under -approximation of UMUF until
the exact UMUF is computed. Unfortunately, the authors experimentally show
that their algorithm often fails to find the exact UMUF within a reasonable time
even for relatively small input instances (only an under-approximation is com-
puted). In our work, we propose an approach that works in the other way: we
start with an over-approximation of UMUF and gradually refine the approxima-
tion to eventually get UMUF . Another related research was conducted by Jan-
ota and Marques-Silva [30] who proposed several QBF encodings for solving the
MUS-membership problem. Although they did not focus on finding UMUF , one can
clearly identify UMUF by solving the MUS-membership problem for each f ∈ F .

As for counting the number of MUSes of F , we are not aware of any previous
work dedicated to this problem. Yet, there have been proposed plenty of algo-
rithms and tools (e.g., [35,9,3,47,12,11]) for enumerating/identifying all MUSes
of F . Clearly, if we enumerate all MUSes of F , then we obtain the exact value of
|AMUF |, and thus we also solve the (ε, δ)-#MUS problem. However, since there can
be up to exponentially many of MUSes w.r.t. |F |, MUS enumeration algorithms
are often not able to complete the enumeration in a reasonable time and thus
are not able to find the value of |AMUF |.

Very similar to the (ε, δ)-#MUS problem is the (ε, δ)-#SAT problem. Both
problems involve the same probabilistic and approximation guarantees. More-
over, both problems are defined over a power-set structure. In MUS counting,
the goal is to count MUSes in P(F ), whereas in model counting, the goal is to
count models in P(Vars(F )). In this paper, we propose an algorithm for solving
the (ε, δ)-#MUS problem that is based on ApproxMC3 [15,17,52]. In particular,
we keep the high-level idea of ApproxMC3 for processing/exploring the power-set
structure, and we propose new low-level techniques that are specific for MUS
counting.

4 AMUSIC: A Hashing-based MUS Counter

We now describe AMUSIC, a hashing-based algorithm designed to solve the (ε, δ)-
#MUS problem. The name of the algorithm is an acronym for Approximate Min-
imal Unsatisfiable Subsets Implicit Counter. AMUSIC is based on ApproxMC3,
which is a hashing-based algorithm to solve (ε, δ)-#SAT problem. As such, while
the high-level structure of AMUSIC and ApproxMC3 share close similarities, the
two algorithms differ significantly in the design of core technical subroutines.

We first discuss the high-level structure of AMUSIC in Section 4.1. We then
present the key technical contributions of this paper: the design of core subrou-
tines of AMUSIC in Sections 4.3, 4.4 and 4.5.

4.1 Algorithmic Overview

The main procedure of AMUSIC is presented in Algorithm 1. The algorithm takes
as an input a Boolean formula F in CNF, a tolerance ε (> 0), and a confidence



Algorithm 1: AMUSIC(F, ε, δ)

1 threshold← 1 + 9.84(1 + ε
1+ε

)(1 + 1
ε
)2

2 Y ← FindMUSes(F, threshold)
3 if |Y | < threshold then return |Y |
4 G← getUMU(F)

5 IG ← getIMU(G)

6 nCells← 2; C ← emptyList; iter ← 0
7 while iter < d17 log2(3/δ)e do
8 iter ← iter + 1
9 (nCells, nSols)← AMUSICCore(G, IG, threshold, nCells)

10 if nCells 6= null then AddToList(C, nCells× nSols)

11 return FindMedian(C)

parameter δ ∈ (0, 1], and returns an estimate of |AMUF | within tolerance ε and
with confidence at least 1 − δ. Similar to ApproxMC3, we first check whether
|AMUF | is smaller than a specific threshold that is a function of ε. This check is
carried out via a MUS enumeration algorithm, denoted FindMUSes, that returns
a set Y of MUSes of F such that |Y | = min(threshold, |AMUF |). If |Y | < threshold,
the algorithm terminates while identifying the exact value of |AMUF |. In a sig-
nificant departure from ApproxMC3, AMUSIC subsequently computes the union
(UMUF ) and the intersection (IMUF ) of all MUSes of F by invoking the subrou-
tines GetUMU and GetIMU, respectively. Through the lens of set representation
of the CNF formulas, we can view UMUF as another CNF formula, G. Our key
observation is that AMUF = AMUG (see Section 4.2), thus instead of working with
the whole F , we can focus only on G. The rest of the main procedure is similar to
ApproxMC3, i.e., we repeatedly invoke the core subroutine called AMUSICCore.
The subroutine attempts to find an estimate c of |AMUG| within the tolerance
ε. Briefly, to find the estimate, the subroutine partitions P(G) into nCells cells,
then picks one of the cells, and counts the number nSols of MUSes in the cell.
The pair (nCells, nSols) is returned by AMUSICCore, and the estimate c of |AMUG|
is then computed as nSols × nCells. There is a small chance that AMUSICCore
fails to find the estimate; it such a case nCells = nSols = null. Individual esti-
mates are stored in a list C. After the final invocation of AMUSICCore, AMUSIC
computes the median of the list C and returns the median as the final estimate
of |AMUG|. The total number of invocations of AMUSICCore is in O(log(1/δ))
which is enough to ensure the required confidence 1− δ (details on assurance of
the (ε, δ) guarantees are provided in Section 4.2).

We now turn to AMUSICCore which is described in Algorithm 2. The parti-
tion of P(G) into nCells cells is made via a hash function h from Hxor(|G|,m), i.e.
nCells = 2m. The choice of m is a crucial part of the algorithm as it regulates the
size of the cells. Intuitively, it is easier to identify all MUSes of a small cell; how-
ever, on the contrary, the use of small cells does not allow to achieve a reasonable
tolerance. Based on ApproxMC3, we choose m such that a cell given by a hash
function h ∈ Hxor(|G|,m) contains almost threshold many MUSes. In particular,



Algorithm 2: AMUSICCore(G, IG, threshold, prevNCells)

1 Choose h at random from Hxor (|G|, |G| − 1)

2 Choose α at random from {0, 1}|G|−1

3 nSols← CountInCell(G, IG, h, α, threshold)
4 if nSols = threshold then return (null, null)
5 mPrev ← log2 prevNCells
6 (nCells, nSols)← LogMUSSearch(G, IG, h, α, threshold,mPrev)
7 return (nCells, nSols )

the computation of AMUSICCore starts by choosing at random a hash function h
from Hxor(|G|, |G|−1) and a cell α at random from {0, 1}|G|−1. Subsequently, the
algorithm tends to identify mth prefixes h(m) and α(m) of h and α, respectively,
such that |AMU〈G,h(m),α(m)〉| < threshold and |AMU〈G,h(m−1),α(m−1)〉| ≥ threshold.
Recall that AMU〈G,h(1),α(1)〉 ⊇ · · · ⊇ AMU〈G,h(|G|−1),α(|G|−1)〉 (Observation 1, Sec-

tion 2). We also know that the cell α(0), i.e. the whole P(G), contains at least
threshold MUSes (see Algorithm 1, line 3). Consequently, there can exist at most
one such m, and it exists if and only if |AMU〈G,h(|G|−1),α(|G|−1)〉| < threshold. There-
fore, the algorithm first checks whether |AMU〈G,h(|G|−1),α(|G|−1)〉| < threshold. The
check is carried via a procedure CountInCell that returns the number nSols =
min(|AMU〈G,h(|G|−1),α(|G|−1)〉|, threshold). If nSols = threshold, then AMUSICCore
fails to find the estimate of |AMUG| and terminates. Otherwise, a procedure
LogMUSSearch is used to find the required value of m together with the num-
ber nSols of MUSes in α(m). The implementation of LogMUSSearch is directly
adopted from ApproxMC3 and thus we do not provide its pseudocode here (note
that in ApproxMC3 the procedure is called LogSATSearch). We only briefly sum-
marize two main ingredients of the procedure. First, it has been observed that
the required value of m is often similar for repeated calls of AMUSICCore. There-
fore, the algorithm keeps the value mPrev of m from previous iteration and first
test values near mPrev. If none of the near values is the required one, the algo-
rithm exploits that AMU〈G,h(1),α(1)〉 ⊇ · · · ⊇ AMU〈G,h(|G|−1),α(|G|−1)〉, which allows
it to find the required value of m via the galloping search (variation of binary
search) while performing only log |G| calls of CountInCell.

Note that in ApproxMC3, the procedure CountInCell is called BSAT and it
is implemented via an NP oracle, whereas we use a ΣP

3 oracle to implement
the procedure (see Section 4.3). The high-level functionality is the same: the
procedures use up to threshold calls of the oracle to check whether the number
of the target elements (models vs. MUSes) in a cell is lower than threshold.

4.2 Analysis and Comparison With ApproxMC3

Following from the discussion above, there are three crucial technical differences
between AMUSIC and ApproxMC3: (1) the implementation of the subroutine
CountInCell in the context of MUS, (2) computation of the intersection IMUF of
all MUSes of F and its usage in CountInCell, and (3) computation of the union



UMUF of all MUSes of F and invocation of the underlying subroutines with G
(i.e., UMUF ) instead of F . The usage of CountInCell can be viewed as domain-
specific instantiation of BSAT in the context of MUSes. Furthermore, we use the
computed intersection of MUSes to improve the runtime efficiency of CountInCell.
It is perhaps worth mentioning that prior studies have observed that over 99% of
the runtime of ApproxMC3 is spent inside the subroutine BSAT [52]. Therefore,
the runtime efficiency of CountInCell is crucial for the runtime performance of
AMUSIC, and we discuss in detail, in Section 4.3, algorithmic contributions in
the context of CountInCell including usage of IMUF . We now argue that the
replacement of F with G in line 4 in Algorithm 1 does not affect correctness
guarantees, which is stated formally below:

Lemma 1. For every G′ such that UMUF ⊆ G′ ⊆ F , the following hold:

AMUF = AMUG′ (1)

IMUF = IMUG′ (2)

Proof. (1) Since G′ ⊆ F then every MUS of G′ is also a MUS of F . In the other
direction, every MUS of F is contained in the union UMUF of all MUSes of F ,
and thus every MUS of F is also a MUS of G′ (⊇ UMUF ).
(2) IMUF =

⋂
M∈AMUF =

⋂
M∈AMUG′

= IMUG′ .

Equipped with Lemma 1, we now argue that each run of AMUSIC can be
simulated by a run of ApproxMC3 for an appropriately chosen formula. Given
an unsatisfiable formula F = {f1, . . . , f|F |}, let us by BF denote a satisfi-
able formula such that: (1) Vars(BF ) = {x1, . . . , x|F |} and (2) an assignment
I : Vars(BF ) → {1, 0} is a model of BF iff {fi|I(xi) = 1} is a MUS of F . In-
formally, models of BF one-to-one map to MUSes of F . Hence, the size of sets
returned by CountInCell for F is identical to the corresponding BSAT for BF .
Since the analysis of ApproxMC3 only depends on the correctness of the size of
the set returned by BSAT, we conclude that the answer computed by AMUSIC
would satisfy (ε, δ) guarantees. Furthermore, observing that CountInCell makes
threshold many queries to ΣP

3 -oracle, we can bound the time complexity. For-
mally,

Theorem 1. Given a formula F , a tolerance ε > 0, and a confidence 1 − δ ∈
(0, 1], let AMUSIC(F, ε, δ) return c. Then Pr [|AMUF |/(1 + ε) ≤ c ≤ |AMUF | · (1 +
ε)] ≥ 1 − δ. Furthermore, AMUSIC makes O(log |F | · 1

ε2 · log(1/δ)) calls to ΣP
3

oracle.

Few words are in order concerning the complexity of AMUSIC. As noted
in Section 1, for a formula on n variables, approximate model counters make
O(log n · 1

ε2 · log(1/δ)) calls to an NP oracle, whereas the complexity of finding
a satisfying assignment is NP-complete. In our case, we make calls to a ΣP

3 oracle
while the problem of finding a MUS is in FPNP . Therefore, a natural direction
of future work is to investigate the design of a hashing-based technique that
employs an FPNP oracle.



Algorithm 3: CountInCell(G, IG, h, α, threshold)

1 c← 0; M← {}
2 while c < threshold do
3 M ← GetMUS(G, IG,M, h, α)
4 if M = null then return c
5 M←M∪ {M}
6 c← c+ 1

7 return c

4.3 Counting MUSes in a Cell: CountInCell

In this section, we describe the procedure CountInCell. The input of the pro-
cedure is the formula G (i.e., UMUF ), the set IG = IMUG, a hash function
h ∈ Hxor(|G|,m), a cell α ∈ {0, 1}m, and the threshold value. The output is
c = min(threshold, |AMU〈G,h,α〉|).

The description is provided in Algorithm 3. The algorithm iteratively calls
a procedure GetMUS that returns either a MUSM such thatM ∈ (AMU〈G,h,α〉\M)
or null if there is no such MUS. For each M , the value of c is increased and M is
added toM. The loop terminates either when c reaches the value of threshold or
when GetMUS fails to find a new MUS (i.e., returns null). Finally, the algorithm
returns c.

GetMUS To implement the procedure GetMUS, we build an ∃∀∃-QBF formula
MUSInCell such that each witness of the formula corresponds to a MUS from
AMU〈G,h,α〉 \ M. The formula consists of several parts and uses several sets of
variables that are described in the following.

The main part of the formula, shown in Equation (3), introduces the first
existential quantifier and a set P = {p1, . . . , p|G|} of variables that are quantified
by the quantifier. Note that each valuation I of P corresponds to a subset S of
G; in particular let us by IP,G denote the set {fi ∈ G | I(pi) = 1}. The formula
is build in such a way that a valuation I is a witness of the formula if and
only if IP,G is a MUS from AMU〈G,h,α〉 \M. This property is expressed via three
conjuncts, denoted inCell(P), unexplored(P), and isMUS(P), encoding that
(i) IP,G is in the cell α, (ii) IP,G is not inM, and (iii) IP,G is a MUS, respectively.

MUSInCell = ∃P. inCell(P ) ∧ unexplored(P ) ∧ isMUS(P ) (3)

Recall that the family Hxor(n,m) of hash functions is defined as {h |h(y)[i] =
ai,0⊕(

⊕n
k=1 ai,k∧y[k]) for all 1 ≤ i ≤ m}, where ai,k ∈ {0, 1} (Section 2). A hash

function h ∈ Hxor(n,m) is given by fixing the values of individual ai,k and a cell
α of h is a bit-vector from {0, 1}m. The formula inCell(P ) encoding that the
set IP,G is in the cell α of h is shown in Equation (4).

inCell(P) =

m∧
i=1

(ai,0 ⊕ (
⊕

p∈{pk|ai,k=1}

p)⊕ ¬α[i]) (4)



To encode that we are not interested in MUSes from M, we can simply
block all the valuations of P that correspond to these MUSes. However, we can
do better. In particular, recall that if M is a MUS, then no proper subset and
no proper superset of M can be a MUS; thus, we prune away all these sets from
the search space. The corresponding formula is shown in Equation (5).

unexplored(P) =
∧

M∈M
((
∨
fi∈M

¬pi) ∧ (
∨
fi 6∈M

pi)) (5)

The formula isMUS(P ) encoding that IP,G is a MUS is shown in Equation (6).
Recall that IP,G is a MUS if and only if IP,G is unsatisfiable and for every closest
subset S of IP,G it holds that S is satisfiable, where closest subset means that
|IP,G \ S| = 1. We encode these two conditions using two subformulas denoted
by unsat(P ) and noUnsatSubset(P ).

isMUS(P) = unsat(P) ∧ noUnsatSubset(P) (6)

The formula unsat(P), shown in Equation (7), introduces the set Vars(G)
of variables that appear in G and states that every valuation of Vars(G) falsifies
at least one clause contained in IP,G.

unsat(P) = ∀Vars(G).
∨
fi∈G

(pi ∧ ¬fi) (7)

The formula noUnsatSubset(P), shown in Equation (8), introduces another
set of variables: Q = {q1, . . . , q|G|}. Similarly as in the case of P , each valuation
I of Q corresponds to a subset of G defined as IQ,G = {fi ∈ G | I(qi) = 1}. The
formula expresses that for every valuation I of Q it holds that IQ,G is satisfiable
or IQ,G is not a closest subset of IP,G.

noUnsatSubset(P) = ∀Q. sat(Q) ∨ ¬subset(Q,P) (8)

The requirement that IQ,G is satisfiable is encoded in Equation (9). Since we
are already reasoning about the satisfiability of G’s clauses in Equation (7), we
introduce here a copy G′ of G where each variable xi of G is substituted by its
primed copy x′i. Equation (9) states that there exists a valuation of Vars(G′)
that satisfies IQ,G.

sat(Q) = ∃Vars(G′).
∧
fi∈G′

(¬qi ∨ fi) (9)

Equation (10) encodes that IQ,G is a closest subset of IP,G. To ensure that
IQ,G is a subset of IP,G, we add the clauses qi → pi. To ensure the close-
ness, we use cardinality constraints. In particular, we introduce another set
R = {r1, . . . , r|G|} of variables and enforce their values via ri ↔ (pi ∧¬qi). Intu-
itively, the number of variables from R that are set to 1 equals to |IP,G \ IQ,G|.
Finally, we add cardinality constraints, denoted by exactlyOne(R), ensuring
that exactly one ri is set to 1.



subset(Q,P) = ∃R.
∧
pi∈P

((qi → pi)∧ (ri ↔ (pi ∧¬qi))∧ exactlyOne(R) (10)

Note that instead of encoding a closest subset in Equation 10, we could just
encode that IQ,G is an arbitrary proper subset of IP,G as it would still preserve
the meaning of Equation 6 that IP,G is a MUS. Such an encoding would not
require introducing the set R of variables and also, at the first glance, would
save a use of one existential quantifier. The thing is that the whole formula
would still be in the form of ∃∀∃-QBF due to Equation 9 (which introduces
the second existential quantifier). The advantage of using a closet subset is that
we significantly prune the search space of the QBF solver. It is thus matter of
contemporary QBF solvers whether it is more beneficial to reduce the number
of variables (by removing R) or to prune the searchspace via R.

For the sake of lucidity, we have not exploited the knowledge of IMUG (IG)
while presenting the above equations. Since we know that every clause f ∈ IMUG
has to be contained in every MUS of G, we can fix the values of the variables
{pi | fi ∈ IMUG} to 1. This, in turn, significantly simplifies the equations and
prunes away exponentially many (w.r.t. |IMUG|) valuations of P , Q, and R, that
need to be assumed. To solve the final formula, we employ a ∃∀∃-QBF solver,
i.e., a ΣP

3 oracle.
Finally, one my wonder why we use our custom solution for identifying MUSes

in a cell instead of employing one of existing MUS extraction techniques. Con-
ventional MUS extraction algorithms cannot be used to identify MUSes that are
in a cell since the cell is not continuous w.r.t. the set containment. In particular,
assume that we have three sets of clauses, K, L, M , such that K ⊂ L ⊂ M .
It can be the case that K and M are in the cell, but L is not in the cell. Con-
temporary MUS extraction techniques require the search space to be continuous
w.r.t. the set containment and thus cannot be used in our case.

4.4 Computing UMUF

We now turn our attention to computing the union UMUF (i.e., G) of all MUSes
of F . Let us start by describing well-known concepts of autark variables and
a lean kernel. A set A ⊆ Vars(F ) of variables is an autark of F iff there exists
a truth assignment to A such that every clause of F that contains a variable
from A is satisfied by the assignment [44]. It holds that the union of two autark
sets is also an autark set, thus there exists a unique largest autark set (see,
e.g., [31,32]). The lean kernel of F is the set of all clauses that do not contain
any variable from the largest autark set. It is known that the lean kernel of F
is an over-approximation of UMUF (see e.g., [31,32]), and there were proposed
several algorithms, e.g., [38,33]), for computing the lean kernel.

Algorithm Our approach for computing UMUF consists of two parts. First, we
compute the lean kernel K of F to get an over-approximation of UMUF , and



Algorithm 4: getUMU(F)

1 K ← the lean kernel of F ; M← {}
2 for f ∈ K \ {f ∈M |M ∈M} do
3 W ← checkNecessity(f, K)

4 if W 6= null then M←M∪ { a MUS of W}
5 else K ← K \ {f}
6 return K

then we gradually refine the over-approximation K until K is exactly the set
UMUF . The refinement is done by solving the MUS-membership problem for each
f ∈ K. To solve the MUS-membership problem efficiently, we reveal a connection
to necessary clauses, as stated in the following lemma.

Lemma 2. A clause f ∈ F belongs to UMUF iff there is a subset W of F such
that W is unsatisfiable and f is necessary for W (i.e., W \ {f} is satisfiable).

Proof. ⇒: Let f ∈ UMUF and M ∈ AMUF such that f ∈ M . Since M is a MUS
then M \ {f} is satisfiable; thus f is necessary for M .
⇐: If W is a subset of F and f ∈ W a necessary clause for W then f has to
be contained in every MUS of W . Moreover, W has at least one MUS and since
W ⊆ F , then every MUS of W is also a MUS of F .

Our approach for computing UMUF is shown in Algorithm 4. It takes as an in-
put the formula F and outputs UMUF (denoted K). Moreover, the algorithm
maintains a set M of MUSes of F . Initially, M = ∅ and K is set to the lean
kernel of F ; we use an approach by Marques-Silva et al. [38] to compute the lean
kernel. At this point, we know that K ⊇ UMUF ⊇ {f ∈ M |M ∈ M}. To find
UMUF , the algorithm iteratively determines for each f ∈ K \ {f ∈ M |M ∈ M}
if f ∈ UMUF . In particular, for each f , the algorithm checks whether there exists
a subset W of K such that f is necessary for W (Lemma 2). The task of finding
W is carried out by a procedure checkNecessity(f,K). If there is no such W ,
then the algorithm removes f from K. In the other case, if W exists, the algo-
rithm finds a MUS of W and adds the MUS to the set M. Any available single
MUS extraction approach, e.g., [7,2,5,46], can be used to find the MUS.

To implement the procedure checkNecessity(f,K) we build a QBF formula
that is true iff there exists a set W ⊆ K such that W is unsatisfiable and f is
necessary for W . To represent W we introduce a set S = {sg | g ∈ K} of Boolean
variables; each valuation I of S corresponds to a subset IS,K of K defined as
IS,K = {g ∈ K | I(sg) = 1}. Our encoding is shown in Equation 11.

∃S,Vars(K).∀Vars(K ′). sf ∧ (
∧

g∈K\{f}

(g ∨ ¬sg)) ∧ (
∨
g∈K′

(¬g ∧ sg)) (11)

The formula consists of three main conjuncts. The first conjunct ensures that
f is present in IS,K . The second conjunct states that IS,K \ {f} is satisfiable,



i.e., that there exists a valuation of Vars(K) that satisfies IS,K \ {f}. Finally,
the last conjunct express that IS,K is unsatisfiable, i.e., that every valuation of
Vars(K) falsifies at least one clause of IS,K . Since we are already reasoning about
variables of K in the second conjunct, in the third conjunct, we use a primed
version (a copy) K ′ of K.

Alternative QBF Encodings Janota and Marques-Silva [30] proposed three
other QBF encodings for the MUS-membership problem, i.e., for deciding whe-
ther a given f ∈ F belongs to UMUF . Two of the three proposed encodings are
typically inefficient; thus, we focus on the third encoding, which is the most
concise among the three. The encoding, referred to as JM encoding (after the
initials of the authors), uses only two quantifiers in the form of ∃∀-QBF and
it is only linear in size w.r.t. |F |. The underlying ideas by JM encoding and
our encoding differ significantly. Our encoding is based on necessary clauses
(Lemma 2), whereas JM exploits a connection to so-called Maximal Satisfiable
Subsets. Both the encodings use the same quantifiers; however, our encoding is
smaller. In particular, the JM uses 2 × (Vars(F ) + |F |) variables whereas our
encoding uses only |F |+ 2×Vars(F ) variables, and leads to smaller formulas.

Implementation Recall that we compute UMUF to reduce the search space,
i.e. instead of working with the whole F , we work only with G = UMUF . The
soundness of this reduction is witnessed in Lemma 1 (Section 4.2). In fact,
Lemma 1 shows that it is sound to reduce the search space to any G′ such
that UMUF ⊆ G′ ⊆ F . Since our algorithm for computing UMUF subsumes repeat-
edly solving a ΣP

2 -complete problem, it can be very time-consuming. There-
fore, instead of computing the exact UMUF , we optionally compute only an over-
approximation G′ of UMUF . In particular, we set a (user-defined) time limit for
computing the lean kernel K of F . Moreover, we use a time limit for executing
the procedure checkNecessity(f,K); if the time limit is exceeded for a clause
f ∈ K, we conservatively assume that f ∈ UMUF , i.e., we over-approximate.

Sparse Hashing and UMUF The approach of computation of UMUF is similar to,
in spirit, computation of independent support of a formula to design sparse hash
functions [16,28]. Briefly, given a Boolean formula H, an independent support of
H is a set I ⊆ Vars(H) such that in every model of H, the truth assignment to
I uniquely determines the truth assignment to Vars(H) \ I. Practically, inde-
pendent support can be used to reduce the search space where a model counting
algorithm searches for models of H. It is interesting to note that the state of
the art technique reduces the computation of independent support of a formula
in the context of model counting to that of computing (Group) Minimal Unsat-
isfiable Subset (GMUS). Thus, a formal study of computation of independent
support in the context of MUSes is an interesting direction of future work.



Algorithm 5: getIMU(G)

1 C ← G
2 K ← ∅
3 while C 6= ∅ do
4 f ← choose f ∈ C
5 (sat?, I, core)← checkSAT(G \ {f})
6 if sat? then
7 R← RMR(G, f, I)
8 K ← K ∪ {f} ∪R
9 C ← C \ ({f} ∪R)

10 else
11 C ← C ∩ core

12 return K

4.5 Computing IMUG

Our approach to compute the intersection IMUG (i.e., IG) of all MUSes of G is
composed of several ingredients. First, recall that a clause f ∈ G belongs to IMUG
iff f is necessary for G. Another ingredient is the ability of contemporary SAT
solvers to provide either a model or an unsat core of a given unsatisfiable formula
N ⊆ G, i.e., a small, yet not necessarily minimal, unsatisfiable subset of N . The
final ingredient is a technique called model rotation. The technique was originally
proposed by Marques-Silva and Lynce [40], and it serves to explore necessary
clauses based on other already known necessary clauses. In particular, let f be
a necessary clause for G and I : Vars(G) → {0, 1} a model of G \ {f}. Since
G is unsatisfiable, the model I does not satisfy f . The model rotation attempts
to alter I by switching, one by one, the Boolean assignment to the variables
Vars({f}). Each variable assignment I ′ that originates from such an alternation
of I necessarily satisfies f and does not satisfy at least one f ′ ∈ G. If it is the
case that there is exactly one such f ′, then f ′ is necessary for G. An improved
version of model rotation, called recursive model rotation, was later proposed
by Belov and Marques-Silva [6] who noted that the model rotation could be
recursively performed on the newly identified necessary clauses.

Our approach for computing IMUG is shown in Algorithm 5. To find IMUG,
the algorithm decides for each f whether f is necessary for G. In particular, the
algorithm maintains two sets: a set C of candidates on necessary clauses and
a set K of already known necessary clauses. Initially, K is empty and C = G. At
the end of computation, C is empty and K equals to IMUG. The algorithm works
iteratively. In each iteration, the algorithm picks a clause f ∈ C and checks
G \ {f} for satisfiability via a procedure checkSAT. Moreover, checkSAT returns
either a model I or an unsat core core of G\{f}. If G\{f} is satisfiable, i.e. f is
necessary for G, the algorithm employs the recursive model rotation, denoted by
RMR(G, f, I), to identify a set R of additional necessary clauses. Subsequently,
all the newly identified necessary clauses are added to K and removed from C.



In the other case, when G \ {f} is unsatisfiable, the set C is reduced to C ∩ core
since every necessary clause of G has to be contained in every unsatisfiable subset
of G. Note that f 6∈ core, thus at least one clause is removed from C.

5 Experimental Evaluation

We employed several external tools to implement AMUSIC. In particular, we use
the QBF solver CAQE [49] for solving the QBF formula MUSInCell, the 2QBF
solver CADET [50] for solving our ∃∀-QBF encoding while computing UMUF , and
the QBF preprocessor QRATPre+ [37] for preprocessing/simplifying our QBF
encodings. Moreover, we employ muser2 [7] for a single MUS extraction while
computing UMUF , a MaxSAT solver UWrMaxSat [48] to implement the algorithm
by Marques-Silva et al. [38] for computing the lean kernel of F , and finally, we
use a toolkit called pysat [27] for encoding cardinality constraints used in the
formula MUSInCell. The tool along with all benchmarks that we used is available
at https://github.com/jar-ben/amusic.

Objectives As noted earlier, AMUSIC is the first technique to (approximately)
count MUSes without explicit enumeration. We demonstrate the efficacy of our
approach via a comparison with two state of the art techniques for MUS enumer-
ation: MARCO [35] and MCSMUS [3]. Within a given time limit, a MUS enumer-
ation algorithm either identifies the whole AMUF , i.e., provides the exact value of
|AMUF |, or identifies just a subset of AMUF , i.e., provides an under-approximation
of |AMUF | with no approximation guarantees.

The objective of our empirical evaluation was two-fold: First, we experimen-
tally examine the scalability of AMUSIC, MARCO, and MCSMUS w.r.t. |AMUF |.
Second, we examine the empirical accuracy of AMUSIC.

Benchmarks And Experimental Setup Given the lack of dedicated counting
techniques, there is no sufficiently large set of publicly available benchmarks to
perform critical analysis of counting techniques. To this end, we focused on
a recently emerging theme of evaluation of SAT-related techniques on scalable
benchmarks3. In keeping with prior studies employing empirical methodology
based on scalable benchmarks [22,41], we generated a custom collection of CNF
benchmarks. The benchmarks mimic requirements on multiprocessing systems.
Assume that we are given a system with two groups (kinds) of processes, A =
{a1, . . . , a|A|} and B = {b1, . . . , b|B|}, such that |A| ≥ |B|. The processes require
resources of the system; however, the resources are limited. Therefore, there
are restrictions on which processes can be active simultaneously. In particular,
we have the following three types of mutually independent restrictions on the
system:

3 M. Y. Vardi, in his talk at BIRS CMO 18w5208 workshop, called on the SAT com-
munity to focus on scalable benchmarks in lieu of competition benchmarks. Also,
see: https://gitlab.com/satisfiability/scalablesat (Accessed: May 10, 2020)

https://github.com/jar-ben/amusic
https://gitlab.com/satisfiability/scalablesat
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Fig. 3: The number of completed iterations and the accuracy of the final MUS
count estimate for individual benchmarks.

– The first type of restriction states that “at most k − 1 processes from the
group A can be active simultaneously”, where k ≤ |A|.

– The second type of restriction enforces that “if no process from B is active
then at most k−1 processes from A can be active, and if at least one process
from B is active then at most l − 1 processes from A can be active”, where
k, l ≤ |A|.

– The third type of restriction includes the second restriction. Moreover, we
assume that a process from B can activate a process from A. In particular,
for every bi ∈ B, we assume that when bi is active, then ai is also active.

We encode the three restrictions via three Boolean CNF formulas, R1, R2, R3.
The formulas use three sets of variables: X = {x1, . . . , x|A|}, Y = {y1, . . . , y|B|},
and Z. The sets X and Y represent the Boolean information about activity of
processes from A and B: ai is active iff xi = 1 and bj is active iff yj = 1. The
set Z contains additional auxiliary variables. Moreover, we introduce a formula
ACT = (

∧
xi∈X xi) ∧ (

∧
yi∈Y yi) encoding that all processes are active. For each

i ∈ {1, 2, 3}, the conjunction Gi = Ri ∧ ACT is unsatisfiable. Intuitively, every
MUS of Gi represents a minimal subset of processes that need to be active
to violate the restriction. The number of MUSes in G1, G2, and G3 is

(|A|
k

)
,(|A|

k

)
+|B|×

(|A|
l

)
, and

(|A|
k

)
+
∑|B|
i=1(

(|B|
i

)
×
(|A|−1
l−i

)
), respectively. We generatedG1,

G2, and G3 for these values: 10 ≤ |A| ≤ 30, 2 ≤ |B| ≤ 6,
⌊
|A|
2

⌋
≤ k ≤

⌊
3×|A|

2

⌋
,

and l = k − 1. In total, we obtained 1353 benchmarks (formulas) that range in
their size from 78 to 361 clauses, use from 40 to 152 variables, and contain from
120 to 1.7× 109 MUSes.

All experiments were run using a time limit of 7200 seconds and computed on
an AMD EPYC 7371 16-Core Processor, 1 TB memory machine running Debian
Linux 4.19.67-2. The values of ε and δ were set to 0.8 and 0.2, respectively.
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Fig. 4: Scalability of AMUSIC, MARCO, and MCSMUS w.r.t. |AMUF |.

Accuracy Recall that to compute an estimate c of |AMUF |, AMUSIC performs
multiple iteration of executing AMUSICCore to get a list C of multiple estimates
of |AMUF |, and then use the median of C as the final estimate c. The more
iterations are performed, the higher is the confidence that c is within the required

tolerance ε = 0.8, i.e., that |AMUF |1.8 ≤ c ≤ 1.8 · |AMUF |. To achieve the confidence
1− δ = 0.8, 66 iterations need to be performed. In case of 157 benchmarks, the
algorithm was not able to finish even a single iteration, and only in case of 251
benchmarks, the algorithm finished all the 66 iterations. For the remaining 945
benchmarks, at least some iterations were finished, and thus at least an estimate
with a lower confidence was determined.

We illustrate the achieved results in Figure 3. The figure consists of two plots.
The plot at the bottom of the figure shows the number of finished iterations (y-
axis) for individual benchmarks (x-axis). The plot at the top of the figure shows
how accurate were the MUS count estimates. In particular, for each benchmark
(formula) F , we show the number c

|AMUF | where c is the final estimate (median

of estimates from finished iterations). For benchmarks where all iterations were
completed, it was always the case that the final estimate is within the required
tolerance, although we had only 0.8 theoretical confidence that it would be the
case. Moreover, the achieved estimate never exceeded a tolerance of 0.1, which
is much better than the required tolerance of 0.8. As for the benchmarks where
only some iterations were completed, there is only a single benchmark where the
tolerance of 0.8 was exceeded.

Scalability The scalability of AMUSIC, MARCO, and MCSMUS w.r.t. the num-
ber of MUSes (|AMUF |) is illustrated in Figure 4. In particular, for each benchmark
(x-axis), we show in the plot the estimate of the MUS count that was achieved
by the algorithms (y-axis). The benchmarks are sorted by the exact count of
MUSes in the benchmarks. MARCO and MCSMUS were able to finish the MUS
enumeration, and thus to provide the count, only for benchmarks that contained
at most 106 and 105 MUSes, respectively. AMUSIC, on the other hand, was able
to provide estimates on the MUS count even for benchmarks that contained up



to 109 MUSes. Moreover, as we have seen in Figure 3, the estimates are very ac-
curate. Only in the case of 157 benchmarks where AMUSIC finished no iteration,
it could not provide any estimate.

6 Summary and Future Work

We presented a probabilistic algorithm, called AMUSIC, for approximate MUS
counting that needs to explicitly identify only logarithmically many MUSes and
yet still provides strong theoretical guarantees. The high-level idea is adopted
from a model counting algorithm ApproxMC3: we partition the search space into
small cells, then count MUSes in a single cell, and estimate the total count by
scaling the count from the cell. The novelty lies in the low-level algorithmic parts
that are specific for MUSes. Mainly, (1) we propose QBF encoding for counting
MUSes in a cell, (2) we exploit MUS intersection to speed-up localization of
MUSes, and (3) we utilize MUS union to reduce the search space significantly.
Our experimental evaluation showed that the scalability of AMUSIC outperforms
the scalability of contemporary enumeration-based counters by several orders of
magnitude. Moreover, the practical accuracy of AMUSIC is significantly better
than what is guaranteed by the theoretical guarantees.

Our work opens up several questions at the intersection of theory and prac-
tice. From a theoretical perspective, the natural question is to ask if we can
design a scalable algorithm that makes polynomially many calls to an NP ora-
cle. From a practical perspective, our work showcases interesting applications of
QBF solvers with native XOR support. Since approximate counting and sam-
pling are known to be inter-reducible, another line of work would be to investigate
the development of an almost-uniform sampler for MUSes, which can potentially
benefit from the framework proposed in UniGen [16,14]. Another line of work is
to extend our MUS counting approach to other constraint domains where MUSes
find an application, e.g., F can be a set of SMT [25] or LTL [4,8] formulas or
a set of transition predicates [23,13].
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31. Hans Kleine Büning and Oliver Kullmann. Minimal unsatisfiability and autarkies.
In Handbook of Satisfiability, volume 185 of FAIA, pages 339–401. IOS Press, 2009.

32. Oliver Kullmann. Investigations on autark assignments. Discrete Applied Mathe-
matics, 107(1-3):99–137, 2000.

33. Oliver Kullmann and João Marques-Silva. Computing maximal autarkies with few
and simple oracle queries. In SAT, volume 9340 of LNCS, pages 138–155. Springer,
2015.

34. Mark H. Liffiton and Ammar Malik. Enumerating infeasibility: Finding multiple
MUSes quickly. In CPAIOR, volume 7874 of LNCS, pages 160–175. Springer, 2013.

35. Mark H. Liffiton, Alessandro Previti, Ammar Malik, and João Marques-Silva. Fast,
flexible MUS enumeration. Constraints, 21(2):223–250, 2016.

36. Mark H. Liffiton and Karem A. Sakallah. Algorithms for computing minimal
unsatisfiable subsets of constraints. JAR, 40(1):1–33, 2008.

37. Florian Lonsing and Uwe Egly. Qratpre+: Effective QBF preprocessing via strong
redundancy properties. In SAT, volume 11628 of LNCS, pages 203–210. Springer,
2019.

38. João Marques-Silva, Alexey Ignatiev, António Morgado, Vasco M. Manquinho, and
Inês Lynce. Efficient autarkies. In ECAI, volume 263 of FAIA, pages 603–608. IOS
Press, 2014.



39. João Marques-Silva and Mikolás Janota. On the query complexity of selecting
few minimal sets. Electronic Colloquium on Computational Complexity (ECCC),
21:31, 2014.

40. João Marques-Silva and Inês Lynce. On improving MUS extraction algorithms. In
SAT, volume 6695 of LNCS, pages 159–173. Springer, 2011.

41. Kuldeep S Meel, Aditya A Shrotri, and Moshe Y Vardi. Not all fprass are equal:
Demystifying fprass for dnf-counting. Constraints, 2019.
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