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Abstract The problem of counting the number of solutions of a DNF formula, also
called #DNF, is a fundamental problem in artificial intelligence with applications
in diverse domains ranging from network reliability to probabilistic databases. Ow-
ing to the intractability of the exact variant, efforts have focused on the design of
approximate techniques for #DNF. Consequently, several Fully Polynomial Ran-
domized Approximation Schemes (FPRASs) based on Monte Carlo techniques
have been proposed. Recently, it was discovered that hashing-based techniques
too lend themselves to FPRASs for #DNF. Despite significant improvements, the
complexity of the hashing-based FPRAS is still worse than that of the best Monte
Carlo FPRAS by polylog factors. Two questions were left unanswered in previous
works: Can the complexity of the hashing-based techniques be improved? How do
the various approaches stack up against each other empirically?

In this paper, we first propose a new search procedure for the hashing-based
FPRAS that removes the polylog factors from its time complexity. We then present
the first empirical study of runtime behavior of different FPRASs for #DNF. The
result of our study produces a nuanced picture. First of all, we observe that there
is no single best algorithm that outperforms all others for all classes of formulas
and input parameters. Second, we observe that the algorithm with the worst time
complexity solves the largest number of benchmarks.
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1 Introduction

Constrained counting is a fundamental problem in artificial intelligence with a
wide variety of applications ranging from network reliability Dueñas-Osorio et al
(2017), probabilistic inference Bacchus et al (2003); Sang et al (2005), probabilistic
databases Dalvi and Suciu (2007), quantified information flow Biondi et al (2018),
and the like. Given a set of constraints F , the problem of constrained counting seeks
to compute the total number of solutions to F . In this work, we focus on the variant
of constrained counting where F is expressed in Disjunctive Normal Form (DNF),
henceforth denoted as DNF-Counting or #DNF. This problem is important in
practice, as applications such as query evaluation in probabilistic databases Dalvi
and Suciu (2007) and failure-probability estimation of networks Karger (2001)
reduce to it.

The problem of #DNF is known to be #P-complete Valiant (1979), where
#P is the class of counting problems for decision problems in NP. Due to the
intractability of exact #DNF, the approximate variant of #DNF has been studied
extensively by both theoreticians and practitioners. Of particular interest is to
obtain (ε, δ) approximation, such that the count returned by the approximation
scheme is within (1 + ε) factor of the exact count with confidence at least 1 − δ,
where ε and δ are supplied by the user.

In their seminal paper, Karp and Luby Karp and Luby (1983) proposed the first
Fully Polynomial Randomized Approximation Scheme (FPRAS) for #DNF based
on Monte Carlo sampling. We will henceforth use the term KL Counter to denote
the FPRAS proposed by Karp et al. The time complexity of KL Counter is quadratic
in the number of cubes (i.e., disjuncts) and linear in the number of the variables
of the input formula F . Building on KL Counter, Karp et al. Karp et al (1989)
proposed an improved FPRAS, henceforth denoted as KLM Counter, which has
time complexity linear in the number of cubes. Vazirani Vazirani (2013) proposed
a variant of KL Counter (denoted Vazirani Counter) with same time complexity as
KL Counter, but combined with an enhancement proposed in Dagum et al (2000),
it requires fewer Monte Carlo samples than KL Counter.

Recently, Chakraborty et al. Chakraborty et al (2016) showed that the hashing-
based framework, which was originally proposed for approximate counting of CNF
formulas, lends to an FPRAS scheme for #DNF as well. In particular, Chakraborty
et al. proposed a hashing-based scheme called DNFApproxMC, whose time complex-
ity was significantly worse than that of KLM Counter. Building on Chakraborty et
al., Meel et al. Meel et al (2017) proposed an improvement to DNFApproxMC, which
we refer to as SymbolicDNFApproxMC. The time complexity of SymbolicDNFApproxMC

is Õ(mn log(1/δ)/ε2), which is within polylog factors of that of KLM Counter.
Two key questions however, are still unanswered: 1) Is it possible to remove

the polylog factors in the complexity of SymbolicDNFApproxMC? 2) How do the
various approaches perform empirically? The desire to make an inquiry into the
runtime performance of different FPRAS is not just intellectual; it stems from the
fruitful results such a study has produced in the development of theory and tools
for approximate CNF-Counting Ermon et al (2013); Meel et al (2016). Despite
the fact that some FPRAS have been around for over 30 years, a comprehensive
experimental evaluation has not been performed for #DNF, to the best of our
knowledge.

In this paper, we propose a new search technique for hashing-based algorithms
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that improves the complexity of SymbolicDNFApproxMC toO(mn log(1/δ)/ε2), which
is the same as KLM Counter. Further, we present the first empirical study of run-
time behavior of different FPRASs for #DNF. Similar to previous studies for SAT

solvers, we conduct our study on classes of randomly generated DNF formulas cov-
ering a broad range of distribution parameters. The result of our study produces
a nuanced picture. First of all, we observe that there is no single best algorithm
that outperforms all other algorithms for all classes of formulas and input pa-
rameters. Second, we observe that the algorithm with the worst time complexity,
DNFApproxMC, solves the largest number of benchmarks. We believe that the above
two results are significant as they demonstrate a gap between runtime performance
and theoretical time complexity of approximate techniques for #DNF. Similar to
studies of #CNF, this gap should serve as a guiding light for designing new #DNF
algorithms, and for analyzing the structure of solution space of DNF formulas.

The rest of the paper is organized as follows: we introduce some notation in
Section 2 and briefly review the various approaches to approximate DNF-Counting
in Section 3. We present our new search procedure for hashing algorithms in Sec-
tion 4. We describe experimental methodology in Section 5 and report on the
results in Section 6. We offer our interpretation of these results in Section 7, and
conclude in Section 8.

2 Preliminaries

A literal is a variable or the negation of a variable. A formula F over boolean vari-
ables is in Disjunctive Normal Form (DNF) if it is a disjunction over conjunctions
of literals. Disjuncts in the formula are called cubes and we denote the ithcube
by F i. Thus F = F 1 ∨ F 2 ∨ · · · ∨ Fm. We will use n and m to denote the number
of variables and number of cubes in the input DNF formula, respectively. The
width of a cube F i refers to the number of literals in cube F i and is denoted by
width(F i). We use w to denote the minimum of width over all the cubes of the
formula, i.e. w = mini width(F i).

We use Pr[A] to denote probability of an event A. For a given random variable
Y , we use E[Y ] and V[Y ] to denote expectation and variance of Y .

We use capital boldface letters A,B, . . . to denote matrices, small boldface
letters u, v, w, . . . to denote vectors. We denote by A(p) the sub-matrix of A

consisting of the first p rows. Similarly, b(p) denotes the sub-vector of b consisting
of the first p elements of b. We refer to A(p) and b(p) as “prefix-slices” of A and
b respectively.

An assignment (vector) x of truth values to variables of F is called a satisfying
assignment or witness if it makes F evaluate to true. Finding a satisfying assign-
ment if one exists can be accomplished in polynomial time for DNF formulas. We
denote the set of all satisfying assignments of F by RF . Given F , the constrained
counting problem is to compute |RF |. A fully polynomial randomized approximation

scheme (FPRAS) is a randomized algorithm that takes as input a formula F , a
tolerance ε ∈ (0, 1) and confidence parameter δ ∈ (0, 1) and outputs a random
variable Y such that Pr[ 1

1+ε |RF | ≤ Y ≤ (1 + ε)|RF |] ≥ 1− δ and the running time
of the algorithm is polynomial in |F |, 1/ε, log(1/δ).

A hash function h : {0, 1}q → {0, 1}p partitions the elements of the domain
{0, 1}q into 2p cells. h(x) = y implies that h maps the assignment x to the cell y.
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h−1(y) = {x|h(x) = y} is the set of assignments that map to the cell y. We will
be interested in calculating the cardinality of RF ∩ h−1(y) for a randomly chosen
h.

Hash functions of the form h(x) = A(p)x ⊕ b(p) are commonly used in ap-
proximate counting. A base matrix A of dimension q × q is randomly sampled
from a special set called a hash family. Similarly, base vectors b and y are chosen
uniformly at random from {0, 1}q. To obtain a hash function h : {0, 1}q → {0, 1}p
and a cell in {0, 1}p, the prefix-slices A(p), b(p) and y(p) are constructed. Thus
the hash function and the cell h(x) = y is a system of linear equations modulo
2: A(p)x ⊕ b(p) = y(p). The solutions to this system of linear equations are the
elements of the set h−1(y).

We will use the triple A(p), b(p),y(p) to denote a hash function and a cell. We
obtain different families of hash functions depending on the constraints imposed on
the structure of the matrix A. For example, if each element of A is chosen uniformly
at random, we obtain a hash function from the random XOR family Carter and
Wegman (1977). If A is sampled from the set of matrices in Reduced Row Echelon
form, we obtain a hash function from the Row Echelon XOR family Meel et al
(2017). The technique for enumerating solutions in a cell also depends on the
family of the hash function under consideration.

3 Approximation Algorithms for #DNF

Beginning with the seminal work of Karp and Luby Karp and Luby (1983), three
Monte Carlo FPRASs for #DNF have been designed over the years Karp et al
(1989); Vazirani (2013). Two more FPRASs were designed using the new hashing-
based approach Chakraborty et al (2016); Meel et al (2017). Besides developing
FPRASs, considerable effort has also gone into developing deterministic approxima-
tion algorithms for #DNF Luby and Veličković (1996); Trevisan (2004); Gopalan
et al (2013) and the closely related problem of designing pseudo-random generators
with short seeds Ajtai and Wigderson (1985); Nisan (1991); De et al (2010). The
development of a fully polynomial time deterministic approximation algorithm for
#DNF is still an open problem Gopalan et al (2013).

Motivated by applications of #DNF to probabilistic databases, several ap-
proaches to the design of approximate #DNF counters have been investigated
from the perspective of query evaluation as well Olteanu et al (2010); Fink and
Olteanu (2011); Gatterbauer and Suciu (2014). Such algorithms, however, either
take exponential time in the worst case Olteanu et al (2010); Gatterbauer and
Suciu (2014) or are designed to work on restricted classes of formulas such as
monotone, read-once etc. Fink and Olteanu (2011). An FPRAS similar to KL

Counter was developed in the Multi-Instance Learning community for evaluating
SVM kernels Tao et al (2004). The FPRAS is designed to count the number of
axis-parallel boxes that contain given points. However, the algorithm is identical
to KL Counter when the problem instance is reduced from a DNF formula. This
procedure and related benchmarks are thus not useful for our purposes.

In summary, there is intense interest in practical applications of #DNF and a
number of algorithmic schemes have been designed towards that end. The strongest
guarantees on worst-case running time are provided by FPRASs, yet there does
not exist a comprehensive experimental evaluation comparing them. In this work,
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Algorithm 1 Monte-Carlo-Count(A, U)

1: Y ← 0
2: repeat N times
3: Select an element t ∈ U uniformly at random
4: if t ∈ A then
5: Y ← Y + 1

N

6: Z ← Y × |U|
7: return Z

we perform the first such empirical study of runtime behavior of different FPRASs.
Before delving into experimental setup, we briefly review the five FPRASs from
an algorithmic perspective. The purpose is two-fold:

1. to provide a unified overview of the state-of-the-art FPRASs for #DNF, and
2. to shed some light on the subtle differences within each variant algorithm of the

Monte Carlo and Hashing frameworks. While the differences may seem incon-
sequential from a distance, our experiments show that they make a significant
difference in practice.

3.1 Monte Carlo Framework

Algorithms built on Monte Carlo framework are randomized algorithms whose
output can be wrong with a certain (usually small) probability Babai (1979).
Typically, these algorithms rely on drawing independent random samples to obtain
numerical results. We refer the reader to Motwani and Raghavan (2010) for further
details. In the context of counting, the abstract Monte Carlo framework for finding
cardinality of a set A in the universe U is shown in Algorithm 1.

In Algorithm 1, Y is an unbiased estimator for ρ = |A|/|U|. ρ is called the den-

sity of solutions. Also, Z is an unbiased estimator for |A|. IfN = O( V[Z]
E[Z]2

log(1/δ)/ε2),

we have Pr[ 1
1+ε |A| ≤ Z ≤ (1 + ε)|A|] ≥ 1− δ.

Algorithm 1 is an FPRAS if the number of samples N , and the time taken by
line 3 and 4 are polynomial in the size of input1.

In the context of this work, we have A = RF . If F is a DNF formula with n

variables and m cubes, we can employ Algorithm 1 by defining U to be the set of
all assignments over n variables. A naive lower bound on |RF | is 2n−w, where w

is the minimum over width of all the cubes of F . If w is a small constant, then
1
ρ ≥

1
2w which is polynomial in n and m and hence we require polynomially many

samples. But if w is O(n), then the lower bound does not polynomially bound the
number of samples required which implies that this naive Monte Carlo counter is
not an FPRAS.

The key insight by Karp et al. is to transform RF and U into R′F and U ′ such
that 1

ρ′ = |U ′|/|RF | is polynomially bounded, and it is also possible to recover

|RF | from |R′F |. We now discuss various transformations proposed over the years
and the FPRASs these transformations yield.

1 Note that A is typically represented implicitly such as using constraints in DNF in the
context of this paper
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KL Counter

Karp and Luby Karp and Luby (1983) developed the first FPRAS for #DNF,
which we refer to as KL Counter. They defined a new universe U ′ = {(x, F i) | x |=
F i}, and the corresponding solution space R′F as R′F = {(x, F i) | x |= F i and ∀j <
i,x 6|= F j} for a fixed ordering of the cubes. They showed that |RF | = |R′F | and
that the ratio |U ′|/|R′F | ≤ m and is therefore polynomially bounded. Consequently,
the time complexity of the algorithm is O(m2n log(1/δ)/ε2). For our experiments,
we employ an enhancement suggested in Dagum et al (2000) which ensures optimal
estimation of N . The enhancement is applicable, since the estimator used by KL

Counter is a 0–1 estimator.

KLM Counter

Karp et al. Karp et al (1989) proposed an improvement of KL Counter by employing
a non 0–1 estimator. To this end, the concept of ’coverage’ of an assignment
x in U ′ is introduced as cover(x) = {j|x |= F j}. The first key insight is that
|R′F | =

∑
(x,F i)∈U ′

1
|cover(x)| . The second insight was to define an estimator for

1/|cover(x)| using the geometric distribution. It is shown that the time complexity
of KLM Counter is O(mn log(1/δ)/ε2), which is an improvement over KL Counter.

Vazirani Counter

A variant of KLM Counter was described in Vazirani Vazirani (2013), where |cover(x)|
is computed exactly by iterating over all cubes, avoiding the use of the geomet-
ric distribution. The advantage of Vazirani Counter, is that it is able to utilize the
enhancement proposed in Dagum et al (2000). Consequently, Vazirani Counter re-
quires fewer samples than KL Counter to achieve the same error bounds. The time
for generating a sample, however, can be considerably more since the check for
x |= F j has to be performed for all cubes.

3.2 Hashing Framework

The key idea behind hashing-based counting is to partition the solution space of a
given formula into roughly equal small cells of solutions, using randomly chosen 2-
universal hash functions Carter and Wegman (1977). The crux of the framework is
a search for the right number of hash constraints such that the number of solutions
in a cell – Ycell = |RF ∩h−1(y)| – is not too large, yet the tolerance and confidence
obtained are as required. To calculate Ycell, all the solutions in a randomly chosen
cell are enumerated. If Ycell is greater than a threshold hiThresh ∈ O(1/ε2), then
the number of constraints are increased. The search ends when the number of hash
constraints p is such that (1) Ycell < hiThresh and (2) Ycell ≥ hiThresh when number
of hash constraints is p−1. The usage of 2-universal hash functions guarantees that
the random variable Ycell has low variance. Therefore, the final estimate Ycell×2p,
where 2p is the total number of cells, is a good approximation of |RF |.

The abstract hashing-based counting framework is shown in Algorithms 2,3,4,
and 5. The procedure ApproxMCCore is invoked t ∈ O(log(1/δ)) times in Algorithm
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2, to get the required confidence 1 − δ using majority vote. ApproxMCCore (Algo-
rithm 3) assumes access to a sub-procedure SampleHashFunction for sampling the
base matrix and vectors A, b,y as well as the number of variables in the hash
function q. Note that q is not necessarily the same as the number of variables in
the formula n. The procedure SampleHashFunction depends on the particular hash
family used. A search sub-procedure is invoked in line 2 which returns the correct
number of hash constraints p and the corresponding Ycell. A binary search can be
employed for this purpose, which is shown in Algorithm 4. The range of values of
p to search, is provided by the functions GetLowerBound and GetUpperBound which
depend on the input formula. The list FailRecord maintains the values of p for which
Ycell < hiThresh with FailRecord[p] = 0 and those p for which Ycell ≥ hiThresh by
FailRecord[p] = 1. The search returns when p is found such that FailRecord[p] = 0 and
FailRecord[p−1] = 1. The procedure BSAT (Algorithm 5) is invoked for calculating
Ycell. Each time a solution is found using EnumerateNextSol, Ycell is incremented by
an amount calculated using the function ComputeIncrement, which can be instan-
tiated to suit the particular counting problem. The procedure EnumerateNextSol

depends on the type of formula F , as well as the family of the hash function A, b.
The hash family also determines how a prefix slice is obtained from the call to
Extract.

DNFApproxMC

Concrete counting algorithms for a class of formulas can be obtained from the
above framework by choosing an appropriate family of hash functions along with
the corresponding procedures SampleHashFunction, GetLowerBound, GetUpperBound,
ComputeIncrement, Extract and EnumerateNextSol. For example, Chakraborty et al. Chakraborty
et al (2016) obtained an FPRAS for DNF formulas with complexity O((mn3 +
mn2/ε2) log n log(1/δ)), using Random XOR hash functions with SampleHashFunction

and Extract along with Gaussian Elimination for EnumerateNextSol.The upper bound,
lower bound and increment were fixed to n,0 and 1 respectively. We denote the re-
sulting algorithm as DNFApproxMC. In our experiments, we augmented DNFApproxMC

with Row-Echelon Hash family (proposed in Meel et al (2017)), which improves
the complexity from cubic to quadratic in n leading to better performance on all
benchmarks.

SymbolicDNFApproxMC

The algorithm SymbolicDNFApproxMC proposed in Meel et al (2017) achieves better
worst-case time complexity, made possible by three improvements over the original
DNFApproxMC algorithm. First, the usage of Row Echelon hash functions eliminates
the need for expensive Gaussian Elimination procedure. The concept of Symbolic
Hashing enables hashing over a transformed solution space without modifying
the input formula. Lastly, it was shown that a probabilistic estimate of Ycell can
be used in place of an exact count. The complexity of SymbolicDNFApproxMC is
Õ(mn log(1/δ)/ε2), which stems from the use of BinarySearch. We now present a
new search technique called ReverseSearch (Algorithm 10), that removes the polylog
factors (hidden in the Õ notation) from the complexity of SymbolicDNFApproxMC

to make it at par with the complexity achieved KLM Counter, and also improves
its running time in practice.
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Algorithm 2 ApproxMC(F, ε, δ)

1: hiThresh← O( 1
ε2

);

2: t← O(log( 1
δ

));
3: EstimateList← emptyList;
4: repeat t times
5: (numCells, Ycell)←ApproxMCCore(F, hiThresh);
6: AddToList(EstimateList, Ycell × numCells);

7: finalEstimate← FindMedian(EstimateList);
8: return finalEstimate

Algorithm 3 ApproxMCCore(F, hiThresh)

1: A, b,y, q← SampleHashFunction();
2: Ycell, p← Search(F,A, b,y, q, hiThresh);
3: return (2p, Ycell)

Algorithm 4 BinarySearch(F,A, b,y, q, hiThresh)

1: lo← GetLowerBound(); hi← GetUpperBound();
2: FailRecord[lo]← 1; FailRecord[hi]← 0;
3: FailRecord[i]← ⊥ for all i other than lo and hi;
4: while true do
5: p← (hi + lo)/2;
6: Ap, bp,yp ← Extract(A, b,y,p);
7: Ycell ← BSAT(F,Ap, bp,yp, q, hiThresh);
8: if (Ycell ≥ hiThresh) then
9: if (FailRecord[p + 1] = 0) then

10: Ycell ← BSAT(F,Ap+1, bp+1,yp+1, q, hiThresh);
11: return Ycell, p + 1;

12: FailRecord[i]← 1 for all i ∈ {lo, . . . p};
13: lo← p;
14: else
15: if (FailRecord[p− 1] = 1) then return Ycell, p;

16: FailRecord[i]← 0 for all i ∈ {p, . . . hi};
17: hi← p;

Algorithm 5 BSAT(F,Ap, bp,yp, q, threshold)

1: Ycell ← 0;
2: while true do
3: s← EnumerateNextSol(F,Ap, bp,yp);
4: if s 6= ⊥ then
5: Ycell = ComputeIncrement(s, Ycell, threshold);
6: else
7: return Ycell;

8: if Ycell ≥ threshold then
9: return threshold;

4 Reverse Search for Hashing-Based Algorithms

A close inspection of the SymbolicDNFApproxMC algorithm in Meel et al (2017)
reveals that the polylog factors in the complexity analysis arise due to redundancy
in enumerating solutions in successive calls to BSAT. In particular, the fact that
the set {x |A(p)x ⊕ b(p) = y(p)} is a subset of {x |A(p−1)x ⊕ b(p−1) = y(p−1)}
is not exploited. Each call to BSAT is agnostic of the previous ones, resulting in
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repeated enumeration of solutions. One work-around could be to buffer solutions
from a call to BSAT in order to reuse them in the future. However, this involves
additional space overhead and is not suitable when constraints are removed during
binary search. Instead, we propose a different search technique which guarantees
that every solution to the hash function is enumerated at most once, by eliminating
redundancy during search space exploration. The technique makes use of the fact
that the set {x |A(p−1)x⊕ b(p−1) = y(p−1)} can be partitioned into {x |A(p)x⊕
b(p) = y(p)} and {x |A(p)x ⊕ b(p) = y(∗p)}, where y(∗p) is the vector y(p) with
the pth (last) bit negated.

Algorithm 10 depicts procedure ReverseSearch. Ytotal maintains the count of all
the solutions enumerated so far. In lines 2-3, the prefix slice with p = q−log hiThresh

constraints is obtained, where q is the number of variables in the hash function. The
corresponding cell-count is obtained in line 4. If this count exceeds hiThresh, then it
implies that the true count is within (1+ ε) factor of 2n with high probability, and
the algorithm returns (hiThresh, p). Otherwise, the for-loop in line 7 is executed.
An invariant of the for-loop is Ytotal = |RF ∩{x |A(p)x⊕b(p) = y(p)}|. In lines 8-9,
Ycell = |RF ∩{x |A(p)x⊕ b(p) = y(∗p)}| is evaluated and added to Ytotal. Thus, at
the end of each iteration, Ytotal = |RF ∩ {x |A(p−1)x⊕ b(p−1) = y(p−1)}|. When
Ytotal exceeds hiThresh, p+ 1 and the corresponding cell-count are returned in line
11.

Theorem 1 The complexity of SymbolicDNFApproxMC, when invoked with ReverseSearch

is O(mn log(1/δ)/ε2)

Proof Sketch We defer the full proof to the appendix. The core sub-procedure of
SymbolicDNFApproxMC is to obtain a probabilistic estimate of Ycell in each invo-
cation of BSAT. This is done as follows: 1) A solution x of the hash function is
enumerated 2) Cubes of the input formula F are randomly sampled until a cube
F i is found such that x |= F i 3) The number of steps required to find such a cube
is used to calculate an estimator for Ycell. The complexity of each such sample-
and-check is O(n).

The effect of the use of binary search in Meel et al (2017) was two-fold. Firstly,
BSAT was invoked O(log logm) times. Secondly, each call to BSAT possibly required
the sampling of m×hiThresh cubes. The use of ReverseSearch, however, ensures that
each call to BSAT is over a previously unexplored part of the solution space. This
in turn ensures that exactly m × hiThresh cubes are sampled in total, instead of
m × hiThresh × log logm as in Meel et al (2017). Since sample-and-check is O(n),
hiThresh ∈ O(1/ε2) and SymbolicDNFApproxMCCore is invoked O(log(1/δ)) times,
the overall complexity is O(mn log(1/δ)/ε2). ut

Naturally, one wonders whether employing ReverseSearch leads to gains in per-
formance in practice. We compared the running times of SymbolicDNFApproxMC

with BinarySearch and with ReverseSearch over wide classes of randomly generated
DNF formulas with 100, 000 variables, number of cubes ranging from 10, 000 to
800, 000 and cube-widths ranging from 3 to 43. Figure 1 shows a scatter-plot of
the results. A point (in blue) in the plot corresponds to one DNF formula in our
test set. Its y-coordinate represents the time taken by SymbolicDNFApproxMC using
ReverseSearch, while its x-coordinate represents time taken using BinarySearch. It
can be seen that SymbolicDNFApproxMC with ReverseSearch is roughly four or five
times faster than with BinarySearch. Therefore in the empirical study we describe
next, we use ReverseSearch in all experiments involving SymbolicDNFApproxMC.
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Algorithm 6 ReverseSearch(F,A, b,y, q, hiThresh)

1: Ytotal = 0;
2: hi← getUpperBound();
3: lo← getLowerBound();
4: p← hi;
5: A(p), b(p),y(p) ← Extract(A, b,y,p, flip = false);

6: Ycell ← BSAT(F,A(p), b(p),y(p), q, hiThresh);
7: Ytotal = Ytotal + Ycell;
8: if (Ytotal ≥ hiThresh) then return hiThresh, p;

9: for p = hi; p ≥ lo; p = p− 1 do
10: A(p), b(p),y(∗p) ← Extract(A, b,y,p, flip = true);

11: Ycell ← BSAT(F,A(p), b(p),y(∗p), q, hiThresh− Ytotal);
12: Ytotal = Ytotal + Ycell;
13: if (Ytotal ≥ hiThresh) then return (Ytotal − Ycell), p + 1;
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Fig. 1 Comparison of Running time of
SymbolicDNFApproxMC with BinarySearch
and ReverseSearch
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Fig. 2 Comparison of Running time
of DNFApproxMC with LinearSearch and
ReverseSearch

Henceforth, we denote SymbolicDNFApproxMC with ReverseSearch as just SymbolicDNFApproxMC.
Note, however, that DNFApproxMC does not benefit from ReverseSearch (Fig. 2). In
fact, a simple linear search works best since our implementation uses efficient
data structures for buffering solutions that obviate the need for reverse or binary
searches.

5 Experimental Methodology

The objective of our experimental evaluation was to seek an answer for the fol-
lowing four key questions:

1. Runtime Variation: How does the running time of the algorithms vary across
different benchmarks?

2. Benchmarks Solved: How many benchmarks can the algorithms solve overall?
3. Accuracy: How accurate are the counts returned by the algorithms?
4. ε− δ Scalability: How do the algorithms scale with the input tolerance and

confidence?
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Table 1 Parameters used for generating random formulas and as input to algorithms

Experiment Formula Generation Parameters Input Parameters
#Vars

n
#Cubes

m
Width

w
Tolerance

ε
Confidence

δ

Benchmarks
Solved,
Runtime
Variation

100,000

104 ≤ m < 9× 104

steps of 2× 104 &
105 ≤ m ≤ 8× 105

steps of 2× 104

3 ≤ w ≤ 43 0.8 0.36

Accuracy

100 ≤ n < 1000 &
1000 ≤ n ≤ 7000

variable step
size

30 ≤ m ≤ 7000 &
300 ≤ m ≤ 35, 000
variable step size

3 ≤ w ≤ 2450
variable step

size
0.8 0.36

ε Scalability
100,000 50,000 12

[0.04, 0.8] 0.36
δ Scalability 0.8 [0.03, 0.36]

For ease of exposition, we henceforth refer to the experiments correspond-
ing to these questions as Runtime Variation, Benchmarks Solved, Accuracy and ε− δ
Scalability respectively. A fair comparison requires careful consideration of several
parameters, such as programming language of implementation, usage of libraries,
configuration of the cluster, benchmark suite, measures of performance, and the
like. Given a long list of parameters, performing experimental evaluation of all
possible combinations quickly becomes infeasible. Therefore, we had to arrive at
choices for several parameters. We explain our rationale for all such choices and
analyze the experimental results obtained.

5.1 Experimental Setup

We ran all experiments on a cluster. Each experiment had exclusive access to a
node with Intel(R) Xeon(R) CPU E5-2650 v2 processors running at 2.60GHz. Only
1 core out of the 16 available on each node was used with a memory limit of 4GB.
All algorithms were implemented in C++ and compiled with GCC version 5.4 with
the O3 flag. To mitigate implementation bias, we used existing code and third-
party libraries wherever possible. For instance, we used a library called M4RI Al-
brecht and Bard (2012) for implementing hash functions, GNU Bignum library for
maintaining large counts. We adapted implementations of ApproxMC and Dagum
et al.’s Monte Carlo enhancement from the ApproxMC and MayBMS Huang et al
(2009) code-bases, respectively2. For a given algorithm and an input formula, we
set the timeout to 500 seconds.

5.2 Benchmark Generation

To the best of our knowledge, there are no publicly-available standardized set
of benchmarks for #DNF. We contacted the authors of works on probabilistic
databases, but were unable to obtain non-synthetic benchmarks. This is because
most works tend to rely on random data generators such as TPC-H tpc (????) for
testing prototype implementations of probabilistic databases Olteanu et al (2010);
Gatterbauer and Suciu (2014).

2 Code and results can be accessed at https://gitlab.com/Shrotri/DNF_Counting

https://gitlab.com/Shrotri/DNF_Counting
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Another approach could have been to use the complement of CNF formulas
arising from works on CNF-Counting. Such CNF formulas, however, typically have
counts that are exponentially smaller than 2n. The DNF complements of those
formulas thus have counts extremely close to 2n. So naive Monte Carlo techniques
would suffice.

There is a chicken-and-egg problem – lack of real-world benchmarks for test-
ing prevents adoption of algorithms in practice, which in turn affects benchmark
availability. A salient goal of this work is to break this vicious cycle. A common
trend in the CSP community is to use random benchmarks for empirical studies,
when real-world problem instances are unavailable Mitchell et al (1992). In the
same vein, owing to a lack of publicly-available meaningful benchmarks, we con-
duct our study on random DNF formulas. Each formula with uniform cube-width
was sampled as follows: To sample a cube, w variables were sampled uniformly at
random, out of n possible choices and negated with probability 0.5. This process
was repeated m times to get the final formula. For formulas with non-uniform
cube-widths, the width of each cube was sampled uniformly at random between 3
and 43 in the previous procedure.

5.3 Parameters Used

The parameters used for generating random benchmarks for the various experi-
ments is shown in Table 1. We used a set of 1080 benchmarks for experiments on
Runtime Variation and Benchmarks Solved, covering a broad range of values of n, m,
and w. We generated a different set of 600 much smaller formulas for the Accuracy

experiment, as exact counts are needed to measure accuracy and the exact counter
SharpSAT Thurley (2006) timed out on most large formulas. For ε and δ Scalabil-
ity, the idea was to find a setting of n, m, and w for which all FPRAS would take
similar time with inputs ε = 0.8, δ = 0.36, so as to provide a level playing field.

For all experiments besides Accuracy, the benchmark sets comprised of 20 ran-
dom instances for each setting of n, m, and w. This was sufficient as we observed
that the running time of all five algorithms tended to not vary much between
instances. In particular, the median coefficient-of-variation for all algorithms was
less than 18%; ergo the distribution of running times is sufficiently captured by
the mean and adding more instances would provide no further insight.

Following previous studies of approximate counting techniques Chakraborty
et al (2013); Belle et al (2015), we used ε = 0.8 as base value for tolerance. Since
the dependence of algorithms on δ is log(1

δ ), we studied all the algorithms to
find value of δ so that any value of δ smaller than that would simply require the
algorithms more repetitions of the core algorithm. The value of δ computed from
the above was 0.36, which we use in our experiments. For ε− δ Scalability, the
respective value was varied while fixing the other to its base value.

6 Results

We ran experiments on Runtime Variation, Benchmarks Solved, Accuracy and ε− δ
Scalability over a combined total of 1500+ benchmarks, requiring well over 3000
hours of computational effort on dedicated nodes.
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Fig. 3 Runtime Variation: DNFApproxMC is
the best performer. Rest timeout.
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Fig. 4 Runtime Variation: DNFApproxMC and
KLM Counter are the best performers
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Fig. 5 Runtime Variation: KLM Counter and
KL Counter are the best performers
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Fig. 6 Runtime Variation: KLM Counter and
KL Counter are the best performers

6.1 Runtime Variation

We present a graph of the running time vs. the number of cubes for w = 3, 13, 23, 33, 43
as well as for non-uniform cube-widths. This is shown in Figs. 3, 4, 5, 6, 7 and 9
respectively3. Each data point in the graphs represents the average running time
of an algorithm over the 20 random formulas that were generated with the cor-
responding n, m and w. A note of caution should be exercised while interpreting
results for small widths, as these formulas are easy for naive Monte Carlo strate-
gies. For w = 3, we see that DNFApproxMC vastly outperforms other algorithms,
taking under a second to solve all formulas (see: Fig. 3). Rest of the algorithms
time out for formulas with number of cubes m ≥ 100, 000. For w = 13, it can
be seen from Fig. 4 that DNFApproxMC and KLM Counter are the best performers.
However, DNFApproxMC scales better with m. Vazirani Counter is the only algorithm
to time out. For w = 23, we see that Monte Carlo algorithms, in particular KL

Counter and KLM Counter, outperform the hashing-based algorithms. These algo-
rithms also scale well with respect to m for w = 23. This trend continues for w = 33
and 43. We see that the behavior of the algorithms does not change above w = 23.
For non-uniform widths, we see that the DNFApproxMC is again the best performer.

In summary, the performance of the Monte Carlo algorithms and SymbolicDNFApproxMC,
improves significantly with the width of cubes, while DNFApproxMC dominates for
low and non-uniform cube-widths and is more consistent overall.

3 Figures are best viewed online in color
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Fig. 7 Runtime Variation: KLM Counter and
KL Counter are the best performers
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Fig. 8 Benchmarks Solved: DNFApproxMC
solved all benchmarks
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Fig. 9 Runtime Variation: DNFApproxMC dominates other algorithms

6.2 Benchmarks Solved

Fig. 8 shows the cactus plot of all the different algorithms. We present the number
of benchmarks on x–axis and the total time taken on y–axis. A point (x, y) implies
that x benchmarks took less than or equal to y seconds to solve. We see that
DNFApproxMC completes all 1080 benchmarks in under 350 seconds which is well
within the time limit of 500 seconds. All the other algorithms time out on at least
100 benchmarks.

6.3 Accuracy

Out off the 600 formulas we generated for measuring accuracy, SharpSAT was
able to return exact counts of 228 within a timeout of 8 hours for each. The
observed mean and max errors of the counts returned by the five FPRAS for the
228 formulas, is shown in Table 2. If C is the exact count for a formula and Y is its
estimate, then the error is calculated as |C − Y |/C. The errors for all algorithms
are well within the tolerance ε = 0.8, that the algorithms were invoked with.
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Table 2 Accuracy of algorithms (invoked with ε = 0.8, δ = 0.36)

Algorithm Mean Error Max Error
DNFApproxMC 0.09 0.36
SymbolicDNFApproxMC 0.21 0.42
KLM Counter 0.11 0.55
KL Counter 0.007 0.20
Vazirani Counter 0.001 0.04
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Fig. 10 ε Scalability: DNFApproxMC scales
better than other algorithms
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Fig. 11 δ Scalability: Monte Carlo FPRAS
scale better

6.4 ε - δ Scalability

Fig. 10 shows the average time taken by the five algorithms over 20 instances when
ε is varied between 0.04 and 0.8, keeping δ fixed at 0.36. The time complexity
of all algorithms varies quadratically with 1/ε, which also can be seen in the
plotted curves. Nevertheless, DNFApproxMC scales better with 1/ε than all other
algorithms.

Fig. 11 depicts the average time taken by the algorithms over the same 20
instances when δ is varied between 0.03 and 0.36, keeping ε fixed at 0.8. The time
complexity of all five FPRAS has a O(log(1/δ)) factor. However, the Monte Carlo
algorithms scale extremely well for small δ, while SymbolicDNFApproxMC quickly
times out, and DNFApproxMC also loses steam.

7 Discussion

The experiments on Runtime Variation and Benchmarks Solved make sense in the
light of two key observations:

1. The counts of random DNF formulas tend to be extremely close to the upper-
bound, i.e. |RF | ≈ min(2n,m∗2n−w), a trend which was confirmed by the exact
counts of SharpSAT

2. No. of samples required by the Monte Carlo FPRAS varies inversely with the

solution density in the transformed space, i.e. N ∝ 1
ρ′ where ρ′ = |RF |

m∗2n−w

Together these imply that ρ′ is close to 1 for all random formulas with large
cube-widths. In such cases Monte Carlo FPRAS perform exceedingly well. Con-
versely, ρ′ is low for small cube-widths and the Monte Carlo FPRAS time out.
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SymbolicDNFApproxMC too is affected adversely by small ρ′ because of the sym-
bolic space transform. In contrast, the running time of DNFApproxMC does not
depend as heavily on either ρ or ρ′, and therefore does not timeout on any formula
(Fig. 8).Thus DNFApproxMC is more robust across different formula types. This is
also apparent in the experiment on formulas with non-uniform cube-widths (Fig.
9). The presence of a few short cubes in a formula is sufficient to make ρ′ low,
which enables DNFApproxMC to significantly dominate other algorithms.

The Monte Carlo algorithms perform substantially better than the hashing-
based approaches in terms of δ Scalability. This can be attributed to the fact that
the core sub-procedure of the hashing variants has to be repeated in order to
boost confidence, which incurs a significant overhead. In contrast, for the Monte
Carlo algorithms, only the number of samples required increases, which has low
overhead. However, the marginal utility obtained by using small values for δ is
debatable, as Table 2 shows that the counts returned by all five FPRAS are well
within the input tolerance even for δ = 0.36.

DNFApproxMC scales better with ε than the other FPRAS as seen in Fig. 10.
We believe this is due to the use of efficient data structures for buffering solutions,
in the implementation of DNFApproxMC . Algorithmic differences preclude the use
of these data structures in the other FPRAS.

The best accuracy is obtained by Vazirani Counter (Table 2). However, this
comes at a price. Vazirani Counter is markedly slower than KLM Counter and KL

Counter despite requiring fewer samples. This is due to the additional time required
by Vazirani Counter to generate a sample.

In summary, KLM Counter and KL Counter are the algorithms of choice when ρ′

is known to be high. Naive Monte Carlo is sufficient when ρ is close to 1. However,
when there is no information about the formula or when ρ and ρ′ are known to be
low, DNFApproxMC is a safe bet.

8 Concluding Remarks

Designing model counters for DNF formulas has been of practical as well as theo-
retical interest owing to applications in diverse domains in AI and beyond. Building
on Chakraborty et al. Chakraborty et al (2016), Meel et al. Meel et al (2017) pro-
posed a hashing-based algorithm, SymbolicDNFApproxMC, whose time complexity
was shown to be within polylog factors of the best known Monte Carlo schemes.
Meel et al. left two key questions answered: (1) Are hashing-based techniques
as powerful as Monte Carlo, i.e. is it possible to remove the polylog factors in
the complexity of SymbolicDNFApproxMC?, and (2) How do the various approaches
perform?

This paper provides positive answers to these questions. In particular, we first
introduced a new reverse-search technique that makes the time complexity of a
hashing-based FPRAS at par with the state-of-the art Monte Carlo techniques.
Furthermore, our proposed scheme leads to up to 4 − 5× gains over the previous
scheme proposed by Meel et al. Meel et al (2017). Moreover, the reverse-search is an
enhancement of the general hashing-based counting framework, and is not limited
to DNF-Counting, thereby opening future directions of research of its application
to #CNF.

We also provided the first empirical study of the various FPRASs for #DNF.
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We compared three algorithms from the classical Monte Carlo framework, and two
from the recently proposed hashing-based framework. Our experimental analysis
leads to two important observations, which are not apparent from the theoretical
analysis of these algorithms:

1. There is no panacea; different algorithms are well suited for different formula
types and input parameters.

2. DNFApproxMC solves the most the number of benchmarks and is robust across
different classes of formulas, despite poor complexity.

Owing to comprehensive testing on a wide array of formula classes and input
parameters, we believe that these observations will carry over to real-world bench-
marks as well. These observations illustrate a gap between theory and practice of
#DNF which we hope will kick-start further empirical investigations and serve as
a blueprint for future work on DNF-Counting.
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Appendix

For obtaining a concrete algorithm from the framework described in Algorithms
2,3,4 and 5, we need to instantiate the sub-procedures SampleHashFunction, GetLowerBound,
GetUpperBound, EnumerateNextSol, Extract and ComputeIncrement for a particular
counting problem. We now show how SymbolicDNFApproxMC Meel et al (2017),
which uses Row Echelon XOR hash functions, and the concepts of Symbolic Hash-
ing and Stochastic Cell-Counting, can be obtained through such instantiations.
Then we prove that by substituting the BinarySearch procedure by ReverseSearch,
the complexity of the resulting algorithm is improved by polylog factors.

SampleHashFunction

One can directly invoke the procedure SampleBase described in Algorithm 4 of Meel
et al (2017) with minor modifications. This is shown in Algorithm ??. Note that
the hash function A, b,y so obtained belongs to the Row Echelon XOR family.

Algorithm 7 SampleHashFunction()

1: q← n− w + logm;
2: sI ← n− w − log hiThresh;
3: A, b,y ← SampleBase(q, sI);
4: return A, b,y, q;

Lower and Upper Bounds

As shown in Meel et al (2017), it suffices to search between n−w− log hiThresh and
n−w+logm− log hiThresh hash constraints. Therefore the functions GetLowerBound

and GetUpperBound return these values respectively.

Extracting a prefix slice

The Extract procedure in Meel et al (2017) (Algorithm 8) can be used as-is, for
extracting a prefix slice. It is invoked with the arguments A, b,y, p along with q

and n− w − log hiThresh respectively.
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EnumerateNextSol

SymbolicDNFApproxMC enumerates solutions in the cell, in the order of a Gray code
sequence, for better complexity. This is achieved by invoking procedures enumREX

(Algorithm 1 in Meel et al (2017)).

ComputeIncrement

Procedure CheckSAT (Algorithm 12 adapted from Meel et al (2017)) can be used
to compute the increments to Ycell as shown in Algorithm ??. The assignment
s is divided into a solution x and a cube F i using the same interpret function
used in line 7 of Algorithm 6 in Meel et al (2017). CheckSAT samples a cube at
random in line 3 and checks if the assignment x satisfies it in line 5. The returned
value follows the geometric distribution Karp et al (1989), and can be used to
compute an accurate probabilistic estimate Ycell of the true number of solutions
in the cell Meel et al (2017).

Algorithm 8 ComputeIncrement(s, Ycell, threshold)

1: x, F i ← interpret(s);
2: return Ycell + CheckSAT(x, F i, Ycell, threshold);

Algorithm 9 CheckSAT(x, F i, Ycell, threshold)

1: cx ← 0;
2: while Ycell + cx/m < threshold do
3: Uniformly sample j from {1, 2, ..,m};
4: cx ← cx + 1;
5: if x |= F j then
6: return cx/m;

7: return cx/m

Lemma: The complexity of BSAT is O(m× n× threshold).
Proof: Ycell is incremented by cx/m in line 5 of BSAT after a call to ComputeIncrement

and CheckSAT. Since BSAT returns after Ycell reaches threshold, the sum of cx
over all invocations of CheckSAT is m × threshold. Every time cx is incremented,
the check in line 5 of CheckSAT is performed which takes O(n) time. Moreover,
EnumerateNextSol also takes O(n) time as enumREX in Meel et al (2017) takes O(n)
time. As a result, the complexity of BSAT is O(m× n× threshold).

Lemma: The complexity of ReverseSearch is O(m× n× hiThresh).
Proof: In ReverseSearch, BSAT is invoked with different thresholds (say T1, T2, T3 . . .)
in each iteration of the for loop in line 9 (Algorithm 10) depending on the value of
Ytotal. As a result of the check in line 13, it follows that T1+T2+T3+. . . = hiThresh.
Therefore the complexity of all invocations of BSAT is O(m×n×(T1+T2+T3+. . .) =
m× n× hiThresh. Thus the complexity of ReverseSearch is O(m× n× hiThresh). Note
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that the complexity of Extract in line 12 is O(n(logm + log(1/ε2))2) Meel et al
(2017), and does not contribute towards the complexity of ReverseSearch.

Theorem 2 The complexity of SymbolicDNFApproxMC, when invoked with ReverseSearch

is O(mn log(1/δ)/ε2)

Proof: Follows from above lemmas and the fact that ReverseSearch is invoked
O(log(1/δ)) times by ApproxMC, through ApproxMCCore and that hiThresh = O(1/ε2).
The complexity of SampleHashFunction is O(n(logm+ log(1/ε2))) Meel et al (2017)
and does not contribute towards the final complexity.
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