
Counting Minimal Unsatisfiable Subsets

Jaroslav Bend́ık1,2(�) and Kuldeep S. Meel2

1 Faculty of Informatics, Masaryk University, Brno, Czech Republic
xbendik@fi.muni.cz

2 National University of Singapore, Singapore, Singapore

Abstract. Given an unsatisfiable Boolean formula F in CNF, an unsat-
isfiable subset of clauses U of F is called Minimal Unsatisfiable Subset
(MUS) if every proper subset of U is satisfiable. Since MUSes serve as
explanations for the unsatisfiability of F , MUSes find applications in a
wide variety of domains. The availability of efficient SAT solvers has
aided the development of scalable techniques for finding and enumerat-
ing MUSes in the past two decades. Building on the recent developments
in the design of scalable model counting techniques for SAT, Bend́ık and
Meel initiated the study of MUS counting techniques. They succeeded
in designing the first approximate MUS counter, AMUSIC, that does not
rely on exhaustive MUS enumeration. AMUSIC, however, suffers from
two shortcomings: the lack of exact estimates and limited scalability due
to its reliance on 3-QBF solvers.
In this work, we address the two shortcomings of AMUSIC by designing
the first exact MUS counter, CountMUST, that does not rely on exhaus-
tive enumeration. CountMUST circumvents the need for 3-QBF solvers
by reducing the problem of MUS counting to projected model counting.
While projected model counting is #NP-hard, the past few years have
witnessed the development of scalable projected model counters. An ex-
tensive empirical evaluation demonstrates that CountMUST successfully
returns MUS count for 1500 instances while AMUSIC and enumeration-
based techniques could only handle up to 833 instances.

1 Introduction

Boolean formulas serve as a primary representation language to model the be-
haviour of systems and properties. Given an unsatisfiable Boolean formula F
in Conjunctive Normal Form (CNF), i.e. a set of clauses F = {f1, f2, . . . , fn},
a subset U ⊆ F is called Minimal Unsatisfiable Subset (MUS) of F iff U is
unsatisfiable and for every f ∈ U , U \ {f} is satisfiable.

MUSes serve as explanations or reasons for unsatisfiability of F , and have,
consequently, found applications in a wide variety of domains such as diagno-
sis [56,24], constrained sampling and counting [28], equivalence checking [20],
and the like [1,64,47,2,30,25]. While the early applications relied on identifying a
single [53,51,6,7,3] or enumerating multiple [39,52,4,12,41,10] MUSes, the rapid
adoption of MUSes lead researchers to investigate problem formulations and
their corresponding applications that do not rely on explicit MUS identification.

These include, e.g., computing the union of all MUSes [45], deciding whether
a given clause belongs to an MUS [31], or counting the number of MUSes.
Especially, the counting of MUSes found many applications in the domain of
diagnosis where the MUS count can be used to compute various inconsistency
metrics [25,48,65,49,50,29] for general propositional knowledge bases.

A straightforward, and for many years the only available, approach for count-
ing MUSes is to simply enumerate them. However, there can be up to exponen-
tially many MUSes w.r.t. |F | and hence the complete enumeration is often prac-
tically intractable [39,69,9,10]. Inspired by the development of model counting
techniques in the context of SAT, which in its nascent stages also depended on
complete model enumeration while contemporary techniques often need to ex-
plicitly identify just a fraction of models, Bend́ık and Meel [13] recently initiated
an investigation of counting MUSes without their explicit enumeration. In this
context, they succeeded by developing a hashing-based approximate counter,
AMUSIC [13], that provides the so-called PAC guarantees, also known as (ε, δ)-
guarantees, wherein the computed answer is within the (1 + ε)-factor of the
exact count with confidence at least 1−δ. AMUSIC reduces the problem of MUS
counting to logarithmically many calls to a ΣP

3 oracle (3-QBF solver, in prac-
tice) wherein every ΣP

3 query is constructed over a CNF formula conjuncted
with XORs.

While AMUSIC achieved its stated goal of avoiding explicit enumeration, its
scalability is significantly hampered by its reliance on a 3-QBF solver that can
efficiently handle formulas conjuncted with XOR constraints. It is worth high-
lighting that the scalability of model counting techniques [17,60] in the context
of SAT crucially relies on the availability of CryptoMiniSAT [61], a SAT solver
with native support for CNF-XOR constraints. Despite significant advances in
QBF solving over the years, the scalability remains a formidable challenge for
3-QBF solvers, and even more when XOR constraints are involved. As such,
AMUSIC could scale to formulas involving few hundreds of variables and clauses.

In this work, we focus on addressing the scalability of MUS counting tech-
niques. We begin our investigation by focusing on the observation of Bend́ık and
Meel that their technique relied on a ΣP

3 oracle even though the problem of find-
ing an MUS is in FPNP [19,44]. Therefore, a natural direction is to investigate
the design of an algorithmic framework that can circumvent reliance on oracles
with high complexity. In this context, we rely on the observation of Durand, Her-
mann, and Koliatis [21] that the complexity of counting problems whose search
problems have FPNP complexity tend to be #NP (which contains #P class).
Such an observation is timely given the recent surge of interest in designing ef-
ficient techniques for projected model counting, which is #NP-hard. Therefore,
one wonders: whether it is possible to design a MUS counting technique that can
take advantage of projected model counters?

The primary contribution of this paper is an affirmative answer to the above
question. We design a new algorithmic framework, CountMUST, that reduces
the problem of MUS counting to two projected model counting queries. In par-
ticular, CountMUST constructs a wrapper W and its remainder R such that the

number of MUSes of F is |W| − |R|, i.e., the wrapper W over-approximates the
set of MUSes while the remainder contains the spurious, non-MUS, subsets of
F that emerge due to the over-approximation. We encode the wrapper W and
the remainder R with Boolean formulas W and R such that the projected model
counts for W and R (for a suitable projection set) equal to |W| and |R|, respec-
tively. An interesting (and perhaps surprising) aspect of our CountMUST is that
we do not enumerate a single MUS in our process, which is in stark contrast
to the design of AMUSIC that relies on the enumeration of a small number of
MUSes.

We discuss several strategies to construct wrappers (and their corresponding
remainders) that are efficient to compute and are tight over-approximations of
the set of MUSes. We conduct a detailed empirical analysis over 2553 instances
and observe that CountMUST successfully returns MUS count for 1500 instances
while AMUSIC and enumeration-based techniques could only handle up to 833
instances. We observe interesting complementary nature of the exact and approx-
imate MUS counting approaches: the scalability of AMUSIC is often impacted by
the number of clauses and appears to be less impacted by the number of MUSes
while, on the other hand, the scalability of CountMUST is less impacted by the
number of clauses and appears to depend on the number of MUSes.

Finally, our empirical analysis showcases that our wrappers W approximate
the set of MUSes very tightly. Motivated by the tightness of our wrappers, we dis-
cuss several interesting applications of our framework: approximate MUS count-
ing [13], MUS enumeration [5,40], MUS Sampling, estimation of minimum and
maximum MUS cardinality [38,27], and MUS membership testing [31].

The rest of the paper is organized as follows. We introduce preliminaries in
Section 2 and discuss related work in Section 3. We then present the primary
technical contribution of our work in Section 4. We present the empirical eval-
uation in Section 5 and then discuss the implications of the tightness of our
wrappers in Section 6. We finally conclude in Section 7.

2 Preliminaries and Problem Definition

A Boolean formula F is built over Boolean values {1, 0} and over a set Vars(F)
of Boolean variables connected via standard logical operators: ∧, ∨,→,↔, ¬. A
literal is either a variable x ∈ Vars(F) or its negation ¬x; Lits(F) denotes the
set of all literals used in F . Given a set A of variables, a valuation π : A→ {1, 0}
assigns to each variable its Boolean value. F [π] denotes the formula that emerges
from F by substituting every variable x of F that is in the domain of π by π(x);
furthermore, trivial simplifications, e.g., G ∨ 0 = G, G ∧ 0 = 0, ¬1 = 0, ¬0 = 1,
are applied. Note that if A ⊇ Vars(F), then F [π] is simplified either to 1 or to 0.
In the case when A ⊇ Vars(F) and F [π] = 1, we call π a model of F and write
π |= F ; otherwise, when F [π] = 0, we write π 6|= F . A formula F is satisfiable if
it has a model; otherwise, F is unsatisfiable. We write MF to denote the set of all
models of F . Moreover, given a set A ⊆ Vars(F) of variables, we write MF↓A to
denote the projection of MF on A, and for every π ∈MF , we write π↓A to denote

the projection of π on A. Finally, given two variable sets, A = {a1, . . . , ak} and
B = {b1, . . . , bk}, such that A ⊆ Vars(F), we write F[A/B] to denote the formula
that originates from F by substituting each variable ai ∈ A by bi ∈ B.

A formula in conjunctive normal form, shortly a CNF formula, is a conjunc-
tion of clauses where a clause is a disjunction of literals. When suitable, a CNF
formula can also be viewed as a multiset of clauses where a clause is a set of
literals; we use the two representations interchangeably based on the context.
Throughout the whole text, let us by F = {f1, . . . , fn} denote the input CNF
formula of interest. Furthermore, capital letters, e.g., S,K,N , or blackboard
bold letters, e.g., W, R, are used to denote other formulas, small letters, e.g.,
f, f1, fi, are used to denote clauses, and small letters, e.g., x, x′, y, are used to
denote variables. Finally, given a set X, P(X) denotes the power-set of X, and
|X| denotes the cardinality of X.

Definition 1 (MUS). A subset N of F is a minimal unsatisfiable subset (MUS)
of F iff N is unsatisfiable and for every f ∈ N it holds that N \{f} is satisfiable.

Definition 2 (MSS). A subset N of F is a maximal satisfiable subset (MSS)
of F iff N is satisfiable and for every f ∈ F \ N it holds that N ∪ {f} is
unsatisfiable.

Definition 3 (MCS). A subset N of F is a minimal correction subset (MCS)
of F iff F \ N is satisfiable and for every f ∈ N it holds that F \ (N \ {f}) is
unsatisfiable. Equivalently, N is an MCS iff F \N is an MSS.

Note that the Boolean satisfiability is monotone w.r.t. the (clause) subset in-
clusion, i.e., all subsets of a satisfiable set of clauses are satisfiable. Consequently,
all proper subsets of an MUS are in fact satisfiable, and, dually, all proper su-
persets of an MSS are unsatisfiable. Also, note that the minimality/maximality
concept used here is a set minimality/maximality and not a minimum/maximum

cardinality. Consequently, there can be up to
(|F |
|F |/2

)
MUSes/MCSes/MSSes of

F (intuitively, this is the number of pair-wise incomparable subsets of F ; see
the Sperner’s theorem [62]). We write maximum and minimum MUS to denote
an MUS with the maximum and the minimum cardinality, respectively. Note
that there can also be exponentially many maximum and minimum MUSes. We
write MUSF to denote the set of all MUSes of F , and SSF to denote the set of all
satisfiable subsets of F .

Example 1. Let us demonstrate the concepts of MUSes, MSSes and MCses on
an example. Assume that F = {f1 = {x1}, f2 = {¬x1}, f3 = {x2}, f4 =
{¬x1,¬x2}}. There are 2 MUSes: MUSF = {{f1, f3, f4}, {f1, f2}}, 3 MSSes:
{{f2, f3, f4}, {f1, f4}, {f1, f3}}, and thus also 3 MCSes: {{f1}, {f2, f3}, {f2, f4}}.
For illustration, see Fig. 1.

In this paper, we are concerned with the following two problems.

Name: #MUS
Input: A CNF formula F .
Output: The number |MUSF | of MUSes of F .

0000

1000010000100001

110010100110100101010011

1110110110110111

1111

Fig. 1. Illustration of P(F) from the Example 1. Individual subsets are represented
as bit-vectors, e.g., {f1, f2} is written as 1100. The subsets with a dashed border are
the unsatisfiable subsets, and the others are satisfiable subsets. MUSes and MSSes are
filled with a background colour.

Name: proj-#SAT
Input: A formula G and a set of variables S ⊆ Vars(G).
Output: The number |MG↓S | of models of G projected on S.

Our goal is to solve the #MUS problem, and to do that, we propose a strong
subtractive reduction to the proj-#SAT problem.

Definition 4 (Strong Subtractive Reductions). [21] Let Σ be an alphabet
and let Q1 and Q2 be two binary relations over Σ. Let #·Q1 and #·Q2 represent
the corresponding counting problems. Then, # ·Q1 reduces to # ·Q2 via a strong
subtractive reduction, if there exist polynomial-time computable functions f and
g such that for every string z ∈ Σ∗:

1. Q2(f(z)) ⊆ Q2(g(z))
2. |Q1(z)| = |Q2(g(z))| − |Q2(f(z))|.

3 Related Work

MUS Counting A straight-forward approach to count the MUSes is to simply
enumerate them via an MUS enumeration algorithm, e.g. [5,39,52,41,4,8,12,10].
However, since there can be up to exponentially many MUSes w.r.t. |F |, the
complete enumeration is often practically intractable. An alternative approach
to identify the MUS count is based on a so-called minimal hitting set duality
between MUSes and MCSes that states that every MUS is a minimal hitting set
of the set of all MCSes [56,32]. Consequently, one can determine the MUS count
by first identifying all MCSes and then counting their minimal hitting sets [40].
However, there can be in general up to exponentially many MCSes, which makes
this approach also often practically intractable [52,11].

The study of MUS counting without relying on exhaustive enumeration
was initiated just recently by Bend́ık and Meel [13], who proposed an (ε, δ)-
approximation scheme called AMUSIC. AMUSIC extends a prior hashing-based
model counting framework [63,15,18] to MUS counting. Briefly, AMUSIC divides

the power-set P(F) into nCells small cells, then pick one of the cells and count
the number inCell of MUSes in the cell, and estimate the overall MUS count
as nCells × inCell . The approach requires to perform logarithmically many calls
to a ΣP

3 oracle (3-QBF solver) wherein each query consists of a CNF formula
conjuncted with XOR constraints. The lack of solvers with native support for
such constraints presents the major hindrance to the scalability of AMUSIC.

It is worth remarking on a recent work by Bend́ık and Meel [14] that focuses
on exact counting of maximal satisfiable subsets (MSSes). While MUSes and
MSSes are closely related concepts, to the best of our knowledge, there does not
exist any efficient reduction from MUS counting to MSS counting, or vice versa.
Note that the best known upper-bound on the problem of finding an MUS is
FPNP [19], whereas for findind an MSS a tighter upper-bound FPNP[wit, log]
is known [44], which suggests that counting MUSes is practically harder than
counting MSSes. It would be an interesting question for future work if the counter
developed in this work can be employed to perform MSS counting.

Model Counting The complexity-theoretic study of model counting was initiated
by Valiant [67] who showed that proj-#SAT is #P-complete when S = Vars(G).
Subsequently, Durand, Hermann, and Koliatis [21] showed that the general prob-
lem of proj-#SAT is #NP-hard. A significant conceptual contribution of Durand
et al. was to show the importance of subtractive reductions for problems in #NP;
this idea has been applied for reductions to projecting counting [14].

Our work relies on the recent progress in the development of efficient pro-
jected model counters; in particular, we employ GANAK [59], a state-of-the-art
search-based exact model counter; the entry based on GANAK won the projected
model counting track in 2020 Model Counting Competition [23]. Search-based
model counters build on three core ideas: (1) for a formula G and x ∈ S, we
have |MG↓S | = |MG(x7→0)↓S |+ |MG(x 7→1)↓S |, (2) if G can be partitioned into sub-
set of clauses {C1, C2, . . . Ck} such that ∀i, j.Vars(Ci) ∩ Vars(Cj) = ∅, then we

have |MG↓S | =
∏k
i=1 |MCi↓S |, and (3) finally, component caching is employed to

cache the components. Consequently, the model count can be often determined
by explicitly identifying just a fraction of all models. GANAK is built on top of
earlier search-based model counters, sharpSAT [66] and Cachet [58,57].

4 MUS Counting via a Projected Model Counter

We now gradually introduce several subtractive reductions of the MUS count-
ing problem to the projected model counting, starting with the base idea in
Section 4.1, and following with the particular reductions in Sections 4.2-4.11.

4.1 Basic MUS Counting Idea

Definition 5 (wrapper and remainder). A set W of subsets of F is a wrap-
per iff MUSF ⊆ W ⊆ MUSF ∪ SSF . Furthermore, the remainder of W is the set
R =W ∩ SSF .

Proposition 1. Let W be a wrapper and R its corresponding remainder. Then
|MUSF | = |W| − |R|.

Proof. Since R =W ∩ SSF , then MUSF ∩R = ∅, and hence |W| = |MUSF |+ |R|.

Our approach to determine the MUS count |MUSF | consists of the following
steps. First, we define a wrapper W and its corresponding remainder R. Subse-
quently, we encode the wrapper W with a Boolean formula W such that each
projected model of W (for a suitable projection set) corresponds to an element
of W. Similarly, we construct a Boolean formula R such that each projected
model of R corresponds to an element of the remainder R. Finally, we employ a
projected model counter to determine the projected model counts of W and R,
i.e., |W| and |R|, and hence we obtain the MUS count |MUSF | = |W| − |R|.

In the following, we first describe in Section 4.2 how to build a simple wrapper
W1 and its remainder R1 and how to encode them via Boolean formulas W1 and
R1, respectively. Subsequently, in Sections 4.3-4.11, we propose several additional
wrappers (and their remainders) that improve upon the base wrapper W1 by
exploiting various observations about MUSes. Finally, in Section 4.12, we show
how to combine the individual wrappers.

4.2 W1 - The Base Wrapper and Its Reminder

Our base wrapper, W1, is simply the set of all satisfiable subsets and all MUSes
of F , i.e., W1 = SSF ∪ MUSF . The corresponding remainder R1 is thus the set
SSF of all satisfiable subsets of F . In the following, we describe how to encode
the wrapper W1 and the remainder R1 via Boolean formulas W1 and R1 whose
projected models correspond to elements of W1 and R1, respectively.

Let us start with encoding the remainder R1 = SSF . Given the unsatisfiable
formula F = {f1, . . . , fn}, we introduce a set A = {a1, . . . , an} of activation
variables. Note that every valuation π of A one-to-one maps to an activated
subset πA,F of F defined as πA,F = {fi ∈ F |π(ai) = 1}. Using the activation
variables, we build the formula R1 as follows:

R1 =
∧
fi∈F

ai → fi (1)

Intuitively, if we set ai to 0 then the formula ai → fi is trivially satisfied,
and if we set ai to 1 then fi has to be satisfied to satisfy ai → fi. Hence, the
models of R1 projected on A map to satisfiable subsets of F ; formally:

Proposition 2. For every valuation π of A, π ∈ MR1↓A iff πA,F ∈ R1 = SSF .
Consequently, |MR1↓A| = |R1|.

Let us note that the concept of activation variables (or alternatively relax-
ation variables) and the idea behind the formula R1 is not novel and it appeared
also in several MUS/MSS/MCS related studies such as [31,42,14]. However, we
are the first who apply it in the context of MUS counting.

To build a formula W1 that represents the wrapper W1 = SSF ∪ MUSF , we
will proceed similarly, i.e., we build W1 using the activation variables A in such
a way that a valuation π of A is a projected model of W1 iff πA,F ∈ W1. A
straightforward approach to encode W1 is to directly express that we are inter-
ested either in satisfiable subsets or MUSes of F . Such an encoding might look as
R1(A)∨ isMUS(A) where R1(A) is the formula from Eq. 1 encoding that πA,F is
satisfiable and isMUS(A) is a formula encoding that πA,F is an MUS. However,
encoding that a set S is an MUS is quite expensive since one has to express
that all subsets of S are satisfiable and that S is unsatisfiable (Definition 1).
Especially, encoding that a set S is unsatisfiable requires to assume all the expo-
nentially many valuations of Vars(S). Several MUS related studies used various
QBF encodings for the property of being an MUS, e.g., [31,13]. In particular, to
express that a set S is an MUS, one can use the following, intuitively described,
∀∃-QBF encoding: ”for every valuation τ of Vars(S) the valuation τ models ¬S
(i.e., S is unsatisfiable) and for every subset S′ of S there exists a valuation
τ ′ of Vars(S′) that satisfies S′”. One could convert the ∀∃-QBF encoding into
a plain Boolean formula by explicitly enumerating all the possible valuations of
Vars(S) and all the subsets of S, however, this yields an exponentially large,
and thus intractable, formula. Hence, instead of directly expressing that every
element of the wrapper W1 is either a satisfiable subset or an MUS of F , we
propose another approach based on a novel concept of an evidence.

Definition 6 (evidence). Let A be a subset of F = {f1, . . . , fn}. An evidence
for A is a tuple (ρ1, . . . , ρn) such that for every 1 ≤ i ≤ n it holds that:

1. ρi : Vars(F)→ {1, 0} is truth assignment, and
2. ρi |= A \ {fi}.

Crucially, we observe the following:

Proposition 3. For every subset A of F it holds that A ∈ SSF ∪MUSF =W1 iff
there exists an evidence for A.

Our formula W1 (Eq. 2) that encodes the wrapper W1 captures every set
A ⊆ F for which there exists an evidence (ρ1, . . . , ρn). To represent the set
A, we use the activation variables A = {a1, . . . , an}. To represent the truth
assignments ρ1, . . . , ρn, we introduce variable sets I1, . . . , In where Ii is a fresh
copy of Vars(F) for every i ∈ {1, . . . , n}.

W1 =
∧
ai∈A

ai →
(∧
j∈{1,...,n}\{i}

(aj → fj[Vars(F)/Ii])
)

(2)

Intuitively, let π′ be a valuation of Vars(W1) and π′A,F = {fi ∈ F |π′(ai) =
1} the subset of F activated by A. For every activated clause fi ∈ π′A,F , the
formula expresses that π′↓Ii is a model of π′A,F \ {fi} where the variable set
Vars(F) is substituted by Ii.

Proposition 4. For every valuation π of A, π ∈ MW1↓A iff πA,F ∈ W1 =
SSF ∪ MUSF . Consequently, |MW1↓A| = |W1|.

Based on Propositions 2 and 4, we can now employ a projected model counter
to obtain the model counts |MW1↓A| and |MR1↓A|, which yields |W1| and |R1|,
and hence also |MUSF | (Proposition 1). However, the concern here is the tractabil-
ity of obtaining the model counts. There are mainly two criteria that affect the
practical tractability of projected model counting. One criterion is the number
of projected models, i.e. the cardinality of the wrapper (and the remainder), and
the other criterion is the cardinality of the projection set, i.e., |A|. The wrapper
W1 is not very efficient w.r.t. these two criteria. Especially, W1 contains all sat-
isfiable subsets of F , and there are often exponentially many satisfiable subsets
of F w.r.t. |F |. Therefore, in the following, we will present nine additional wrap-
pers, W2, . . . ,W10, and their corresponding remainders. Each of the wrappers
captures a property of MUSes that allows us to provide a better description of
MUSes, and hence reduce the cardinality of the wrapper and/or the cardinality
of the projection set. Similarly as in the case of W1, we will use the activation
variables A to represent the elements of the wrappers/remainders. Moreover,
every of the following wrappers Wi will be encoded by a Boolean formula Wi

such that for every valuation π of A, π ∈ MWi↓A iff πA,F ∈ Wi (and similarly
for the remainders).

4.3 W2 - The Intersection of MUSes

Our second wrapperW2 is based on a simple observation: every MUS of F has to
contain the intersection IMUSF of all MUSes of F . Hence, we define the wrapper
as W2 = {N ∈ W1 |N ⊇ IMUSF } and encode it via W2 as follows:

W2 = W1 ∧
∧

fi∈IMUSF

ai (3)

Proposition 5. For every valuation π of A, π ∈ MW2↓A iff πA,F ∈ W2. Con-
sequently, |MW2↓A| = |W2|.

The remainder R2 of W2 is by Definition 5 the set W2 ∩ SSF . To build the
formula R2 that encodes R2, observe that we already have an encoding for the
set W2 (Eq. 3), and we also have an encoding for the set SSF since SSF = R1.
Hence, we can build R2 as a conjunction of the two encodings: R2 = W2 ∧ R1.
Note that this construction of the remainder and the formula that encodes it is
purely mechanical and does not involve any specific property of the particular
wrapper. Therefore, for every wrapperWi and its encoding Wi that are presented
in the following sections, we define the reminder as Ri =Wi ∩R1 and encode it
as Ri = Wi ∧ R1. Proposition 6 witnesses the soundness of this construction:

Proposition 6. For every valuation π of A, π ∈MRi↓A iff πA,F ∈ Ri. Conse-
quently, |MRi↓A| = |Ri|.

This section’s final question is how to compute the intersection IMUSF . It is
well-known that a clause f ∈ F belongs to IMUSF iff F \ {f} is satisfiable (see,

e.g., [56,32,40]). Hence, a straightforward way would be to perform such satisfia-
bility check for each f ∈ F , however, that might be very expensive. Fortunately,
there has been recently proposed [13] a quite efficient algorithm to compute
IMUSF which usually requires only few satisfiability checks, so we implemented
that algorithm and use it while building the wrapper.

4.4 W3 - The Union of MUSes

Our next wrapper, W3, is very similar to the previous wrapper. Observe that
every MUS of F is necessarily a subset of the union UMUSF of all MUSes of
F . Consequently, also a weaker observation holds: every MUS of F is a subset
of every over-approximation of UMUSF . We define the wrapper as W3 = {N ∈
W1 |N ⊆ U} where U is either the exact union UMUSF or its over-approximation
(U ⊇ UMUSF). Details on obtaining U are provided below. The encoding W3 of
W3 is analogical to W2:

W3 = W1 ∧
∧
fi 6∈U

¬ai (4)

Proposition 7. For every valuation π of A, π ∈ MW3↓A iff πA,F ∈ W3. Con-
sequently, |MW3↓A| = |W3|.

The computation of the union UMUSF has been examined in two recent stud-
ies [45,13] that provided two different approaches for that task. Unfortunately,
due to the problem’s hardness, both the studies showed that the proposed ap-
proaches can usually handle only relatively small input formulas. Namely, the
approach from [13] requires O(|F |) calls of a ΣP

2 oracle. Fortunately, it is often
possible to cheaply compute a good over-approximation of UMUSF via the con-
cepts of autark variables and a lean kernel. Briefly, a subset V of Vars(F) is an
autark [46] of F iff there exists a valuation χ of V such that for every clause
f ∈ F that contains a variable from V it holds that χ |= f . Since a union of
two autark sets is also an autark set, there exists a unique maximum autark
set [34,33]. The lean kernel K of F is the set of clauses that do not use any
variable from the maximum autark set. It has been shown (e.g. [34,33]), that
the lean kernel is an over-approximation of UMUSF . Hence, when building the
wrapper W3, we use the lean kernel K as the over-approximation U of UMUSF ,
i.e., W3 = {N ∈ W1 |N ⊆ K}. There have been proposed several algorithms
to compute the lean kernel, e.g. [43,36]; we have implemented the algorithm by
Marques-Silva et al. [43] using a MaxSAT solver UWrMaxSat [54] as a back-end.

Few words are in order to the effect of the two wrappers,W2 andW3, on the
tractability of the projected model counting. Observe that in both cases (W2 and
W3), we fix values of some variables from the projection set A. Hence, before
passing the formulas to the projected model counter, we first propagate the fixed
values of A to simplify the formulas. By doing so, we effectively reduce the size
of the projection set A by |IMUSF | and |U | = |K|, respectively.

Finally, let us note that the fact that an MUS has to be a subset of the
union of all MUSes and a superset of the intersection of all MUSes is well-known
and it has been already exploited in various ways in several MUS related stud-
ies (see, e.g., [45,11,10]). Especially, the approximate MUS counting algorithm
AMUSIC [13] utilizes UMUSF in its preprocessing phase, and IMUSF to simplify
3-QBF queries while searching for MUSes.

4.5 W4 - Minimum MUS Cardinality

Assume we can somehow compute the cardinality of a minimum MUS or at least
its lower-bound minMUS. Knowing this number, we define our next wrapper as
W4 = {N ∈ W1 | |N | ≥ minMUS}. To encode this wrapper via a formula W4, we
employ a Boolean cardinality constraint atLeast(A, minMUS) expressing that at
least minMUS variables from A are set to 1:

W4 = W1 ∧ atLeast(A, minMUS) (5)

Proposition 8. For every valuation π of A, π ∈ MW4↓A iff πA,F ∈ W4. Con-
sequently, |MW4↓A| = |W4|.

There have been proposed several algorithms for computing an MUS with
the minimum cardinality, e.g. [27,38,26]. However, since the task of computing

a minimum MUS is in FPΣ
P
2 [37,27], computing exactly a minimum MUS is too

expensive for our scenario (empirically experienced). Instead, we propose an ap-
proach for cheaply computing a lower-bound on the minimum MUS cardinality.

Our method is based on a well-known relationship between MUSes and MC-
Ses called minimal hitting set duality [56,32]. Given a collection C of sets, a set
X is a hitting set of C iff C ∩ X 6= ∅ for every C ∈ C. Furthermore, a hitting
set X of C is minimal if none of its proper subsets is a hitting set. The duality
relation states that a set N is an MUS of F iff N is a minimal hitting set of
the set MCSF of all MCSes of F . Dually, a set M is an MCS of F iff M is a
minimal hitting set of the set MUSF . Consequently, one can identify all the MC-
Ses and then compute their minimum minimal hitting set to get an MUS with
the minimum cardinality. However, there can be up to exponentially many MC-
Ses of F , and thus their complete enumeration is often practically intractable.
Our approach to obtain a lower-bound on the minimum MUS cardinality is the
following. First, we employ a recent MCS enumeration algorithm RIME [11] to
generate a subset M of MCSF . Subsequently, we compute a minimum minimal
hitting set of M and use it as the lower-bound minMUS on the minimum MUS
cardinality while building the wrapper W4. Note that sinceM⊆ MCSF , it holds
that every hitting set of MCSF is also a hitting set of M, and hence minMUS is
indeed a sound lower-bound on the cardinality of a minimum hitting set of MCSF .

Let us also briefly describe an algorithm for computing the minimum MUS
by Ignatiev et al. [27], since it works on a similar principle as our approach.
Their algorithm iteratively maintains a set kMCSes of known MCSes; initially
kMCes = ∅. In each iteration, the algorithm computes a minimum minimal

hitting set X of kMCSes and checks X for satisfiability. If X is unsatisfiable,
then it is guaranteed to be a minimum MUS. Otherwise, X is enlarged to an
MSS using a single MSS extraction subroutine, the complement of the MSS (i.e.,
an MCS) is added to kMCSes, and the algorithm proceeds with a next iteration.
Observe that one can also terminate their approach after a given time limit and
use the last computed X as a lower-bound on the minimum MUS cardinality. The
main difference between our and their approach is that we employ a dedicated
MCS enumerator in the first step and then compute just a single minimum
minimal hitting set, whereas they alternate single MCS extraction with minimum
minimal hitting set computation.

4.6 W5 - Maximum MUS Cardinality

Assuming that we can somehow compute an upper-bound maxMUS on the max-
imum cardinality of an MUS of F , we define our next wrapper as W5 = {N ∈
W1 | |N | ≤ maxMUS}. Similarly as in the case of W4, to build the formula W5 that
encodes W5, we introduce a Boolean cardinality constraint atMost(A, maxMUS)
expressing that at most maxMUS variables from A are set to 1:

W5 = W1 ∧ atMost(A, maxMUS) (6)

Proposition 9. For every valuation π of A, π ∈ MW5↓A iff πA,F ∈ W5. Con-
sequently, |MW5↓A| = |W5|.

We are not aware of any prior work on computing the cardinality of the
maximum MUS nor of a reasonable approach for computing at least its upper-
bound. Hence, we propose a custom approach to compute such an upper-bound
maxMUS. The base idea is to exploit our concept of wrappers:

Proposition 10. Let W be a wrapper, i.e. W ⊆ MUSF ∪ SSF , A the set of
activation variables, and W a formula such that for every valuation π of A, π ∈
MW↓A iff πA,F ∈ W. Furthermore, let maxOnes = max({ones(π) |π ∈ MW↓A})
where ones(π) = |{ai ∈ A |π(ai) = 1}|. Then maxOnes is an upper-bound on the
maximum MUS cardinality.

We use maxOnes as the value maxMUS while constructing wrapper W5. Any
of the wrappers and its encoding presented in this paper can be used as W and
W, respectively. To determine the value maxOnes, we define a partial MaxSAT
problem using the formula W ∧

∧
ai∈A ai, where W are the hard clauses and∧

ai∈A ai are the soft clauses. To solve the problem, we employ the MaxSAT
solver UWrMaxSat [54].

4.7 W6 - Component Partitioning

It is often the case that the clauses of F can be partitioned into several compo-
nents, i.e. disjoint subsets of clauses, such that every MUS of F consists only of
clauses from a single component. In particular:

Definition 7 (components). Given a clause fi ∈ F , the component C(fi) of
fi is the minimal subset of F satisfying:

1. fi ∈ C(f), and
2. for every l ∈ fi and every fj ∈ F with ¬l ∈ fj, C(fi) = C(fj).

Example 2. Assume that F = {{x1}, {¬x1}, {x2}, {¬x1,¬x2}, {x3}, {¬x3}, {x4},
{x4, x5}}. There are four components: C1 = {{x1}, {¬x1}, {x2}, {¬x1,¬x2}},
C2 = {{x3}, {¬x3}}, C3 = {{x4}}, and C4 = {{x4, x5}}. C1 has two MUSes:
{{x1}, {¬x1}} and {{x1}, {x2}, {¬x1,¬x2}}, C2 has one MUS: {{x3}, {¬x3}},
and C3 and C4 have no MUSes.

Proposition 11. Let N be an MUS. Then for every two clauses fi, fj ∈ N , it
holds that C(fi) = C(fj).

The wrapper W6 captures the partition of MUSes into components, and it is
defined as W6 = {N ∈ W1 | ∀fi,fj∈N . C(fi) = C(fj)} and encoded via W6:

W6 = W1 ∧
∧
ai∈A

(ai →
∧

fj∈F\C(fi)

¬aj) (7)

Proposition 12. For every valuation π of A, π ∈MW6↓A iff πA,F ∈ W6. Con-
sequently, |MW6↓A| = |W6|.

To partition the input formula F into individual components, we construct
an undirected graph whose vertices are the clauses of F and every two vertices,
fi and fj , are connected via an edge iff there exists l ∈ fi such that ¬l ∈ fj . The
components of F then correspond to connected components of the graph (which
can be identified in linear time w.r.t. the size of F by traversing the graph). Note
that a similar flip graph has been used in a study [68] on model rotation and its
usage during single MUS extraction.

4.8 W7 - Minimal Hitting Set Duality

We again exploit the minimal hitting set duality between MUSes and MCSes
(Section 4.5). Recall that if a set M is an MCS of F then M ∩N 6= ∅ for every
N ∈ MUSF . We define the wrapper W7 as {N ∈ W1 | ∀M∈MM ∩N 6= ∅} where
M is a set of MCSes. To obtain M, we run an MCS enumeration algorithm
RIME [11] constrained by a user-defined time limit. The encoding W7 of W7 is:

W7 = W1 ∧
∧

M∈M

∨
fi∈M

ai (8)

Proposition 13. For every valuation π of A, π ∈MW7↓A iff πA,F ∈ W7. Con-
sequently, |MW7↓A| = |W7|.

4.9 W8 - Literal Negation Cover

Our next wrapper captures the following observation about MUSes.

Proposition 14. Let N be an MUS of F , fi ∈ N a clause of N , and l ∈ fi a
literal of fi. Then there exists a clause fj ∈ N such that ¬l ∈ fj.

Based on the above proposition, we define the wrapper W8 as W8 = {N ∈
W1 | ∀fi∈N .∀l∈fi .∃fj∈N .¬l ∈ fj}, and encode it as follows:

W8 = W1 ∧
∧
ai∈A

ai → (
∧
l∈fi

(
∨

fj∈{fj∈F | ¬l∈fj}

aj)) (9)

Proposition 15. For every valuation π of A, π ∈MW8↓A iff πA,F ∈ W8. Con-
sequently, |MW8↓A| = |W8|.

4.10 W9 - Non-Extendable Evidence Models

Assume that N is an MUS and (ρ1, . . . , ρn) is its evidence. By Definition 6, it
holds that ρi |= N\{fi} for every 1 ≤ i ≤ n. Observe that sinceN is unsatisfiable,
then it is also necessarily the case that ρi |= ¬fi for every 1 ≤ i ≤ n. Hence,
we define our next wrapper, W9, as W9 = {N ∈ W1 | ∃ρ1, . . . , ρn.∀1≤i≤n. ρi |=
N \ {fi} and ρi |= ¬fi}. Note that the above-stated property applies universally
to every evidence of an MUS, and yet we require in the definition of the wrapper
only an existence of one such evidence. The reason is that there can be up
to exponentially many evidences for an MUS w.r.t. |Vars(F)| and hence it is
intractable to reason about all of them in the Boolean encoding of the wrapper.

W9 = W1 ∧
∧
ai∈A

ai → ¬fi[Vars(F)/Ii] (10)

Proposition 16. For every valuation π of A, π ∈MW9↓A iff πA,F ∈ W9. Con-
sequently, |MW9↓A| = |W9|.

4.11 W10 - Enforced Evidence Models

Our final wrapper, W10, again builds on the variable valuations ρ1, . . . , ρn that
form an evidence of an MUS N of F . In the previous wrapper, W9, we have
exploited that none of the variable valuations can be a model of N . Here, we
express that none of the valuations can be easily modified to be a model of N .
In particular, if fi ∈ N , then by the definition of an evidence, ρi |= N \ {fi}.
Assume that we pick a literal l ∈ fi and turn ρi into a valuation ρ′i by flipping
the assignment to l so that ρ′i |= fi. Since N is an MUS (i.e., unsatisfiable), there
necessarily exists a clause fj ∈ N such that ρ′i 6|= fj , i.e., fj forces ρi to satisfy
¬l and hence prevents from flipping ρi to a model ρ′i of the whole N . Formally:

Proposition 17. Let N be an MUS, fi ∈ N a clause of N , and ρi a model of
N \ {fi}. Then for every literal l ∈ fi, there exists a clause fj ∈ N such that
¬l ∈ fj and ρi 6|= fj \ {¬l}.

Similarly as in the case of W9, observe that Proposition 17 applies univer-
sally to every evidence of an MUS, however, since there can be exponentially
many such evidences, it is expensive to reason about all of them. Hence, in
the wrapper, we capture just an existence of such an evidence: W10 = {N ∈
W1 | ∃ρ1, . . . , ρn.∀1≤i≤n. ρi |= N \ {fi} and if fi ∈ N then∀l∈fi .∃fj∈N .¬l ∈ fj
and ρi 6|= fj \ {¬l}}. Eq. 11 shows the corresponding encoding via W10:

W10 = W1 ∧
∧
ai∈A

ai →
∧
l∈fi

(
∨

fj∈{fj∈F | ¬l∈fj}

aj ∧ ¬(fj \ {¬l})[Vars(F)/Ii]) (11)

Proposition 18. For every valuation π of A, π ∈ MW10↓A iff πA,F ∈ W10.
Consequently, |MW10↓A| = |W10|.

4.12 Combining Wrappers and Their Remainders

In the previous sections, we have presented multiple wrappers, each of which
captures a different property of MUSes. In this section, we show that the indi-
vidual wrappers can be easily combined and, hence, form wrappers that provide
a more accurate description of the set MUSF .

Proposition 19. Let A be the set of activation variables,Wk andW l wrappers,
and Rk and Rl the remainders of Wk and W l. Furthermore, for every m ∈
{k, l}, let Wm and Rm be formulas such that:

– for every valuation π of A, π ∈MWm↓A iff πA,F ∈ Wm, and
– for every valuation π of A, π ∈MRm↓A iff πA,F ∈ Rm.

Then all the following hold:

1. Wk ∩W l is a wrapper and Rk ∩Rl is its reminder.
2. For every valuation π of A, π ∈ M(Wk∧Wl)↓A iff πA,F ∈ Wk ∩ W l. Conse-

quently, |M(Wk∧Wl)↓A| = |Wk ∩W l|.
3. For every valuation π of A, π ∈ M(Rk∧Rl)↓A iff πA,F ∈ Rk ∩ Rl. Conse-

quently, |M(Rk∧Rl)↓A| = |Rk ∩Rl|.

Note that although Proposition 19 discusses only a combination of two wrap-
pers, it can be applied repeatedly on already combined wrappers. Hence, we can
combine any subset of the wrappers W1, . . . ,W10 we proposed. Also, note that
all the formulas W2, . . . ,W10 subsume the formula W1, and hence if we com-
bine multiple wrappers, we duplicate some clauses. In our implementation, we
first remove all the duplicates and apply other straightforward model preserving
simplifications before we pass the encoding to a projected model counter.

5 Experimental Evaluation

We have implemented our approach for counting MUSes in a python-based tool3,
using the projected model counter GANAK [59] to count the models of wrappers
and remainders, and also using several auxiliary tools as described above.

We presented 10 base wrappers W1, . . . ,W10 and shown how to combine
them. Since W1 is subsumed by all the wrappers W2, . . . ,W10, there are 29

combined wrappers. Due to the large number of the combinations, we were able
to evaluate only some of them. In particular, we evaluated the combination
W1∩· · ·∩W10, denoted as Wall, of all wrappers since it provides the most precise
description of MUSes. We also evaluated 6 wrappers that emerge from Wall by
excluding individual base wrappers or combinations of similar base wrappers,
and also the most basic wrapper W1. The table below shows the names and
definitions of the evaluated combinations:

name definition name definition
W1 W1 Wno6

⋂
i∈{2,3,4,5,7,8,9,10} Wi

Wno23
⋂

i∈{4,5,6,7,8,9,10} Wi Wno7
⋂

i∈{2,3,4,5,6,8,9,10} Wi

Wno4
⋂

i∈{2,3,5,6,7,8,9,10} Wi Wno8910
⋂

i∈{2,3,4,5,6,7} Wi

Wno5
⋂

i∈{2,3,4,6,7,8,9,10} Wi Wall
⋂

i∈{2,...,10} Wi

We also evaluated two contemporary MUS enumerators, MARCO4 [39] and
UNIMUS5 [10]. Moreover, we evaluated the approximate MUS counter AMU-
SIC6 [13] using its default guarantees, i.e., the provided MUS count estimates
are within 1.8 multiplicative factor of the true count with 80% confidence.

Our benchmark suite consists of the 2553 instances previously employed in
the prior MUS and MSS literature, including those released by authors of AMU-
SIC [13]. The formulas contain from 78 to 1000 clauses and from 40 to 996
variables. The MUS count varies from 1 to 1.7× 109 MUSes.

We focus on three comparison criteria: 1) the number of benchmarks solved
by the evaluated tools (i.e. benchmarks where the tools provided the MUS
count), 2) the scalability of the tools w.r.t. the number of MUSes in the bench-
marks, and 3) we examine the accuracy of our wrappers.

All experiments were run using a time limit of 3600 seconds per benchmark on
a Linux machine with AMD 16-Core Processor and 20GB memory limit. When
using wrappers W4 and W7, we used a combined limit of 300 seconds (included
in the 3600 seconds) and 100000 MCSes for the MCS enumeration while building
the wrappers; if both wrappers were used, we run the MCS enumeration just
once. Finally, while constructing a combined wrapper of the form W∗ ∩W5, we
used W∗ to compute the value maxMUS for creating W5.

3 https://github.com/jar-ben/exactMUSCounter
4 https://sun.iwu.edu/~mliffito/marco/
5 https://github.com/jar-ben/unimus
6 https://github.com/jar-ben/amusic

https://github.com/jar-ben/exactMUSCounter
https://sun.iwu.edu/~mliffito/marco/
https://github.com/jar-ben/unimus
https://github.com/jar-ben/amusic

Our Wrapper-Remainder Based Tools

AMUSIC UNIMUS MARCO W1 Wno23 Wno4 Wno6 Wno7 Wno8910 Wall Wno5

623 833 799 403 1475 1498 1486 1445 1058 1486 1500
Table 1. Number of solved benchmarks by individual tools.

0
600

1200
1800
2400
3000
3600

 0 200 400 600 800 1000 1200 1400 1600

tim
e

in
 s

ec
on

ds

number of solved benchmarks

AMUSIC
UNIMUS

MARCO
W1

Wno5
Wno8910

Wall

Fig. 2. The number of solved benchmarks in time.

5.1 Solved Benchmarks

In Table 1, we show the number of benchmarks that were solved by the individ-
ual evaluated tools. The worst performance was achieved by the basic wrapper
W1 (W1), which is not surprising since it does not provide a good descrip-
tion of MUSes. AMUSIC solved 623 benchmarks, whereas UNIMUS and MARCO
solved 833 and 799 benchmarks, respectively. Except for Wno8910 (and W1),
which solved only 1058 benchmarks, all the remaining combined wrappers solved
around 1450-1500 benchmarks and hence significantly dominated both AMUSIC
and the two MUS enumerators. Maybe surprisingly, Wall that combines all the
base wrappers ended up at the third position; the highest number (1500) of
solved benchmarks was achieved by Wno5, and the second-highest (1498) by
Wno4. Note that Wno5 and Wno4 exclude encoding of the minimum and max-
imum MUS cardinality via Boolean cardinality constraints. In general, solving
Boolean cardinality constraints is often quite hard, and hence even though a
presence of the two wrappers might provide a better description of MUSes, the
constraints increase the hardness of the generated instances.

Fig. 2 compares the time needed to solve the benchmarks by a subset (for a
better clarity) of the evaluated tools. A point with coordinates [x, y] means that
x benchmarks were solved (by the corresponding tool) within the first y seconds.

5.2 Scalability w.r.t the MUS Count

In Fig. 3, we compare the scalability of the evaluated tools w.r.t. the number
of MUSes in the benchmarks. In particular, a point with coordinates [x, y] de-
notes that the corresponding tool solved y benchmarks that contained at most
x MUSes. For a better clarity, we compare only our best wrapper, Wno5, with
AMUSIC, MARCO, and UNIMUS. Note that whereas AMUSIC scales to instances
with 108 MUSes, the remaining three tools scale only to instances with at most

0
300
600
900

1200
1500

 1 10 100 1000 10000 100000 1x106 1x107#
 s

ol
ve

d
be

nc
hm

ar
ks

MUS count

AMUSIC UNIMUS MARCO Wno5

Fig. 3. The number of solved w.r.t. the MUS count.

a million of MUSes. In fact, note that even though AMUSIC solved in overall just
623 benchmarks, there are 319 benchmarks that were solved only by AMUSIC.
Based on a closer examination of the results, we identified that AMUSIC scales
much better than the other tools w.r.t. the MUS count, however, it does not
scale so well w.r.t. the number of clauses in the input formula F . This is not
surprising since AMUSIC is just an approximate counter and as such, it needs
to explicitly identify only logarithmically many MUSes w.r.t. |F | even though
there can be up to O(2|F |) many MUSes. On the other hand, AMUSIC relies on
repeated calls to a 3-QBF solver whose efficiency highly depends on |F |.

5.3 Accuracy of Wrappers

Recall that a wrapperW over-approximates the set MUSF of all MUSes of F , i.e.,
W ⊇ MUSF (Definition 5), and hence we are interested in measuring the accuracy
of the over-approximations. In particular, given a wrapper W and its remainder

R constructed over a formula F , we measure the ratio |R|
|W| . The range of the

ratio is [0, 1); the closer to 0 the more accurate the wrapper is, and especially

when |R|
|W| = 0, the wrapper exactly captures the set MUSF (i.e., W = MUSF).

We illustrate the ratio |R||W| achieved by individual wrappers in Fig. 4. A point

with coordinates [x, y] expresses that for x percent of benchmarks completed

by the corresponding tool, the ratio |R|
|W| was at most y. As expected, the ratio

achieved by the most basic wrapper W1 (W1) is very high for all the benchmarks,
i.e., the wrapper captures MUSF very inaccurately. On the other hand, the other
wrappers achieved for a vast majority of benchmarks a very low ratio, i.e., they
over-approximate MUSF very tightly. In fact, for 87 percent of benchmarks, the
wrappers Wno23, Wno4, Wno5, Wno6, and Wall, achieved the ratio 0, i.e., the
wrappers exactly captured the set MUSF . In contrast, the wrappers Wno7 and
Wno8910 achieved the ratio 0 for only 68 and 80 percent of benchmarks, which
suggest that the use of the corresponding wrappers, W7, W8, W9, and W10, is
vital for an accurate description of MUSF . Moreover, note that the accuracy of
the wrappers highly correlate with the number of solved benchmarks (Table 1),
since Wno7 and Wno8910 (and W1) were the least efficient wrappers.

0
0.2
0.4
0.6
0.8

1

 0 20 40 60 80 100

|R
|/

|W
|

percentage of completed benchmarks

W1
Wno23

Wno4
Wno5

Wno6
Wno7

Wno8910
Wall

Fig. 4. The ratio |R|
|W| expressing the inaccuracy of wrappers.

6 Future Possible Applications of Wrappers and
Remainders

Recall that a wrapperW over-approximates the set MUSF of all MUSes of F , i.e.,
W ⊇ MUSF (Definition 5). Moreover, in Section 5, we empirically witnessed that
the best of our wrappers usually over-approximate MUSF very tightly or they
even capture it exactly. Consequently, the propositional encodings W and R of
a wrapper W and its remainder R, respectively, can very precisely capture the
set MUSF . We strongly believe that such an accurate propositional description of
MUSF paves the way (and will be thoroughly examined in our future work) to
efficiently solve many other MUS related problems including, e.g., the following:

Approximate MUS Counting Recall that |MUSF | = |W| − |R|. Assuming
that |R| is much smaller than |W| and observing that R ⊆ W, computing
|MR↓A| = |R| should be much faster than computing |MW↓A| = |W|. Hence, one
could first relatively quickly exactly compute the value |MR↓A|, and then use an
approximate model counter to find an estimate w′ of |MW↓A|. The MUS count
|MUSF | can be then approximated as w′ − |R|. The accuracy of the approxima-
tion depends on the approximation guarantees of the model counter (e.g. using
ApproxMC4 [18,60], we get the (ε, δ)-guarantees provided by AMUSIC).

MUS Enumeration Assume a valuation π of the activation variables A and
the corresponding activated subset πA,F = {fi ∈ F |π(ai) = 1} of F . As shown
in Section 4, πA,F is an MUS iff π ∈ MW↓A and π 6∈ MR↓A. Hence, one can
enumerate MUSes by enumerating projected models of W and discarding those
that are also projected models of R.

MUS Sampling To sample an MUS of F , one can iteratively sample an element
π of MW↓A until it identifies π such that π 6∈MR↓A, i.e., πA,F is an MUS. Note
that while the past decade has witnessed significant progress in the development
of projected model sampling approaches [16,22,55] (with various distribution
guarantees), we are not aware of any existing MUS sampling technique (with
reasonable distribution guarantees).

Minimum and Maximum MUS Cardinality As discussed in Section 4.6
(W5), one can over-approximate the maximum MUS cardinality by finding a
model π ∈MW↓A that maximizes the number of variables assigned 1. Similarly,
one can under-approximate the minimum MUS cardinality by finding a model

π ∈ MW↓A that minimizes the number of variables assigned 1. Intuitively, the
smaller |R| is, the more precise approximations can be expected. Moreover, by
checking if π ∈MR↓A, one can actually verify if πA,F is an MUS.

MUS Membership The MUS membership problem is to decide if a clause
fi ∈ F belongs to an MUS of F and it is known to be ΣP

2 -complete [35,37,31].
Contemporary techniques for deciding the problem are mainly based on solving
2-QBF or 3-QBF encodings [31,13]. Our wrapper-based framework allows for an
alternative approach: to decide if a clause fi belongs to an MUS of F , one can
check if there exists a valuation π of A such that π(ai) = 1, π ∈ MW↓A, and
π 6∈MR↓A. Note that when |R| = 0 or when |R| can be bounded by a constant,
this check boils down to a single call of a SAT solver.

7 Conclusion and Future Work

In this paper, we focused on the problem of MUS counting and proposed the
first exact MUS counter, called CountMUST, that does not rely on explicit MUS
enumeration. The base idea is to reduce the problem of MUS counting to (two
queries of) projected model counting via the framework of wrappers and re-
mainders. The availability of scalable projected model counter, GANAK, allowed
CountMUST to scale much better and solve significantly more instances than
other existing approaches. Moreover, as discussed in Section 6, the tightness
of wrappers and remainders opens up new potential applications ranging from
approximating counting, enumeration, membership, and the like.

We also revisit the complementary nature of CountMUST and AMUSIC with
respect to the size of instances and the MUS count. The complementary perfor-
mance opens up opportunities for a portfolio approach that can achieve the best
of both of the worlds. Finally, let us note that we are fighting here the chicken
and egg nature of the existence of practical applications and scalable algorith-
mic techniques for problems in automated reasoning. Often the lack of scalable
techniques leads to a lack of incentives for end-users to design reductions to
practical applications, and vice versa. Even though MUS counting has already
many applications in the diagnosis domain [25,48,65,49,50,29], we hope that the
availability of CountMUST will break this chicken and egg loop in other areas
and enable further investigations into MUS counting applications.

Acknowledgements

This work was supported in part by the National Research Foundation Singapore
under its NRF Fellowship Programme [NRF-NRFFAI1-2019-0004] and the AI
Singapore Programme [AISG-RP-2018-005], NUS ODPRT Grant [R-252-000-
685-13].

References

1. Andraus, Z.S., Liffiton, M.H., Sakallah, K.A.: CEGAR-based formal hardware ver-
ification: A case study. Tech. rep., University of Michigan, CSE-TR-531-07 (2007)

2. Arif, M.F., Menćıa, C., Ignatiev, A., Manthey, N., Peñaloza, R., Marques-Silva,
J.: BEACON: an efficient sat-based tool for debugging EL+ ontologies. In: SAT.
LNCS, vol. 9710, pp. 521–530. Springer (2016)

3. Bacchus, F., Katsirelos, G.: Using minimal correction sets to more efficiently com-
pute minimal unsatisfiable sets. In: CAV (2). LNCS, vol. 9207, pp. 70–86. Springer
(2015)

4. Bacchus, F., Katsirelos, G.: Finding a collection of MUSes incrementally. In:
CPAIOR. LNCS, vol. 9676, pp. 35–44. Springer (2016)

5. Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints
using hitting set dualization. In: PADL, pp. 174–186. Springer (2005)

6. Belov, A., Heule, M., Marques-Silva, J.: MUS extraction using clausal proofs. In:
SAT. LNCS, vol. 8561, pp. 48–57. Springer (2014)

7. Belov, A., Marques-Silva, J.: MUSer2: An efficient MUS extractor. JSAT 8, 123–
128 (2012)

8. Bend́ık, J., Beneš, N., Černá, I., Barnat, J.: Tunable online MUS/MSS enumer-
ation. In: FSTTCS. LIPIcs, vol. 65, pp. 50:1–50:13. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2016)

9. Bend́ık, J., Černá, I.: MUST: minimal unsatisfiable subsets enumeration tool. In:
TACAS (1). LNCS, vol. 12078, pp. 135–152. Springer (2020)

10. Bend́ık, J., Černá, I.: Replication-guided enumeration of minimal unsatisfiable sub-
sets. In: CP. LNCS, vol. 12333, pp. 37–54. Springer (2020)

11. Bend́ık, J., Černá, I.: Rotation based MSS/MCS enumeration. In: LPAR. EPiC
Series in Computing, vol. 73, pp. 120–137. EasyChair (2020)

12. Bend́ık, J., Černá, I., Beneš, N.: Recursive online enumeration of all minimal un-
satisfiable subsets. In: ATVA. LNCS, vol. 11138, pp. 143–159. Springer (2018)

13. Bend́ık, J., Meel, K.S.: Approximate counting of minimal unsatisfiable subsets. In:
CAV (1). LNCS, vol. 12224, pp. 439–462. Springer (2020)

14. Bend́ık, J., Meel, K.S.: Counting maximal satisfiable subsets. In: AAAI (2021 (to
appear))

15. Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable approximate model counter.
In: CP. pp. 200–216 (2013)

16. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Balancing scalability and uniformity in
SAT witness generator. In: DAC. pp. 60:1–60:6. ACM (2014)

17. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Algorithmic improvements in approxi-
mate counting for probabilistic inference: From linear to logarithmic SAT calls. In:
IJCAI. pp. 3569–3576. IJCAI/AAAI Press (2016)

18. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Algorithmic improvements in approxi-
mate counting for probabilistic inference: From linear to logarithmic sat calls. In:
IJCAI (2016)

19. Chen, Z., Toda, S.: The complexity of selecting maximal solutions. Inf. Comput.
119(2), 231–239 (1995)

20. Cohen, O., Gordon, M., Lifshits, M., Nadel, A., Ryvchin, V.: Designers work less
with quality formal equivalence checking. In: Design and Verification Conference
(DVCon). Citeseer (2010)

21. Durand, A., Hermann, M., Kolaitis, P.G.: Subtractive reductions and complete
problems for counting complexity classes. Theor. Comput. Sci. 340(3), 496–513
(2005)

22. Dutra, R., Laeufer, K., Bachrach, J., Sen, K.: Efficient sampling of SAT solutions
for testing. In: ICSE. pp. 549–559. ACM (2018)

23. Fichte, J.K., Hecher, M., Hamiti, F.: The model counting competition 2020. arXiv
preprint arXiv:2012.01323 (2020)

24. Han, B., Lee, S.: Deriving minimal conflict sets by cs-trees with mark set in diag-
nosis from first principles. IEEE Trans. Systems, Man, and Cybernetics, Part B
29(2), 281–286 (1999)

25. Hunter, A., Konieczny, S.: Measuring inconsistency through minimal inconsistent
sets. In: KR. pp. 358–366. AAAI Press (2008)

26. Ignatiev, A., Janota, M., Marques-Silva, J.: Quantified maximum satisfiability.
Constraints An Int. J. 21(2), 277–302 (2016)

27. Ignatiev, A., Previti, A., Liffiton, M.H., Marques-Silva, J.: Smallest MUS extrac-
tion with minimal hitting set dualization. In: CP. LNCS, vol. 9255, pp. 173–182.
Springer (2015)

28. Ivrii, A., Malik, S., Meel, K.S., Vardi, M.Y.: On computing minimal independent
support and its applications to sampling and counting. Constraints 21(1) (2016)

29. Jabbour, S., Raddaoui, B., Sais, L.: Inconsistency-based ranking of knowledge
bases. In: ICAART (2). pp. 414–419. SciTePress (2015)

30. Jannach, D., Schmitz, T.: Model-based diagnosis of spreadsheet programs: a
constraint-based debugging approach. Autom. Softw. Eng. 23(1), 105–144 (2016)

31. Janota, M., Marques-Silva, J.: On deciding MUS membership with QBF. In: CP.
LNCS, vol. 6876, pp. 414–428. Springer (2011)

32. de Kleer, J., Williams, B.C.: Diagnosing multiple faults. Artif. Intell. 32(1), 97–130
(1987)

33. Kleine Büning, H., Kullmann, O.: Minimal unsatisfiability and autarkies. In: Hand-
book of Satisfiability, FAIA, vol. 185, pp. 339–401. IOS Press (2009)

34. Kullmann, O.: Investigations on autark assignments. Discrete Applied Mathemat-
ics 107(1-3), 99–137 (2000)

35. Kullmann, O.: Constraint satisfaction problems in clausal form: Autarkies and
minimal unsatisfiability. Electronic Colloquium on Computational Complexity
(ECCC) 14(055) (2007)

36. Kullmann, O., Marques-Silva, J.: Computing maximal autarkies with few and sim-
ple oracle queries. In: SAT. LNCS, vol. 9340, pp. 138–155. Springer (2015)

37. Liberatore, P.: Redundancy in logic I: CNF propositional formulae. Artif. Intell.
163(2), 203–232 (2005)

38. Liffiton, M.H., Mneimneh, M.N., Lynce, I., Andraus, Z.S., Marques-Silva, J.,
Sakallah, K.A.: A branch and bound algorithm for extracting smallest minimal
unsatisfiable subformulas. Constraints An Int. J. 14(4), 415–442 (2009)

39. Liffiton, M.H., Previti, A., Malik, A., Marques-Silva, J.: Fast, flexible MUS enu-
meration. Constraints 21(2), 223–250 (2016)

40. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable
subsets of constraints. JAR 40(1), 1–33 (2008)

41. Luo, J., Liu, S.: Accelerating MUS enumeration by inconsistency graph partition-
ing. Science China Information Sciences 62(11), 212104 (2019)

42. Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On computing
minimal correction subsets. In: IJCAI. pp. 615–622. IJCAI/AAAI (2013)

43. Marques-Silva, J., Ignatiev, A., Morgado, A., Manquinho, V.M., Lynce, I.: Efficient
autarkies. In: ECAI. FAIA, vol. 263, pp. 603–608. IOS Press (2014)

44. Marques-Silva, J., Janota, M.: On the query complexity of selecting few minimal
sets. Electronic Colloquium on Computational Complexity (ECCC) 21, 31 (2014)

45. Menćıa, C., Kullmann, O., Ignatiev, A., Marques-Silva, J.: On computing the union
of MUSes. In: SAT. LNCS, vol. 11628, pp. 211–221. Springer (2019)

46. Monien, B., Speckenmeyer, E.: Solving satisfiability in less than 2n steps. Discrete
Applied Mathematics 10(3), 287–295 (1985)

47. Mu, K.: Formulas free from inconsistency: An atom-centric characterization in
priest’s minimally inconsistent LP. J. Artif. Intell. Res. 66, 279–296 (2019)

48. Mu, K.: Formulas free from inconsistency: An atom-centric characterization in
priest’s minimally inconsistent LP (extended abstract). In: IJCAI. pp. 5090–5094.
ijcai.org (2020)

49. Mu, K., Liu, W., Jin, Z.: A general framework for measuring inconsistency through
minimal inconsistent sets. Knowl. Inf. Syst. 27(1), 85–114 (2011)

50. Mu, K., Liu, W., Jin, Z.: Measuring the blame of each formula for inconsistent
prioritized knowledge bases. J. Log. Comput. 22(3), 481–516 (2012)

51. Nadel, A., Ryvchin, V., Strichman, O.: Accelerated deletion-based extraction of
minimal unsatisfiable cores. JSAT 9, 27–51 (2014)

52. Narodytska, N., Bjørner, N., Marinescu, M., Sagiv, M.: Core-guided minimal cor-
rection set and core enumeration. In: IJCAI. pp. 1353–1361. ijcai.org (2018)

53. Oh, Y., Mneimneh, M.N., Andraus, Z.S., Sakallah, K.A., Markov, I.L.: AMUSE: A
minimally-unsatisfiable subformula extractor. In: DAC. pp. 518–523. ACM (2004)

54. Piotrow, M.: Uwrmaxsat: Efficient solver for maxsat and pseudo-boolean problems.
In: 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence
(ICTAI). pp. 132–136. IEEE Computer Society, Los Alamitos, CA, USA (nov 2020)

55. Plazar, Q., Acher, M., Perrouin, G., Devroey, X., Cordy, M.: Uniform sampling of
SAT solutions for configurable systems: Are we there yet? In: ICST. pp. 240–251.
IEEE (2019)

56. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987)

57. Sang, T., Bacchus, F., Beame, P., Kautz, H.A., Pitassi, T.: Combining component
caching and clause learning for effective model counting. In: SAT (2004)

58. Sang, T., Beame, P., Kautz, H.A.: Performing bayesian inference by weighted model
counting. In: AAAI. pp. 475–482. AAAI Press / The MIT Press (2005)

59. Sharma, S., Roy, S., Soos, M., Meel, K.S.: GANAK: A scalable probabilistic exact
model counter. In: IJCAI. pp. 1169–1176. ijcai.org (2019)

60. Soos, M., Meel, K.S.: BIRD: engineering an efficient CNF-XOR SAT solver and
its applications to approximate model counting. In: AAAI. pp. 1592–1599. AAAI
Press (2019)

61. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: SAT. LNCS, vol. 5584, pp. 244–257. Springer (2009)

62. Sperner, E.: Ein satz über untermengen einer endlichen menge. Mathematische
Zeitschrift 27(1), 544–548 (1928)

63. Stockmeyer, L.J.: The complexity of approximate counting (preliminary version).
In: STOC. pp. 118–126. ACM (1983)

64. Stuckey, P.J., Sulzmann, M., Wazny, J.: Interactive type debugging in haskell. In:
Haskell. pp. 72–83. ACM (2003)

65. Thimm, M.: On the evaluation of inconsistency measures. Measuring Inconsistency
in Information 73 (2018)

66. Thurley, M.: sharpsat - counting models with advanced component caching and
implicit BCP. In: SAT. LNCS, vol. 4121, pp. 424–429. Springer (2006)

67. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J.
Comput. 8(3), 410–421 (1979)

68. Wieringa, S.: Understanding, improving and parallelizing MUS finding using model
rotation. In: CP. LNCS, vol. 7514, pp. 672–687. Springer (2012)

69. Xiao, G., Ma, Y.: Inconsistency measurement based on variables in minimal un-
satisfiable subsets. In: ECAI. Frontiers in Artificial Intelligence and Applications,
vol. 242, pp. 864–869. IOS Press (2012)

	Counting Minimal Unsatisfiable Subsets

