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Abstract

We revisit the well-studied problem of estimating the Shannon entropy of a probability
distribution, now given access to a probability-revealing conditional sampling oracle. In this
model, the oracle takes as input the representation of a set S, and returns a sample from the
distribution obtained by conditioning on S, together with the probability of that sample in
the distribution. Our work is motivated by applications of such algorithms in Quantitative
Information Flow analysis (QIF) in programming-language-based security. Here, information-
theoretic quantities capture the effort required on the part of an adversary to obtain access to
confidential information. These applications demand accurate measurements when the entropy
is small. Existing algorithms that do not use conditional samples require a number of queries
that scale inversely with the entropy, which is unacceptable in this regime, and indeed, a lower
bound by Batu et al. (STOC 2002) established that no algorithm using only sampling and
evaluation oracles can obtain acceptable performance. On the other hand, prior work in the
conditional sampling model by Chakraborty et al. (SICOMP 2016) only obtained a high-order

polynomial query complexity, O(m
7

ε8 log 1
δ ) queries, to obtain additive ε-approximations on a

domain of size O(2m); note furthermore that additive approximations are also unacceptable for
such applications. No prior work could obtain polynomial-query multiplicative approximations
to the entropy in the low-entropy regime.

We obtain multiplicative (1+ε)-approximations using onlyO(mε2 log 1
δ ) queries to the probability-

revealing conditional sampling oracle. Indeed, moreover, we obtain small, explicit constants, and
demonstrate that our algorithm obtains a substantial improvement in practice over the previous
state-of-the-art methods used for entropy estimation in QIF.

1 Introduction

We consider the problem of estimating the entropy of a probability distribution D over a discrete
domain Ω of size 2m. Motivated by applications in quantitative information flow analysis (QIF),
a rigorous approach to quantitatively measure confidentiality [BKR09, Smi09, VEB+16], we seek
multiplicative estimates of the (Shannon) entropy in the low-entropy regime [BKR09, CCH11,
PMTP12, Smi09]. Indeed, in QIF, one would ideally like to certify that the information leakage is

∗EntropyEstimation is available at https://github.com/meelgroup/entropyestimation. A preliminary version of
this work appears at International Conference on Computer-Aided Verification, CAV, 2022. The names of authors
are sorted alphabetically and the order does not reflect contribution.
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exponentially small; even a simple password checker that reports “incorrect password” leaks such
an exponentially small amount of information about the password.

It is immediate that mere sample access to the distribution is inadequate for any efficient
algorithm to certify that the entropy is so small: distributions with entropies that are vastly
different in the multiplicative sense may nevertheless have negligible statistical distance and thus be
indistinguishable (cf. Batu et al. [BDKR05] and, in particular, Valiant and Valiant [VV11] for strong
lower bounds). We thus consider a conditional sampling oracle, as introduced by Chakraborty et
al. [CFGM16] and independently by Canonne et al. [CRS15], with probability revealing samples, as
introduced by Onak and Sun [OS18]. A conditional sampling oracle, COND, for a distribution D
takes a representation of a set S and returns a sample drawn from D conditioned on S. To extend
the oracle to have probability-revealing samples means that in addition to the sample x, we obtain
the probability of x in D. Note that this oracle, referred to as PROC henceforth, can be simulated
by an evaluation oracle for D together with a conditional sampling oracle for D.1

Using probability-revealing samples (described as a combined sampling-and-evaluation model),
Guha et al. [GMV09] obtained aO( m

ε2H
log 1

δ )-query algorithm for multiplicative (1+ε)-approximations
of the entropy H for distributions on a 2m-element domain, with confidence 1− δ, which is optimal
in this model: [BDKR05] observe that this indeed scales badly for exponentially small H. In the
conditional sampling model, Chakraborty et al. obtained a O( 1

ε8
m7 log 1

δ )-query algorithm, for an
additive ε-approximation of the entropy. Note that when the entropy is so small, such additive ap-
proximations would require prohibitively small values of ε to provide useful estimates. In summary,
all previous algorithms either

• used a superpolynomial number of queries in the bit-length of the elements m,

• used a number of queries scaling with 1/H, or

• obtained additive estimates

thus rendering them incapable of obtaining useful estimates in the low-entropy regime.

1.1 Our contribution

The primary contribution of our work is the first algorithm to obtain (1+ε)-multiplicative estimates
using a polynomial number of queries in the bit-length m and approximation parameter ε, with no
dependence on H. Indeed, we use only O(m

ε2
log 1

δ ) samples given access to PROC. Moreover, we
obtain explicit constant factors that are sufficiently small that our algorithms are useful in practice:
we have experiments demonstrating that our algorithm can obtain estimates for benchmarks that
are far beyond the reach of the existing tools for computing the entropy.

Our algorithm is a simple median-of-means estimator. To obtain multiplicative estimates, we use
second-moment methods, hence we need bounds on the ratio of the variance of the self-information
to the square of the entropy. Indeed, Batu et al. [BDKR05] considered an approach that is similarly
based on the second moments, which encounters two main issues: The first issue, as discussed
above, is that if the entropy is small, this ratio may be very large. The second issue is that
bounding the variance and the entropy separately is not sufficient to obtain the linear dependence

1An oracle that returns the conditional probability of x in D conditioned on S might seem at least as natural, but
it is not clear whether such an oracle can be simulated by the usual evaluation and conditional sampling oracles. In
any case, our algorithm can be easily adapted to this alternative model.
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on m: the variance of the self-information may be quadratic in m, and this is tight, as also shown
by Batu et al. Our main technical contribution thus lies in how we bound this ratio: we use
tight, explicit bounds in the high-entropy regime that obtain a linear dependence on m, together
with a “win-win” strategy for using the conditional samples. Namely, we observe that when we
condition on avoiding the high-probability element that dominates the distribution, either we obtain
a conditional distribution with high entropy, in which case we can use the aforementioned bounds,
or else – observing that the self-information w.r.t. the original distribution is quite large for all
such elements – we can obtain a bound on the variance directly that is similarly small, and in
particular has the same linear dependence on m. We remark that while Guha et al. [GMV09]
obtained estimates with the same linear dependence on m in the high-entropy case, they acheived
this by dropping any samples that have high self-information and applying a Chernoff bound to
the remaining, bounded samples. Since in the low-entropy case the samples generally have high
self-information, it is unclear how one would extend their technique to handle the low-entropy case
as we do here.

It remains an interesting open question whether or not our algorithm is optimal. Chakraborty
et al. obtained a Ω(

√
logm) lower bound for the conditional sampling model; we are not aware

of any lower bounds for the combined, conditional probability-revealing sampling model. Also,
Acharya et al. [ACK18] obtained a Õ( logm

ε3
)-query algorithm for the related problem of (1 + ε)-

multiplicative support size estimation in the conditional sampling model. Support size estimation
is generally easier than entropy estimation given access to an evaluation oracle – indeed, additive
ε ·2m-approximations are possible with only O( 1

ε2
) queries – but they suffer from similar issues with

distributions with a light “tail” (cf. Goldreich [Gol19]). Conceivably, conditional sampling might
enable a similarly substantial reduction in the query complexity of entropy estimation as well.

1.2 On the application to Quantitative Information Flow

As mentioned at the outset, our work is motivated by the needs of quantitative information flow
(QIF) applications. It is therefore an important question whether the PROC oracle model is realistic.
To this end, we demonstrate that PROC can indeed be efficiently implemented using the available
tools in automated reasoning, and our technique can be employed in such QIF analyses.

The standard recipe for using the QIF framework is to measure the information leakage from
an underlying program Π as follows. In a simplified model, a program Π maps a set of con-
trollable inputs (C) and secret inputs (I) to outputs (O) observable to an attacker. The at-
tacker is interested in inferring I based on the output O. A diverse array of approaches have
been proposed to efficiently model Π, with techniques relying on a combination of symbolic anal-
ysis [PMTP12], static analysis [CHM07], automata-based techniques [ABB15, AEB+18, Bul19],
SMT-based techniques [PM14], and the like. For each, the core underlying technical problem is
to determine the leakage of information for a given observation. We often capture this leakage
using entropy-theoretic notions, such as Shannon entropy [BKR09, CCH11, PMTP12, Smi09] or
min-entropy [BKR09, MS11, PMTP12, Smi09]. In this work, we focus on computing Shannon
entropy.

The information-theoretic underpinnings of QIF analyses allow an end-user to link the computed
quantities with the probability of an adversary successfully guessing a secret, or the worst-case com-
putational effort required for the adversary to infer the underlying confidential information. Conse-
quently, QIF has been applied in diverse use-cases such as software side-channel detection [KB07],
inferring search-engine queries through auto-complete responses sizes [CWWZ10], and measuring
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the tendency of Linux to leak TCP-session sequence numbers [ZQRZ18].
In our experiments, we focus on demonstrating that we can compute the entropy for programs

modeled by Boolean formulas; nevertheless, our techniques are general and can be extended to
other models such as automata-based frameworks. Let a formula ϕ(U, V ) capture the relationship
between U and V such that for every valuation to U there is at most one valuation to V such that
ϕ is satisfied; one can view U as the set of inputs and V as the set of outputs. Let m = |V | and
n = |U |. Let p be a probability distribution over {0, 1}V such that for every assignment σ to V ,

i.e., σ : V 7→ {0, 1}, we have pσ = |sol(ϕ(V 7→σ))|
|sol(ϕ))↓U | , where sol(ϕ(V 7→ σ)) denotes the set of solutions

of ϕ(V 7→ σ) and sol(ϕ)) ↓U denotes the set of solutions of ϕ projected to U . Then, the entropy of
ϕ is H(ϕ) =

∑
σ∈2V

pσ log 1
pσ

.

Indeed, the problem of computing the entropy of a distribution sampled by a given circuit is
closely related to the EntropyDifference problem considered by Goldreich and Vadhan [GV99],
and shown to be SZK-complete. We therefore do not expect to obtain polynomial-time algorithms
for this problem. The techniques that have been proposed to compute H(ϕ) exactly compute pσ
for each σ. Observe that computing pσ is equivalent to the problem of model counting, which
seeks to compute the number of solutions of a given formula. Therefore, the exact techniques
require O(2m) model-counting queries [BPFP17, ESBB19, Kle12]; therefore, such techniques often
do not scale for large values of m. Accordingly, the state of the art often relies on sampling-
based techniques that perform well in practice but can only provide lower or upper bounds on the
entropy [KRB20, RKBB19]. As is often the case, techniques that only guarantee lower or upper
bounds can output estimates that can be arbitrarily far from the ground truth. Thus, this setting
is an appealing target for PAC-style, high-probability multiplicative approximation guarantees. We
remark that Köpf and Rybalchenko [KR10] used Batu et al.’s [BDKR05] lower bounds to conclude
that their scheme could not be improved without usage of structural properties of the program. In
this context, our paper continues the direction alluded by Köpf and Rybalchenko and designs the
first efficient multiplicative approximation scheme by utilizing white-box access to the program.

Indeed, our algorithm obtains an estimate that is guaranteed to lie within a (1 ± ε)-factor of
H(ϕ) with confidence at least 1 − δ. Once again, we stress that we obtain such a multiplicative
estimate even when H(ϕ) is very small, as in the case of a password-checker as described above.

Sampling and counting satisfying assignments to formulas are, of course, computationally in-
tractable problems in the worst case. Nevertheless, systems for solving these problems in practice
have been developed, that frequently achieve reasonable performance in spite of their lack of running
time guarantees [Thu06, SGRM18, AHT18, GSRM19, DV20]. Still, their invocation is relatively
expensive; hence, the situation is an excellent match to the property testing model, in which we
primarily count the number of such queries as the complexity measure of interest; we detail in
Section 4 how probability-revealing conditional sampling oracle, PROC, can be implemented with
two calls to a model counter and one call to a sampler.

We further observe that the knowledge of distribution p defined by the underlying Boolean
formula ϕ allows us to reduce the number of queries to PROC from O(m

ε2
) to O(min(m,n)

ε2
). Therefore,

in contrast to the algorithms used in practice and prior work in the property testing literature, our
algorithm makes only O(min(m,n)

ε2
) counting and sampling queries even though the support of the

distribution specified by ϕ can be of size 2m.
To illustrate the practical efficiency of our algorithm, we implement a prototype, EntropyEstimation,

that employs a state-of-the-art counter for model-counting queries, GANAK [SRSM19], and SPUR [AHT18]
for sampling queries. Our empirical analysis demonstrates that EntropyEstimation is able to handle
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benchmarks that clearly lie beyond the reach of the exact techniques. We stress again that while we
present EntropyEstimation for programs modeled as a Boolean formula, our analysis applies other
approaches, such as automata-based approaches, modulo access to the appropriate sampling and
counting oracles.

1.3 Organization of the rest of the paper

The rest of the paper is organized as follows: we present the notations and preliminaries in Section 2.
Next, we present an overview of EntropyEstimation including a detailed description of the algorithm
and an analysis of its correctness in Section 3. We then describe our experimental methodology and
discuss our results with respect to the accuracy and scalability of EntropyEstimation in Section 4.
Finally, we conclude in Section 5.

2 Preliminaries

Let Ω be the universe and a probability distribution D over Ω is a non-negative function D : Ω 7→
[0, 1] such that

∑
x∈ΩD(x) = 1. Let D be a fixed distribution over Ω of size 2m.

Two oracles often studied in the property testing literature are conditioning, denoted by COND,
and evaluation, denoted by EVAL. A conditioning oracle for a distribution D, COND, takes as input
a set S ⊆ Ω and returns x such that the probability x is returned is D(x)∑

y∈S D(y) . An evaluation oracle

for D, EVAL, respontds to a query x ∈ Ω with D(x).
A probability-revealing conditional sampling oracle for D, PROC, when queried with a set S ⊆ Ω,

returns a tuple (x,D(x)) such that x ∈ S and the probability x is returned is D(x)∑
y∈S D(y) . Note that

access to the probability-revealing conditional sampling oracle, PROC, is indeed weaker than access
to both COND and EVAL, as calling EVAL on the x returned by COND permits simulation of
PROC, but PROC does not permit access to D(x) for an arbitrary x.

3 EntropyEstimation: Efficient Estimation of H(D)

In this section, we focus on the primary technical contribution of our work: an algorithm, called
EntropyEstimation, that returns an (ε, δ) estimate of H(D). We first provide a detailed technical
overview of the design of EntropyEstimation in Section 3.1, then provide a detailed description
of the algorithm, and finally, provide the accompanying technical analysis of the correctness and
complexity of EntropyEstimation.

3.1 Technical Overview

At a high level, EntropyEstimation uses a median of means estimator, i.e., we first estimate H(D)
to within a (1 ± ε)-factor with probability at least 5

6 by computing the mean of the underlying
estimator and then take the median of many such estimates to boost the probability of correctness
to 1− δ. Recall |Ω| = 2m.

Let us consider a random variable Z over the domain Ω with distribution D and consider the self-
information function g : Ω→ [0,∞), given by g(x) = log( 1

D(x)). Observe that the entropy H(D) =

E[g(Z)]. Therefore, a simple estimator would be to sample Z using our oracle and then estimate the
expectation of g(Z) by a sample mean. In their seminal work, Batu et al. [BDKR05] observed that
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the variance of g(Z), denoted by variance[g(Z)], can be at most m2. The required number of sample

queries, based on a straightforward analysis, would be Θ
(
variance[g(Z)]
ε2·(E[g(Z)])2

)
= Θ

( ∑
D(x) log2 1

D(x)

(
∑
D(x) log 1

D(x)
)2

)
.

However, E[g(Z)] = H(D) can be arbitrarily close to 0, and therefore, this does not provide a
reasonable upper bound on the required number of samples.

To address the lack of lower bound on H(D), we observe that for D to have H(D) < 1, there
must exist xhigh such that D(xhigh) > 1

2 . We then observe that given access to PROC, we can
identify such a x with high probability, thereby allowing us to consider the two cases separately:
(A) H(D) > 1 and (B) H(D) < 1. Now, for case (A), we could use Batu et al’s bound for

variance[g(Z)] and obtain an estimator that would require Θ
(
variance[g(Z)]
ε2·(E[g(Z)])2

)
queries to PROC. It

is worth remarking that the bound variance[g(Z)] ≤ m2 is indeed tight as a uniform distribution

over D would achieve the bound. Therefore, we instead focus on the expression variance[g(Z)]
(E[g(Z)])2 and

prove that for the case when E[g(Z)] = H(D) > h, we can upper bound variance[g(Z)]
(E[g(Z)])2 by (1+o(1))·m

h·ε2 ,

thereby reducing the complexity from m2 to m (Observe that we have H(D) > 1, that is, we can
take h = 1).

Now we return to the case (B) wherein we have identified xhigh with D(xhigh) > 1
2 . Let

r = D(xhigh) and Hrem =
∑

y∈Ω\xhigh
D(y) log 1

D(y) . Note that H(D) = r log 1
r +Hrem. Therefore, we

focus on estimating Hrem. To this end, we define a random variable T that takes values in Ω\{xhigh}
such that Pr[T = y] = D(y)

1−r . Using the function g defined above, we have Hrem = (1− r) · E[g(T )].
Again, we have two cases, depending on whether Hrem ≥ 1 or not; if it is, then we can bound the
ratio variance[g(T )]

E[g(T )]2
similarly to case (A). If not, we observe that the denominator is at least 1 for

r ≥ 1/2. And, when Hrem is so small, we can upper bound the numerator by (1 + o(1))m, giving

overall variance[g(T )]
(E[g(T )])2 ≤ (1 + o(1)) · 1

ε2
·m. We can thus estimate Hrem using the median of means

estimator.

3.2 Algorithm Description

EntropyEstimation takes a tolerance parameter ε, a confidence parameter δ as input, and returns
an estimate ĥ of the entropy H(D), that is guaranteed to lie within a (1± ε)-factor of H(D) with
confidence at least 1− δ. Before presenting the technical details of EntropyEstimation, we will first
discuss the key subroutine SampleEst in EntropyEstimation.

Algorithm 1 SampleEst(S̄, t, δ)

1: L ← [ ]
2: T ← d9

2 log 2
δ e

3: for i = 1, . . . , T do
4: est← 0
5: for j = 1, . . . , t do
6: (y, r)← PROC(Ω \ S̄)
7: est← est+ log(1/r)

8: L.Append( estt )

9: return Median(L)

Algorithm 1 presents the subroutine SampleEst, which takes as input an element x; the number
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of required samples, t; and a confidence parameter δ, and returns a median-of-means estimate of
Hrem. Algorithm 1 starts off by computing the value of T , the required number of repetitions to
ensure at least 1 − δ confidence for the estimate. The algorithm has two loops— one outer loop
(Lines 3-8), and one inner loop (Lines 5-7). The outer loop runs for d9

2 log(2
δ )e rounds, where in each

round, Algorithm 1 updates a list L with the mean estimate, est. In the inner loop, in each round,
Algorithm 1 updates the value of est : Line 6 invokes PROC to draw sample from D conditioned
on the set Ω \ {x}. At line 7, est is updated with log(1

r ), and at line 8, the final est is added to L.
Finally, at line 9, Algorithm 1 returns the median of L.

We now return to EntropyEstimation; Algorithm 2 presents the proposed algorithmic framework
EntropyEstimation.

Algorithm 2 EntropyEstimation(ε, δ)

1: m← log |Ω|
2: for i = 1, . . . , dlog(10/δ)e do
3: (x, r)← PROC(Ω)
4: if r > 1

2 then
5: t← 6

ε2
· (m+ log(m+ logm+ 2.5))

6: ĥrem ← SampleEst({x}, t, 0.9 · δ)
7: ĥ← (1− r)ĥrem + r log(1

r )

8: return ĥ
9: t← 6

ε2
· (n− 1)

10: ĥ← SampleEst(∅, t, 0.9 · δ)
11: return ĥ

Algorithm 2 attempts to determine whether there exists (x,D(x)) such that D(x) > 1/2 or not
by iterating over lines 2-8 for dlog(10/δ)e rounds. Line 3 draws a sample (x, r = D(x)). Line 4
chooses one of the two paths based on the value of r:

1. If the value of r turns out to be greater than 1/2, the value of required number of samples,
t, is calculated as per the calculation shown at line 5. At line 6, the subroutine SampleEst is
called to estimate ĥrem. Finally, it computes the estimate ĥ at line 7.

2. If the value of r is at most 1/2 in every round, the number of samples we use, t, is calculated
as per the calculation shown at line 9. At line 10, the subroutine SampleEst is called with
appropriate arguments to compute the estimate ĥ.

3.3 Theoretical Analysis

Theorem 1. Given access to PROC for a distribution D with m = log |Ω| ≥ 2, a tolerance pa-
rameter ε > 0, and confidence parameter δ > 0, the algorithm EntropyEstimation returns ĥ such
that

Pr
[
(1− ε)H(D) ≤ ĥ ≤ (1 + ε)H(D)

]
≥ 1− δ

We first analyze the median-of-means estimator computed by SampleEst.
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Lemma 2. Given a set S̄, access to PROC for a distribution D, an accuracy parameter ε > 0, a
confidence parameter δ > 0, and a batch size t ∈ N for which

1

tε2
·

 ∑
y∈Ω\S̄ D(y|Ω \ S̄)(log 1

D(y))2(∑
y∈Ω\S̄ D(y|Ω \ S̄) log 1

D(y)

)2 − 1

 ≤ 1/6

the algorithm SampleEst returns an estimate ĥ such that with probability 1− δ,

ĥ ≤ (1 + ε)
∑
y∈Ω\S̄

D(y|Ω \ S̄) log
1

D(y)
and

ĥ ≥ (1− ε)
∑
y∈Ω\S̄

D(y|Ω \ S̄) log
1

D(y)
.

Proof. Let Rij be the random value taken by r in the ith iteration of the outer loop and jth
iteration of the inner loop. We observe that {Rij}(i,j) are a family of i.i.d. random variables. Let

Ci =
∑t

j=1
1
t log 1

Rij
be the value appended to C at the end of the ith iteration of the loop. Clearly

E[Ci] = E[log 1
Rij

]. Furthermore, we observe that by independence of the Rij ,

variance[Ci] =
1

t
variance[log

1

Rij
] =

1

t
(E[(logRij)

2]− E[log
1

Rij
]
2

).

By Chebyshev’s inequality, now,

Pr

[
|Ci − E[log

1

Rij
]| > εE[log

1

Rij
]

]
<

variance[Ci]

ε2E[log 1
Rij

]
2

=
E[(logRij)

2]− E[log 1
Rij

]
2

t · ε2E[log 1
Rij

]
2

≤ 1/6

by our assumption on t.
Let Li ∈ {0, 1} be the indicator random variable for the event that Ci < E[log 1

Rij
]− εE[log 1

Rij
],

and let Hi ∈ {0, 1} be the indicator random variable for the event that Ci > E[log 1
Rij

]+ εE[log 1
Rij

].

Similarly, since these are disjoint events, Bi = Li + Hi is also an indicator random variable for
the union. So long as

∑T
i=1 Li < T/2 and

∑T
i=1Hi < T/2, we note that the value returned by

SampleEst is as desired. By the above calculation, Pr[Li = 1] + Pr[Hi = 1] = Pr[Bi = 1] < 1/6, and
we note that {(Bi, Li, Hi)}i are a family of i.i.d. random variables. Observe that by Hoeffding’s
inequality,

Pr

[
T∑
i=1

Li ≥
T

6
+
T

3

]
≤ exp(−2T

1

9
) =

δ

2

and similarly Pr
[∑T

i=1Hi ≥ T
2

]
≤ δ

2 . Therefore, by a union bound, the returned value is adequate

with probability at least 1− δ overall.
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The analysis of SampleEst relied on a bound on the ratio of the first and second moments of
the self-information in our truncated distribution. Suppose for all x ∈ Ω, D(x) ≤ 1/2. We observe
that then H(D) ≥

∑
y∈ΩD(y) · 1 = 1. In this case, we can bound the ratio of the second moment

to the square of the entropy as follows.

Lemma 3. Let D : Ω→ [0, 1] be given with
∑

y∈ΩD(y) ≤ 1 and

H =
∑
y∈Ω

D(y) log
1

D(y)
≥ 1.

Then ∑
y∈ΩD(y)(logD(y))2(∑
y∈ΩD(y) log 1

D(y)

)2 ≤
(

1 +
log(m+ logm+ 1.1)

m

)
m.

Similarly, if H ≤ 1 and m ≥ 2,∑
y∈Ω

D(y)(logD(y))2 ≤ m+ log(m+ logm+ 2.5).

Concretely, both cases give a bound that is at most 2m for m ≥ 3; m = 8 gives a bound that
is less than 1.5×m in both cases, m = 64 gives a bound that is less than 1.1×m, etc.

Proof. By induction on the size of the support supp of D, we’ll show that when H ≥ 1, the ratio is
at most log |supp|+ log(log |supp|+ log log |supp|+ 1.1). Recall that we assume |Ω| = 2m. The base
case is when there are only two elements (m = 1), in which case both must have D(x) = 1/2, and
the ratio is uniquely determined to be 1. For the induction step, observe that whenever any subset
of Ω takes value 0 under D, this is equivalent to a distribution with smaller support, for which by
induction hypothesis, we find the ratio is at most

log(|supp| − 1) + log(log(|supp| − 1) + log log(|supp| − 1) + 1.1)

< log |supp|+ log(log |supp|+ log log |supp|+ 1.1).

Consider any value of H(D) = H. With the entropy fixed, we need only maximize the numerator
of the ratio Indeed, we’ve already ruled out a ratio of |supp| for solutions in which any of the
D(y) = 0 for y ∈ supp, and clearly we cannot have any D(y) = 1, so we only need to consider
interior points that are local optima. We use the method of Lagrange multipliers: for some λ, all
D(y) must satisfy log2D(y) + 2 logD(y)− λ(logD(y)− 1) = 0, which has solutions

logD(y) =
λ

2
− 1±

√
(1− λ

2
)2 − λ =

λ

2
− 1±

√
1 + λ2/4.

We note that the second derivatives with respect to D(y) are equal to

2 logD(y)

D(y)
+

2− λ
D(y)

which are negative iff logD(y) < λ
2 − 1, hence we attain local maxima only for the solution

logD(y) = λ
2 − 1 −

√
1 + λ2/4. In other words, there is a single D(y), which by the entropy

constraint, must satisfy |supp|D(y) log 1
D(y) = H which we’ll show gives

D(y) =
H

|supp|(log |supp|
H + log log |supp|

H + ρ)

9



for some ρ ≤ 1.1. For |supp| = 3, we know 1 ≤ H ≤ log 3, and we can verify numerically that

log
(

log 3
H

+log log 3
H

+ρ

log 3
H

)
∈ (0.42, 0.72) for ρ ∈ [0, 1]. Hence, by Brouwer’s fixed point theorem, such a

choice of ρ ∈ [0, 1] exists. For |supp| ≥ 4, observe that |supp|
H ≥ 2, so log

(
log
|supp|
H

+log log
|supp|
H

log
|supp|
H

)
> 0.

For |supp| = 4, log
(

log 4
H

+log log 4
H

+ρ

log 4
H

)
∈ [0, 1], and similarly for all integer values of |supp| up to

15, log

(
log
|supp|
H

+log log
|supp|
H

+1.1

log
|supp|
H

)
< 1.1, so we can obtain ρ ∈ (0, 1.1). Finally, for |supp| ≥ 16, we

have |supp|
H ≤ 2|supp|/2H , and hence

log log
|supp|
H

+ρ

log
|supp|
H

≤ 1, so

|supp|
H(log |supp|

H + log(log |supp|
H + log log |supp|

H + ρ))

|supp|(log |supp|
H + log log |supp|

H + ρ)

≤ H
log |supp|

H + log log |supp|
H + 1

log |supp|
H + log log |supp|

H + ρ

Hence it is clear that this gives H for some ρ ≤ 1. Observe that for such a choice of ρ, using the
substitution above, the ratio we attain is

|supp| ·H
H2 · |supp|(log |supp|

H + log log |supp|
H + ρ)

(
log
|supp|(log |supp|

H + log log |supp|
H + ρ)

H

)2

=
1

H
(log
|supp|
H

+ log(log
|supp|
H

+ log log
|supp|
H

+ ρ))

which is monotone in 1/H, so using the fact that H ≥ 1, we find it is at most

log |supp|+ log(log |supp|+ log log |supp|+ ρ)

which, recalling ρ < 1.1, gives the claimed bound.
For the second part, observe that by the same considerations, when H is fixed,∑

y∈Ω

D(y)(logD(y))2 = H log
1

D(y)

for the unique choice of D(y) for m and H as above, i.e., we will show that for m ≥ 2, it is

H

(
log
|Ω|
H

+ log(log
|Ω|
H

+ log log
|Ω|
H

+ ρ)

)
for some ρ ∈ (0, 2.5). Indeed, we again consider the function

f(ρ) =
log(log |Ω|H + log log |Ω|H + ρ)

log log |Ω|H

,

and observe that for |Ω|/H > 2, f(0) > 0. Now, when m ≥ 2 and H ≤ 1, |Ω|/H ≥ 4. We
will see that the function d(ρ) = f(ρ) − ρ has no critical points for |Ω|/H ≥ 4 and ρ > 0, and
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hence its maximum is attained at the boundary, i.e., at |Ω|H = 4, at which point we see that

f(2.5) < 2.5. So, for such values of |Ω|H , f(ρ) maps [0, 2.5] into [0, 2.5] and hence by Brouwer’s
fixed point theorem again, for all m ≥ 4 and H ≥ 1 some ρ ∈ (0, 2.5) exists for which D(y) =

log |Ω|H + log(log |Ω|H + log log |Ω|H + ρ) gives
∑

y∈ΩD(y) log 1
D(y) = H.

Indeed, d′(ρ) = 1

ln 2(log
|Ω|
H

+log log
|Ω|
H

+ρ) log log
|Ω|
H

− 1, which has a singularity at ρ = − log log |Ω|H −

log log |Ω|H , and otherwise has a critical point at ρ = ln 2

log log
|Ω|
H

− log |Ω|H − log log |Ω|H . Since log |Ω|H ≥ 2

and log log |Ω|H ≥ 1 here, these are both clearly negative.
Now, we’ll show that this expression (for m ≥ 2) is maximized when H = 1. Observe first

that the expression H(m+ log 1
H ) as a function of H does not have critical points for H ≤ 1: the

derivative is m+ log 1
H −

1
ln 2 , so critical points require H = 2m−(1/ ln 2) > 1. Hence we see that this

expression is maximized at the boundary, when H = 1. Similarly, the rest of the expression,

H log(m+ log
1

H
+ log(m+ log

1

H
) + 2.5)

viewed as a function of H, only has critical points for

log(m+ log
1

H
+ log(m+ log

1

H
) + 2.5) =

1
ln 2(1 + 1

m+log 1
H

)

m+ log 1
H + log(m+ log 1

H ) + 2.5

i.e., it requires

(m+ log
1

H
+ log(m+ log

1

H
) + 2.5) log(m+ log

1

H
+ log(m+ log

1

H
) + 2.5)

=
1

ln 2
(1 +

1

m+ log 1
H

).

But, the right-hand side is at most 3
2 ln 2 < 3, while the left-hand side is at least 13. Thus, it also

has no critical points, and its maximum is similarly taken at the boundary, H = 1. Thus, overall,
we find ∑

y∈Ω

D(y)(logD(y))2 ≤ m+ log(m+ logm+ 2.5)

when H ≤ 1 and m ≥ 2.

Although the assignment of probability mass used in the bound did not sum to 1, nevertheless
this bound is nearly tight. For any γ > 0, and letting H = 1 + ∆ where ∆ = 1

logγ(|Ω|−2) , the

following solution attains a ratio of (1− o(1))m1−γ : for any two x∗1, x
∗
2 ∈ Ω, set D(x∗i ) = 1

2 −
ε
2 and

set the rest to ε
|Ω|−2 , for ε chosen below. To obtain

H = 2 · (1

2
− ε

2
) log

2

1− ε
+ (|Ω| − 2) · ε

|Ω| − 2
log
|Ω| − 2

ε

= (1− ε)(1 + log(1 +
ε

1− ε
)) + ε log

|Ω| − 2

ε

11



observe that since log(1 + x) = x
ln 2 + Θ(x2), we will need to take

ε =
∆

log(|Ω| − 2) + log 1−ε
ε − (1 + 1

ln 2) + Θ(ε2)

=
∆

log(|Ω| − 2) + log log(|Ω| − 2) + log 1
∆ − (1 + 1

ln 2)− ε
ln 2 + Θ(ε2)

.

For such a choice, we indeed obtain the ratio

(1− ε) log2 2
1−ε + ε log2 (|Ω|−2)

ε

H2
≥ (1− o(1))m1−γ .

Using these bounds, we are finally ready to prove Theorem 1:

Proof. We first consider the case where no x has D(x) > 1/2; here, the condition in line 6 of
EntropyEstimation never passes, so we return the value obtained by SampleEst on line 12. Note that
we must have H(D) ≥ 1 in this case. So, by Lemma 3,∑

x∈ΩD(x)(logD(x))2(∑
x∈ΩD(x) log 1

D(x)

)2 ≤
(

1 +
log(m+ logm+ 1.1)

m

)
m

and hence, by Lemma 2, using t ≥ 6·(m+log(m+logm+1.1))−1)
ε2

suffices to ensure that the returned ĥ
is satisfactory with probability 1− δ.

Next, we consider the case where some x∗ ∈ Ω has D(x∗) > 1/2. Since the total probability is
1, there can be at most one such x∗. So, in the distribution conditioned on x 6= x∗, i.e., {D′(y)}y∈Ω

that sets D′(x∗) = 0, and D′(x) = D(x)
1−D(x∗) otherwise, we now need to show that t satisfies

1

tε2

(∑
y 6=x∗ D

′(y)(log 1
(1−D(x∗))D′(y))2

(
∑

y 6=x∗ D
′(y) log 1

(1−D(x∗))D′(y))2
− 1

)
<

1

6

to apply Lemma 2. We first rewrite this expression. Letting H =
∑

y 6=x∗ D
′(y) log 1

D′(y) be the
entropy of this conditional distribution,∑

y 6=x∗ D
′(y)(log 1

(1−D(x∗))D′(y))2

(
∑

y 6=x∗ D
′(y) log 1

(1−D(x∗))D′(y))2
=

∑
y 6=x∗ D

′(y)(log 1
D′(y))2 + 2H log 1

1−D(x∗) + (log 1
1−D(x∗))2

(H + log 1
1−D(x∗))2

=

∑
y 6=x∗ D

′(y)(log 1
D′(y))2 −H2

(H + log 1
1−D(x∗))2

+ 1.

There are now two cases depending on whether H is greater than 1 or less than 1. When it is
greater than 1, the first part of Lemma 3 again gives∑

y∈ΩD
′(y)(logD′(y))2

H2
≤ m+ log(m+ logm+ 1.1).

When H < 1, on the other hand, recalling D(x∗) > 1/2 (so log 1
1−D(x∗) ≥ 1), the second part of

Lemma 3 gives that our expression is less than

m+ log(m+ logm+ 2.5))−H2

(H + log 1
1−D(x∗))2

< m+ log(m+ logm+ 2.5).

12



Thus, by Lemma 2,

t ≥ 6 · (m+ log(m+ logm+ 2.5))

ε2

suffices to obtain ĥ such that ĥ ≤ (1+ε)
∑

y 6=x∗
D(y)

1−D(x∗) log 1
D(y) and ĥ ≥ (1−ε)

∑
y 6=x∗

D(y)
1−D(x∗) log 1

D(y) ;

hence we obtain such a ĥ with probability at least 1− 0.9 · δ in line 7, if we pass the test on line 4
of Algorithm 2, thus identifying σ∗. Note that this value is adequate, so we need only guarantee
that the test on line 4 passes on one of the iterations with probability at least 1− 0.1 · δ.

To this end, note that each sample(x) on line 3 is equal to x∗ with probability D(x∗) > 1
2

by hypothesis. Since each iteration of the loop is an independent draw, the probability that the
condition on line 4 is not met after log 10

δ draws is less than (1− 1
2)log 10

δ = δ
10 , as needed.

4 Application to Quantitative Information Flow

We demonstrate the practicality of EntropyEstimation via an application to quantitative information
flow (QIF) analysis, a subject of increasing interest in the software engineering community. We be-
gin by recalling the setting and defining notation that is often employed in the QIF community. We
then discuss how the algorithm EntropyEstimation can be implemented in practice and demonstrate
the empirical effectiveness of EntropyEstimation.

4.1 QIF Formulation

Notation

We use lower case letters (with subscripts) to denote propositional variables and upper case letters
to denote a subset of variables. A literal is a boolean variable or its negation. We write V ϕ(U, V ) to
denote a formula over blocks of variables U = {u1, · · · , un} and V = {v1, · · · , vm}. For notational
clarity, we use ϕ to refer to ϕ(U, V ) when clear from the context. We denote V ars(ϕ) as the set of
variables appearing in ϕ, i.e. V ars(ϕ) = U ∪ V

A satisfying assignment or solution of a formula ϕ is a mapping τ : V ars(ϕ)→ {0, 1}, on which
the formula evaluates to True. We denote the set of all the solutions of ϕ as sol(ϕ). The problem
of model counting is to compute |sol(ϕ)| for a given formula ϕ. An uniform sampler outputs a
solution y ∈ sol(ϕ) such that Pr[y is output] = 1

|sol(ϕ)| .

For P ⊆ V ars(ϕ), τ↓P represents the truth values of variables in P in a satisfying assignment τ
of ϕ. For P ⊆ V ars(ϕ), we define sol(ϕ)↓P as the set of solutions of ϕ projected on P. Projected
model counting and uniform sampling are defined analogously using sol(ϕ)↓P instead of sol(ϕ), for
a given projection set P ⊆ V ars(ϕ).

We say that ϕ is a circuit formula if for all assignments τ1, τ2 ∈ sol(ϕ), we have τ1↓U = τ2↓U =⇒
τ1 = τ2. For a circuit formula ϕ(U, V ) and for σ : V 7→ {0, 1}, we define pσ = |sol(ϕ(V 7→σ))|

|sol(ϕ)↓U | .

Given a circuit formula ϕ(U, V ), we define the entropy of ϕ, denoted by H(ϕ) as follows: H(ϕ) =
−
∑

σ∈2V pσ log(pσ).

Oracles based on Projected Counting and Sampling

We now discuss how we can implement the oracles, EVAL, COND, and PROC given access to
counters and uniform samplers. For σ ∈ 2V , in order to compute pσ, we make two queries to a
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model counter to compute the numerator and denominator respectively. To compute the numerator,
we invoke the counter on the formula ϕ(V 7→ σ) and we compute the denominator by invoking it
on the formula ϕ with the projection set P set to U .

In order to sample σ ∈ 2V with probability pσ, given access to a uniform sampler, we can
simply first sample τ ∈ sol(ϕ) uniformly at random, and then output σ = τ↓V , which ensures
Pr[σ is output] = pσ. To condition on a set S in Boolean formulas, we first construct a formula ψ
such that sol(ψ) = S and then invoke the sampler/counters on the formula ϕ ∧ ψ.

Therefore, given access to a projected counter and sampler, we can implement PROC by a query
to a uniform sampler followed by two queries to a model counter. Observe that the denominator
in the computation of pσ is identical for all σ, therefore, from the view of practical efficiency, we
can save the denominator in memory and reuse it for all the subsequent calls.

QIF Modeling

A program Π maps a set of controllable inputs (C) and secret inputs (I) to outputs (O) observable
to an attacker. The attacker is interested in inferring I based on the output O. It is standard in
the security community to employ circuit formulas to model such programs. To this end, we will
focus on the case where the given program Π is modeled using a circuit formula ϕ(U, V ).

A straightforward adaptation of EntropyEstimation would give us an approximation scheme with
O(m

ε2
log 1

δ ) model counting and sampling queries. While the developments in the past decade has
led to significant improvements in the runtime performance of counters and samplers, it is of course
still desirable to reduce the query complexity.

We observe that in this model, in which we have access to ϕ, we can infer further properties of
the distribution. In particular, for all σ ∈ 2V , we have pσ ≥ 1/2|U |. This gives us another bound
on the relative variance of the self information:

Lemma 4. Let {pσ ∈ [1/2|U |, 1]}σ∈2V be given. Then,∑
σ∈2V

pσ(log pσ)2 ≤ |U |
∑
σ∈2V

pσ log
1

pσ

Proof. We observe simply that∑
σ∈2V

pσ(log pσ)2 ≤ log 2|U |
∑
σ∈2V

pσ log
1

pσ
= |U |

∑
σ∈2V

pσ log
1

pσ
.

The above bound allow us to improve the sample complexity of EntropyEstimation fromO(m
ε2

log 1
δ )

to O(min(m,n)
ε2

log 1
δ ). To this end, we make two modifications to EntropyEstimation, as follows:

1. line 5 is modified to t← 6
ε2
·min

{
n

2 log 1
1−r

,m+ log(m+ logm+ 2.5)

}
2. line 9 is modified to t← 6

ε2
· (min {n,m+ log(m+ logm+ 1.1)} − 1)

Corollary 4.1. Given access to a circuit formula ϕ with |V | ≥ 2, a tolerance parameter ε > 0,
and confidence parameter δ > 0, the modification of EntropyEstimation for circuit formulas returns
ĥ such that

Pr
[
(1− ε)H(ϕ) ≤ ĥ ≤ (1 + ε)H(ϕ)

]
≥ 1− δ
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Proof. The proof is very similar to the proof of Theorem 1, but we now make use of the bound in
Lemma 4: specifically, in the case where there is no σ occurring with probability greater than 1/2,
Lemma4 together with Lemma 3 gives∑

σ∈2V pσ(log pσ)2(∑
σ∈2V pσ log 1

pσ

)2 ≤ min

{
|U |,

(
1 +

log(|V |+ log |V |+ 1.1)

|V |

)
|V |
}

and hence, by Lemma 2, using t ≥ 6·min{|U |,|V |+log(|V |+log |V |+1.1)}−1)
ε2

indeed suffices to ensure that

the returned ĥ is satisfactory with probability 1− δ.
Meanwhile, in the case where such a dominating element σ∗ exists, letting H =

∑
σ 6=σ∗ p

′
σ log 1

p′σ
be the entropy of the distribution conditioned on avoiding σ∗, we note that we had obtained∑

σ 6=σ∗ p
′
σ(log 1

(1−pσ∗ )p′σ
)2

(
∑

σ 6=σ∗ p
′
σ log 1

(1−pσ∗ )p′σ
)2

=

∑
σ 6=σ∗ p

′
σ(log 1

p′σ
)2 −H2

(H + log 1
1−pσ∗

)2
+ 1.

Lemma 4 now gives rather directly that this quantity is at most

H|U | −H2

(H + log 1
1−pσ∗

)2
+ 1 <

|U |
2 log 1

1−pσ∗
+ 1.

Thus, by Lemma 2,

t ≥
6 ·min{ |U |

2 log 1
1−pσ∗

, |V |+ log(|V |+ log |V |+ 2.5)}

ε2

now indeed suffices to obtain ĥ such that ĥ ≤ (1+ε)
∑

σ 6=σ∗
pσ

1−pσ∗
log 1

pσ
and ĥ ≥ (1−ε)

∑
σ 6=σ∗

pσ
1−pσ∗

log 1
pσ

.
The rest of the argument is now the same as before.

4.2 Empirical Setup

To evaluate the runtime performance of EntropyEstimation, we implemented a prototype in Python
that employs SPUR [AHT18] as a uniform sampler and GANAK [SRSM19] as a projected model
counter. We experimented with 96 Boolean formulas arising from diverse applications ranging
from QIF benchmarks [FRS17], plan recognition [SGM20], bit-blasted versions of SMTLIB bench-
marks [SGM20, SRSM19], and QBFEval competitions [qbfa, qbfb]. The value of n = |U | varies
from 5 to 752 while the value of m = |V | varies from 9 to 1447.

In all of our experiments, the confidence parameter δ was set to 0.09, and the tolerance parameter
ε was set to 0.8. All of our experiments were conducted on a high-performance computer cluster
with each node consisting of a E5-2690 v3 CPU with 24 cores, and 96GB of RAM with a memory
limit set to 4GB per core. Experiments were run in single-threaded mode on a single core with a
timeout of 3000s.

Baseline: As our baseline, we implemented the following approach to compute the entropy ex-
actly, which is representative of the current state of the art approaches [BPFP17, ESBB19, Kle12].

For each valuation σ ∈ sol(ϕ)↓V , we compute pσ = |sol(ϕ(V 7→σ))|
|sol(ϕ)↓U | , where |sol(ϕ(V → σ))| is the
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count of satisfying assignments of ϕ(V 7→ σ), and |sol(ϕ)↓U | represents the projected model count
of ϕ over U . Then, finally the entropy is computed as

∑
σ∈2V

pσ log( 1
pσ

). Observe that from property

testing perspective, this amount to only using EVAL oracle.
Our evaluation demonstrates that EntropyEstimation can scale to the formulas beyond the

reach of the enumeration-based baseline approach. Within a given timeout of 3000 seconds,
EntropyEstimation is able to estimate the entropy for all the benchmarks, whereas the baseline
approach could terminate only for 14 benchmarks. Furthermore, EntropyEstimation estimated the
entropy within the allowed tolerance for all the benchmarks.

Benchmarks |U | |V | Baseline EntropyEstimation

Time(s)
EVAL
queries

Time(s)
PROC
queries

pwd-backdoor 336 64 - 1.84×1019 5.41 1.25×102

case31 13 40 201.02 1.02×103 125.36 5.65×102

case23 14 63 420.85 2.05×103 141.17 6.10×102

s1488 15 7 14 927 1037.71 3.84×103 150.29 6.10×102

case58 19 77 3835.38 1.77×104 198.34 8.45×102

bug1-fix-4 53 17 373.52 1.76×103 212.37 9.60×102

s832a 15 7 23 670 - 2.65×106 247 1.04×103

dyn-fix-1 40 48 - 3.30×104 252.2 1.83×103

s1196a 7 4 32 676 - 4.22×107 343.68 1.46×103

backdoor-2x16 168 32 - 1.31×105 405.7 1.70×103

CVE-2007 752 32 - 4.29×109 654.54 1.70×103

subtraction32 65 218 - 1.84×1019 860.88 3.00×103

case 1 b11 1 48 292 - 2.75×1011 1164.36 2.20×103

s420 new 15 7-1 235 116 - 3.52×107 1187.23 5.72×103

case145 64 155 - 7.04×1013 1243.11 2.96×103

floor64-1 405 161 - 2.32×1027 1764.2 7.85×103

s641 7 4 54 453 - 1.74×1012 1849.84 2.48×103

decomp64 381 191 - 6.81×1038 2239.62 9.26×103

squaring2 72 813 - 6.87×1010 2348.6 3.33×103

stmt5 731 730 379 311 - 3.49×1010 2814.58 1.49×104

Table 1: Entropy Estimation by EntropyEstimation vs Baseline. “-” represents that entropy could
not be estimated due to timeout. Note that m = |V | and n = |U |.

4.3 Scalability of EntropyEstimation

Table 1 presents the performance of EntropyEstimation vis-a-vis the baseline approach for 20 bench-
marks. (The complete analysis for all of the benchmarks can be found in the appendix.) Column
1 of Table 1 gives the names of the benchmarks, while columns 2 and 3 list the numbers of U
and V variables. Columns 4 and 5 respectively present the time taken, number of samples used
by baseline approach, and columns 6 and 7 present the same for EntropyEstimation. The required
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number of samples for the baseline approach is |sol(ϕ)↓V |. We use “-” to represent timeout.
Table 1 clearly demonstrates that EntropyEstimation outperforms the baseline approach. As

shown in Table 1, there are some benchmarks for which the projected model count on V is greater
than 1030, i.e., the baseline approach would need 1030 valuations to compute the entropy exactly.
By contrast, the proposed algorithm EntropyEstimation needed at most ∼ 104 samples to estimate
the entropy within the given tolerance and confidence. The number of samples required to estimate
the entropy is reduced significantly with our proposed approach, making it scalable.

4.4 Quality of Estimates

There were only 14 benchmarks out of 96 for which the enumeration-based baseline approach
finished within a given timeout of 3000 seconds. Therefore, we compared the entropy estimated by
EntropyEstimation with the baseline for those 14 benchmarks only. Figure 1 shows how accurate
were the estimates of the entropy by EntropyEstimation. The y-axis represents the observed error,
which was calculated as max(Estimated

Exact −1, Exact
Estimated −1), and the x-axis represents the benchmarks

ordered in ascending order of observed error; that is, a bar at x represents the observed error for a
benchmark—the lower, the better.
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Figure 1: The accuracy of estimated entropy using EntropyEstimation for 14 benchmarks. ε =
0.8, δ = 0.1.

The maximum allowed tolerance (ε) for our experiments was set to 0.80. The red horizontal
line in Figure 1 indicates this prescribed error tolerance. We observe that for all 14 benchmarks,
EntropyEstimation estimated the entropy within the allowed tolerance; in fact, the observed error
was greater than 0.1 for just 2 out of the 14 benchmarks, and the actual maximum error observed
was 0.29.

Alternative Baselines As we discussed earlier, several other algorithms have been proposed
for estimating the entropy. For example, Valiant and Valiant’s algorithm [VV17] obtains an ε-
additive approximation using O( 2m

ε2m
) samples, and Chakraborty et al. [CFGM16] compute such

approximations using O(m
7

ε8
) samples. We stress that neither of these is exact, and thus could not

be used to assess the accuracy of our method as presented in Figure 1. Moreover, based on Table 1,
we observe that the number of sampling or counting calls that could be computed within the
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timeout was roughly 2× 104, where m ranges between 101–103. Thus, the method of Chakraborty
et al., which would take 107 or more samples on all benchmarks, would not be competitive with
our method, which never used 2×104 calls. The method of Valiant and Valiant, on the other hand,
would likely allow a few more benchmarks to be estimated (perhaps up to a fifth of the benchmarks).
Still, it would not be competitive with our technique except in the smallest benchmarks (for which
the baseline required < 106 samples, about a third of our benchmarks), since we were otherwise
more than a factor of m faster than the baseline.

4.5 Beyond Boolean Formulas

We now focus on the case where the relationship between U and V is modeled by an arbitrary rela-
tion R instead of a Boolean formula ϕ. As noted in Section 1.2, program behaviors are often mod-
eled with other representations such as automata [ABB15, AEB+18, Bul19]. The automata-based
modeling often has U represented as the input to the given automaton A while every realization
of V corresponds to a state of A. Instead of an explicit description of A, one can rely on a sym-
bolic description of A. Two families of techniques are currently used to estimate the entropy. The
first technique is to enumerate the possible output states and, for each such state s, estimate the
number of strings accepted by A if s was the only accepting state of A. The other technique relies
on uniformly sampling a string σ, noting the final state of A when run on σ, and then applying a
histogram-based technique to estimate the entropy.

In order to use the algorithm EntropyEstimation one requires access to a sampler and model
counter for automata; the past few years have witnessed the design of efficient counters for automata
to handle string constraints. In addition, EntropyEstimation requires access to a conditioning routine
to implement the substitution step, i.e., V 7→ σ↓V , which is easy to accomplish for automata via
marking the corresponding state as a non-accepting state.

5 Conclusion

We thus find that the ability to draw conditional samples and obtain the probability of those
samples enables practical algorithms for estimating the Shannon entropy, even in the low-entropy
regime: we have only a linear dependence on the number of bits to write down an element of the
distribution, and only a quadratic dependence on the approximation parameter ε. The constant
factors are sufficiently small that the algorithm obtains good performance on real benchmarks for
computing the entropy of distributions sampled by circuits, when the oracles are instantiated using
existing methods for model counting and sampling for formulas. Indeed, we find that this setting is
captured well by the property testing model, where the solvers for these hard problems are treated
as oracles and the number of calls is the complexity measure of interest.

As mentioned in the introduction, the most interesting open question is whether or notO(m
ε2

log 1
δ )

is the optimal number of such queries, even given an evaluation oracle with arbitrary conditional
samples. If the complexity could be reduced to O(poly( logm

ε ) log 1
δ ) as is the case for support size

estimation (cf. Acharya et al. [ACK18]) this would further emphasize the power of conditional
sampling.

An important, related question is whether or not we can similarly efficiently obtain multiplica-
tive estimates of the mutual information between two variables in such a model, particularly in the
low-information regime. Suppose that we separate the outputs of the circuit into two parts, Y and

18



Z, where Z could represent some secret value, for example. (Since Z can report part of the input,
this is more general than the problem of computing the mutual information with a secret portion of
the input.) Observe that while we can separately estimate H(Z) and H(Z|Y ) and compute an esti-
mate of I(Z;Y ) from these, we obtain an error on the scale of ε·max{H(Z), H(Z|Y )} which may be
much larger than ε · (H(Z)−H(Z|Y )), which is what would be required for a (1 + ε)-multiplicative
approximation.

One further question suggested by this work is the relative power of an oracle that reveals the
conditional probability of the sample σ obtained from D conditioned on S, instead of its probability
under D. (Our algorithm can certainly be adapted to such a model.) But as we noted in the
introduction, whereas the oracle we considered in this work can be simulated by a combination of
the usual evaluation and conditional sampling oracles, it seems unlikely that we could efficiently
simulate this alternative probability-revealing conditional sampling oracle. This is because given a
single query to the probability-revealing conditional sampling oracle and one additional query to
an evaluation oracle (for the sampled value), we would be able to compute the exact probability
of the arbitrary event S, where this should require a large number of queries in the conditional
sampling and evaluation model. We note that it seems that such an oracle could equally well be
implemented in practice in the circuit-formula setting we considered; does the additional power it
grants allow us to do anything interesting?

Finally, an interesting direction for future work on the practical side would be to extend
EntropyEstimation to handle other representations of programs such as automata-based models.
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Detailed Experimental Analysis

Table 2: Detailed results for all 96 benchmarks. Entropy Estimation by EntropyEstimation vs
Baseline. δ : 0.09, ε : 0.8, and timeout 3000s. “-” represents that entropy could not be estimated
due to timeout.

Benchmarks |U | |V | Baseline EntropyEstimation

Time(s)
EVAL

Queries
Entropy Time(s)

PROC
Queries

Entropy

pwd-backdoor 336 64 - 1.84×1019 - 5.41 1.25×102 1.56×10−19

case206 5 9 1.84 4.00×100 2.0 45.55 1.90×102 2.03
s27 new 7 4 7 10 2.32 6.00×100 2.0 64.18 2.85×102 2.58

case31 13 40 201.02 1.02×103 10.0 125.36 5.65×102 10.04
case26 13 40 251.9 1.02×103 10.0 130.73 5.65×102 10.04
case27 13 39 195.94 1.02×103 10.0 133.08 5.65×102 10.04
case29 14 51 49.78 2.56×102 8.0 135.41 6.10×102 8.01
case23 14 63 420.85 2.05×103 11.0 141.17 6.10×102 11.01

s1488 7 4 14 858 2707.88 8.70×103 13.11 141.48 6.10×102 13.09
s1488 15 7 14 927 1037.71 3.84×103 11.92 150.29 6.10×102 11.91
bug1-fix-3 40 13 59.05 3.04×102 8.99 165.75 7.60×102 7.85
s298 7 4 17 206 - 6.55×104 - 166.93 7.50×102 16.0
case111 17 289 - 1.64×104 - 170.14 7.50×102 14.0
case113 18 291 - 3.28×104 - 176.34 8.00×102 15.06
case112 18 119 - 3.28×104 - 178.6 8.00×102 15.06
case4 18 85 - 3.28×104 - 188.1 8.00×102 15.06

bug1-fix-6 79 25 - 6.23×104 - 193.39 1.36×103 15.36
case64 19 74 - 3.53×104 - 194.06 8.45×102 15.13
case58 19 77 3835.38 1.77×104 14.11 198.34 8.45×102 14.13
case1 20 167 - 6.55×104 - 201.63 8.95×102 16.08
case53 21 111 - 2.62×105 - 207.03 9.40×102 18.05

bug1-fix-4 53 17 373.52 1.76×103 10.41 212.37 9.60×102 10.36
case46 22 154 - 6.55×104 - 214.78 9.85×102 16.01
case51 21 111 - 2.62×105 - 221.67 9.40×102 18.05
case54 23 180 - 5.24×105 - 231.67 1.04×103 19.07

s344 7 4 24 191 - 9.54×105 - 242.45 1.08×103 18.72
s444 15 7 24 353 - 4.13×106 - 244.88 1.08×103 22.02
s444 7 4 24 284 - 1.28×107 - 245.37 1.08×103 23.65

s832a 15 7 23 670 - 2.65×106 - 247 1.04×103 21.33
s832a 3 2 23 583 - 2.87×105 - 250.17 1.04×103 18.19
dyn-fix-1 40 48 - 3.30×104 - 252.2 1.83×103 15.02
s526 3 2 24 341 - 4.19×106 - 257.56 1.08×103 22.04
case136 42 169 - 5.50×1011 - 262.21 1.92×103 39.06

bug1-fix-5 66 21 2520.7 1.04×104 14.0 264.68 1.16×103 12.82
case122 27 287 - 1.68×107 - 272.19 1.22×103 24.02
case114 28 400 - 1.71×107 - 285.78 1.27×103 25.09
case115 28 400 - 1.69×107 - 295.23 1.27×103 25.09
case116 28 410 - 1.69×107 - 303.52 1.27×103 25.09
case57 32 256 - 1.68×107 - 324.25 1.46×103 24.03
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s1196a 7 4 32 676 - 4.22×107 - 343.68 1.46×103 24.97
s1238a 15 7 32 741 - 4.04×107 - 343.85 1.46×103 24.88

s420 new 15 7 34 317 - 3.41×107 - 352.52 1.55×103 24.83
s420 new 7 4 34 278 - 3.52×107 - 357.88 1.55×103 24.8

s420 new1 15 7 34 332 - 3.52×107 - 359.18 1.55×103 24.85
s420 3 2 34 260 - 3.52×107 - 366.98 1.55×103 24.86

case 0 b12 1 37 390 - 1.07×109 - 390.01 1.69×103 30.04
backdoor-2x16-8 168 32 - 1.31×105 - 405.7 1.70×103 8.0

case133 42 169 - 5.50×1011 - 410.72 1.92×103 39.06
case 3 b14 3 40 264 - 1.37×1011 - 421.57 1.83×103 37.04

case132 41 195 - 2.10×106 - 423.72 1.88×103 21.0
case 1 b14 3 40 264 - 1.37×1011 - 441.42 1.83×103 37.04
bug1-fix-8 105 33 - 2.24×106 - 446.27 1.75×103 20.32

case 3 b14 1 45 193 - 1.72×1010 - 467.15 2.06×103 34.04
case 1 b14 1 45 193 - 1.72×1010 - 481.67 2.06×103 34.04

s953a 7 4 45 488 - 4.24×105 - 493.29 2.06×103 18.58
case201 45 155 - 6.71×107 - 500.23 2.06×103 26.03

case121-1 48 243 - 7.52×1010 - 517.84 2.20×103 35.78
case121 48 243 - 7.52×1010 - 556.54 2.20×103 35.78

10.sk 1 46 47 1447 - 4.75×104 - 560.45 2.16×103 13.56
bug1-fix-9 118 37 - 1.34×107 - 579.96 1.94×103 22.85

CVE-2007-2875 752 32 - 4.29×109 - 654.54 1.70×103 32.01
case53-1 75 57 62.9 1.03×103 10.0 661.23 2.91×103 10.01
case39 65 180 - 3.60×1016 - 685.54 3.00×103 55.0
case106 60 144 - 4.40×1012 - 710.96 2.77×103 42.07
case40 65 180 - 3.60×1016 - 712.02 3.00×103 55.0

bug1-fix-10 131 41 - 8.06×107 - 729.35 2.14×103 25.36
case 3 b14 1-1 165 73 - 1.68×107 - 832.09 3.68×103 24.02
subtraction32 65 218 - 1.84×1019 - 860.88 3.00×103 64.0

case211 83 786 - 1.21×1024 - 879.67 3.84×103 80.03
floor32 65 214 - 6.86×1014 - 892.61 3.00×103 46.82
case146 64 155 - 7.04×1013 - 920.28 2.96×103 46.03

case 1 b14 1-1 145 93 - 1.68×107 - 1050.59 4.62×103 24.0
case 1 b11 1 48 292 - 2.75×1011 - 1164.36 2.20×103 38.03

ceiling32 65 277 - 1.24×1015 - 1182.41 3.00×103 47.37
s420 new 15 7-1 235 116 - 3.52×107 - 1187.23 5.72×103 24.78

decomp64-1 485 87 - 6.81×1038 - 1232.71 4.34×103 33.01
case145 64 155 - 7.04×1013 - 1243.11 2.96×103 46.03

dyn-fix-2 113 92 - 8.45×106 - 1337.35 4.58×103 23.02
floor32-1 150 129 - 6.86×1014 - 1414.97 6.34×103 46.43

ceiling32-1 213 129 - 1.10×1015 - 1642.07 6.34×103 47.09
subtraction64 129 442 - 3.40×1038 - 1670 6.00×103 128.0

case116-1 264 174 - 1.69×107 - 1750.92 8.46×103 24.0
floor64-1 405 161 - 2.32×1027 - 1764.2 7.85×103 86.71
case114-1 255 173 - 1.71×107 - 1799.49 8.42×103 24.02

stmt16 818 819 185 260 - 1.03×1010 - 1823.11 8.62×103 24.96
squaring4 72 819 - 6.87×1010 - 1825.71 3.33×103 36.02
s641 7 4 54 453 - 1.74×1012 - 1849.84 2.48×103 37.89
case115-1 237 191 - 1.69×107 - 1922.39 9.26×103 23.99

subtraction64-1 409 162 - 4.86×1031 - 2051.3 7.90×103 100.3
decomp64 381 191 - 6.81×1038 - 2239.62 9.26×103 63.0
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squaring2 72 813 - 6.87×1010 - 2348.6 3.33×103 36.02
squaring1 72 819 - 6.87×1010 - 2367.74 3.33×103 36.02

stmt124 966 965 393 310 - 3.49×1010 - 2551.82 1.49×104 25.87
squaring6 72 813 - 6.87×1010 - 2721.73 3.33×103 36.02

stmt9 445 446 352 306 - 8.60×1010 - 2792.86 1.47×104 32.45
stmt5 731 730 379 311 - 3.49×1010 - 2814.58 1.49×104 25.97
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