
Dual Hashing-based Algorithms for Discrete
Integration

(Extended Abstract) ?

Alexis de Colnet1 and Kuldeep S. Meel2

1 CNRS, CRIL UMR 8188, Lens, France
2 School of Computing, National University of Singapore, Singapore

Abstract. Given a boolean formula F and a weight function ρ, the prob-
lem of discrete integration seeks to compute the weight of F, defined as
the sum of the weights of satisfying assignments. Discrete integration,
also known as weighted model counting, is a fundamental problem in
computer science with wide variety of applications ranging from machine
learning and statistics to physics and infrastructure reliability. Given the
intractability of the exact variant, the problem of approximate weighted
model counting has been subject to intense theoretical and practical in-
vestigations over the years.
The primary contribution of this paper is to investigate development of al-
gorithmic approaches for discrete integration. Our framework allows us
to derive two different algorithms: WISH, which was already discovered
by Ermon et al [8], and a new algorithm: SWITCH. We argue that these
algorithms can be seen as dual to each other, in the sense that their com-
plexities differ only by a permutation of certain parameters. Indeed we
show that, for F defined over n variables, a weight function ρ that can be
represented using p bits, and a confidence parameter δ, there is a function
f and an NP oracle such that WISH makesO (f (n, p, δ)) calls to NP oracle
while SWITCH makesO (f (p, n, δ)) calls. We find f (x, y, δ) polynomial in
x, y and 1/δ, more specifically f (x, y, δ) = x log(y) log(x/δ). We first fo-
cus on striking similarities of both the design process and structure of the
two algorithms but then show that despite this quasi-symmetry, the anal-
ysis yields time complexities dual to each other. Another contribution of
this paper is the use of 3-wise property independence of XOR based hash
functions in the analysis of WISH and SWITCH. To the best of our knowl-
edge, this is the first usage of 3-wise independence in deriving stronger
concentration bounds and we hope our usage can be generalized to other
applications.

? The author list has been sorted alphabetically by last name; this order should not be
used to determine the extent of authors’ contributions.
The work was performed during first author’s stay at NUS.
The full version along with Appendix is available at https://github.com/

meelgroup/dualhashing

https://github.com/meelgroup/dualhashing
https://github.com/meelgroup/dualhashing

2 Alexis de Colnet and Kuldeep S. Meel

1 Introduction

Given a set of constraints F and a weight function ρ that assigns a non-
negative weight to every assignment of values to variables, the problem of
discrete integration seeks to compute the weight of F, defined as the sum of
weights of its satisfying assignments. If every assignment has weight 1, the
corresponding problem is often simply called model counting. For clarity of pre-
sentation, we use unweighted model counting to denote this variant. Discrete inte-
gration is a fundamental problem in computer science. A wide variety of prob-
lems such as probabilistic inference [14], partition function of graphical models,
permanent of a matrix [18], un-reliability of a network [13] can be reduced to
discrete integration.

In his seminal work, Valiant [18] established the complexity of discrete in-
tegration as #P-complete for all polynomially computable weight functions,
where #P is the complexity class comprised of counting problems whose de-
cision variant lies in NP. Given the computational intractability of discrete inte-
gration, approximate variants have been subject of intense theoretical and prac-
tical investigations over the past few decades.

Approaches to discrete integration can be classified into three categories:
variational techniques, sampling techniques, and hashing-based techniques. In-
spired from statistical physics, variational methods often scale to large instances
but do not provide guarantees on the computed estimates [19,17]. Sampling-
based techniques focus on approximation of the discrete integral via sampling
from the probability distribution induced by the boolean formula and the weight
function [11]. The estimation of rigorous bounds, however, requires exponen-
tial mixing times for the underlying chains and therefore, practical implemen-
tations such as those based on Markov Chain Monte Carlo methods [2] or ran-
domized branching choices [9] fail to provide rigorous estimates [7,12]. Re-
cently, hashing-based techniques have emerged as a promising alternative to
variational and sampling techniques to provide rigorous approximation guar-
antees [8,5,4]. The hashing-based algorithm WISH seeks to utilize progress made
in combinatorial solving over the past two decades and to this end, the prob-
lem of discrete integration is reduced to linear number of optimization queries
subject to randomly generated parity constraints [8].

The primary contribution of this paper is to investigate the development
of algorithmic approaches for discrete integration. Our framework allows us
to derive two different algorithms, which can be seen as dual to each other:
WISH, which was already discovered by Ermon et al [8], and a new algorithm:
SWITCH. In particular, WISH reduces the problem of discrete integration to op-
timization queries while SWITCH proceeds via reduction to unweighted model
counting. Both WISH and SWITCH compute constant factor approximations
with arbitrarily high probability 1 − δ via usage of universal hash functions,
a concept invented by Carter and Wegman in their seminal work [3]. We first

Dual Hashing-based Algorithms for Discrete Integration (Extended Abstract) 3

focus on the design process of WISH and SWITCH. We study discrete integra-
tion through the framework of general integration and reduce the task to op-
timization and counting subproblems. Then we present WISH and SWITCH as
hashing-based algorithms solving the aformentionned subproblems to approx-
imate a discrete integral. Finally we analyse these algorithms, proving that both
compute constant factor approximations of the integral with high probability.
However we show that they have dual time complexities in the sense that, for F
defined over n variables and a weight function ρ that can be represented using p
bits, there is a function f and an NP oracle such that WISH makes O (f (n, p, δ))
calls to NP oracle while SWITCH makes O (f (p, n, δ)). We find f (x, y, δ) poly-
nomial in x, y and 1/δ, more specifically f : x, y, δ 7→ x log(y) log(x/δ).

Another contribution of this paper is the use of 3-wise property indepen-
dence of XOR based hash functions in the analysis of WISH and SWITCH. To the
best of our knowledge, this is the first usage of 3-wise independence in deriv-
ing stronger concentration bounds. The hardness of usage of 3-independence
for concentration bounds is well documented by absence of such analyses (c.f.:
wonderful blogpost by Mihai Pătraşcu: 3).

The duality obtained may not seem surprising in retrospect but such has
not been the case for the past few years. The prior work has often, without
complete evidence, asserted that the corresponding dual approach would be
inferior both theoretically and empirically [8,4]. Our work, in turn, contradicts
such assertions and shows that the two approaches indeed have dual time com-
plexity from theoretical perspective and empirical analysis will be key in deter-
mining their usefulness. Since the work on development of MaxSAT solvers
that support XORs and SAT solvers that support XORs and Pseudo-Boolean
(PB) constraints is in its infancy; our work provides a strong argument for the
need and potential of both of these solvers as queries generated by WISH re-
quire MaxSAT solvers with the ability to handle XORs while the queries by
SWITCH requires SAT solvers that support XORs and PB constraints.

The rest of the paper is organized as follows. We introduce notations and
preliminaries in Section 2. We then provide general framework for discrete in-
tegration in Section 3, which is employed to derive the aforementioned algo-
rithms, WISH and SWITCH, in Section 4. We finally conclude in Section 5.

2 Preliminaries and Notations

Let F be a boolean formula over n variables. Let X be the set of variables
appearing in F. A literal is a variable x or its negation ¬x. An assignment σ of
all n variables is a satisfying assignment or witness of F if it makes F evaluate to
true, which we note σ |= F. We note #F the number of witnesses of F.

3 http://infoweekly.blogspot.com/2010/01/moments.html

http://infoweekly.blogspot.com/2010/01/moments.html

4 Alexis de Colnet and Kuldeep S. Meel

Weight function. Let ρ : {0, 1}n → Q+ be the weight function mapping each
truth assignment to a positive value such that

• ∀σ ∈ {0, 1}n, weight ρ(σ) is computable in polynomial time
• ∀σ ∈ {0, 1}n, weight ρ(σ) is written in binary representation with less than

p bits.

We extend the weight function to sets of truth assignments and boolean for-
mulas. Let Y be a subset of {0, 1}n, the weight of Y is defined as the cumula-
tive weight of the truth assignments in Y: ρ(Y) = ∑σ∈Y ρ(σ). By definition the
weight of the empty set is 0. The weight of a formula F is defined as the cu-
mulative weight of its witnesses ρ(F) = ∑σ|=F ρ(σ). For notational clarity, we
overload ρ to indicate weight of an assignment, set of assignments, and formula
depending on the context.

Given a formula F and weight function ρ, we define the effective weight function
w as the restriction of ρ to the witnesses of F

w(σ) =

{
ρ(σ) if σ |= F
0 otherwise

We will note wmin = minσ|=F w(σ) and wmax = maxσ|=F w(σ) the minimum
and maximum weights of a witness of F. Due to the hypothesis on ρ we have
wmax ≤ 2p and wmin ≥ 2−p if F is satisfiable. Note that the expression for the
weight of a formula can be rewritten ρ(F) = ∑σ∈{0,1}n w(σ).

Tail function. Dual to the effective weight function is the tail function τ. It is
defined from the space of weights to N. The tail function on some weight u
counts the number of truth assignments heavier than u (i.e. of weight greater
than u).

τ(u) =
∣∣{σ ∈ {0, 1}n : w(σ) ≥ u}

∣∣
For notational clarity we extend the tail function to truth assignments using the
notation τ(σ) for τ(w(σ)). Note that

1. The tail function is non-increasing.
2. The maximum tail is τ(0) = 2n.
3. For any 0 < u ≤ wmin there is τ(u) = #F.
4. If u > wmax then τ(u) evaluates to 0, but the minimal non-zero tail τ(wmax)

is not necessarily 1 since more than one truth assignment can weight wmax .

MPE-MAP queries. Following standard definitions, MPE (most probable expla-
nation) corresponds to solving max(ρ(σ) : σ |= F), which is to find wmax . It is
worth noting that MPE is related to another query: MAP (maximum a posteriori),
and different communities use different definitions for MAP and MPE, to the
extent that what one community calls MAP is called MPE by another [8,4].

Dual Hashing-based Algorithms for Discrete Integration (Extended Abstract) 5

(ε, δ)-approximation algorithms. Given computational intractability of com-
puting ρ(F), we are interested in approximation schemes. For a tolerance ε > 0
and a confidence δ > 0, an algorithm A generates a (ε, δ)-approximation of W
if it returns a quantity in

[
W(1 + ε)−1, (1 + ε)W

]
with probability at least 1− δ.

Pr
[
(1 + ε)−1W ≤ A(F, ρ, ε, δ) ≤ (1 + ε)W

]
≥ 1− δ

3-universal hash functions. We focus on hashing-based methods to approx-
imate ρ(F). We use particular classes of hash functions based on parity con-
straints. A constraint specifies a set of indices S from [n] and a bucket value β
in {0, 1}. The assignment σ is said to satisfy the constraint if the xored value
of its coordinates on S matches β, or more formally if

⊕
i∈S σ[i] = β, where ⊕

denotes the “xor” operation. Using the binary vector representation of subsets
S in {0, 1}n, one can rewrite the left hand side of the constraint as a scalar prod-
uct in the field Fn

2 which addition and product operations are, respectively, the
“xor” and the “and” operations. Therefore we will use matrix representations
when applying several constraints. For m given constraints represented with
the matrix A ∈ {0, 1}m×n and the vector of bucket values b ∈ {0, 1}m, σ satis-
fies all m constraints if Aσ = b, or equivalently Aσ ⊕ b = 0. A hash function
h from {0, 1}n to {0, 1}m is defined by a collection of m constraints embedded
in A and b. An assignment σ is hashed through h to h(σ) = Aσ⊕ b. So the i-th
component of h(σ) is

h(σ)[i] = bi ⊕
n⊕

j=1

A[i, j]σ[j]

Let Hxor(n, m) be the class of all such hash functions from {0, 1}n to {0, 1}m.

Hxor(n, m) =
{

σ 7→ Aσ⊕ b : A ∈ {0, 1}m×n, b ∈ {0, 1}m}
We note h R← Hxor(n, m) the action of choosing a hash function uniformly at
random from Hxor(n, m), which is equivalent to sampling A from B1/2(m, n)
and b from B1/2(m). Hash functions in Hxor(n, m) have uniformity property,
meaning that for all y in {0, 1}m and σ in {0, 1}n, there is

Pr
[

h R← Hxor(n, m) : h(σ) = y
]
=

1
2m

It was also shown in [10] that they display 3-wise independence property, mean-
ing that for all three images y1, y2, y3 in {0, 1}m and for all three distinct assign-
ments σ1, σ2, σ3 in {0, 1}n, there is

Pr
[

h R← Hxor(n, m) : h(σ1) = y1 and h(σ2) = y2 and h(σ3) = y3

]
=

1
23m

They do not display independence at higher order. For instance for 4-wise in-
dependence, consider three assignments σ1, σ2, σ3 and four images y1, y2, y3, y4.
Define σ4 = σ1 ⊕ σ2 ⊕ σ3 and see that if h(σi) = yi for i ∈ {1, 2, 3}, then
h(σ4) = y1 ⊕ y2 ⊕ y3. So the probability for all four assignments to be projected
on their respective images is null when y4 6= y1 ⊕ y2 ⊕ y3.

6 Alexis de Colnet and Kuldeep S. Meel

3 A Framework for Discrete Integration

This section presents a framework for discrete integration. Methods from
this framework follow a two-steps strategy:

1. translate the task of discrete integration into an integration problem for a
real non-increasing function

2. apply a method to approximate the integral of a real function

In the first step, we specifically ask for a non-increasing function so that we can
ensure constant factor approximations when estimating its integral. Examples
of approximation methods for real function integrals are the upper and lower
rectangles approximations or Monte Carlo integrators.

3.1 From discrete integration to real function integration

Given F a boolean formula and a weight function ρ, let u1, · · · , uK be all
possible weights taken by the satisfying assignments of F. To obtain the discrete
integral ρ(F), i.e. the sum of weights of satisfying assignments of F, one can
gather assignments in packets of same effective weight and sum over these
packets. For the weight ui, the pre-image w−1 (ui) is the set of all witnesses of
F mapped to ui by ρ. So the discrete integral can be written

ρ(F) =
K

∑
i=1

ui|w−1 (ui) | (1)

We observe the following tail transformation:

• For i < K, there is |w−1 (ui) | = τ(ui)− τ(ui+1)
• In the case i = K, there is |w−1 (uK) | = τ(uK)

Applying this transformation to Eq (1) gives:

ρ(F) = uKτ(uK) +
K−1

∑
i=1

ui (τ(ui)− τ(ui+1)) (2)

and after rearranging the terms:

ρ(F) = u1τ(u1) +
K−1

∑
i=1

τ(ui+1) (ui+1 − ui) (3)

These two representations of the discrete integral have a graphical interpreta-
tion: draw the curve of τ as a function of the weight, and observe that both
τ(ui+1) (ui+1 − ui) and ui (τ(ui)− τ(ui+1)) are areas of rectangles under the
curve as illustrated in figure 1. Eq (2) decomposes the integral into rectangles
built along the τ axis while Eq (3) is a decomposition into rectangles built along
the w axis .

Dual Hashing-based Algorithms for Discrete Integration (Extended Abstract) 7

wui ui+1

τ(ui)

τ

τ(uj)

τ(uj+1)

uj

Fig. 1: Decomposition into rectangle areas

The discrete integral ρ(F) is the area under the curve of τ.

ρ(F) =
∫

τ(u)du (4)

The effective weight function w can be expressed as a function of the tails which
extension to R+ is w : t 7→ maxσ(w(σ) : τ(σ) ≥ t). Graphically, one can just
rotate the graph of τ to obtain that of w and see that:

ρ(F) =
∫

w(t)dt (5)

Both (4) and (5) are integrals of non-increasing functions defined over R+ and
of finite support.

3.2 From discrete integration to optimization

Direct computation of any form previously obtained is intractable. We resort
to approximations of ρ(F) when it is written as (4) or (5). Given that τ and w
are staircase functions, rectangles approximation seems to be the only method
fitted to approximate their integrals. First we apply the method on Eq (4). The
first step is the partition of the weight axis into linearly many intervals. We split
the axis at the quantile weights, defined as followed:

Definition 1. The 2i-th quantile weight of the weight distribution is the maximal
weight qi such that τ(qi) ≥ 2i.

The quantile weights q0, · · · , qn are all well-defined, and form a non-increasing
sequence. Consecutive quantile weights can be equal. For instance if F has < 2m

witnesses for some m < n, then qm = qm+1 = · · · = qn = 0. Note that for each
quantile weight qi, there exists some truth assignment σ such that qi = w(σ).
The partition of integral (4) at the quantile weights gives:

ρ(F) = qn2n +
n

∑
i=1

∫ qi−1

qi

τ(u)du

8 Alexis de Colnet and Kuldeep S. Meel

where
∫ qi−1

qi
represents the integral on]qi, qi−1]. Since the weight qn does not lie

in any interval we add the term qnτ(qn) = qn2n manually.
If u is in]qi, qi−1], then τ(u) < 2i, otherwise qi would not be the maximal weight
of tail ≥ 2i. Furthermore τ(u) ≥ τ(qi−1) which is ≥ 2i−1 by definition. So for
each weight in]qi, qi−1] we bound the corresponding tail within a factor of 2.
Figure 2 illustrates this rectangle approximation on the interval]qn−1, qn−2].

2i−1
∫ qi−1

qi

du ≤
∫ qi−1

qi

τ(u)du ≤ 2i
∫ qi−1

qi

du

2i−1 (qi−1 − qi) ≤
∫ qi−1

qi

τ(u)du ≤ 2i (qi−1 − qi)

Note that the bound holds when]qi, qi−1] is empty (qi = qi−1). Summing all
bounds together and rearranging the terms to get rid of differences of quantiles,
we obtain:

q0 +
n−1

∑
i=0

qi+12i ≤ ρ(F) ≤ q0 +
n−1

∑
i=0

qi2i

The two bounds are within a ratio of 2 of each other because the integral on
each interval was bounded within a ratio of 2. Let us choose the lower bound
to be our first estimate of ρ(F) and name it W1 = q0 + ∑n−1

i=0 qi+12i. We have

W1 ≤ ρ(F) ≤ 2W1 (6)

Given q0, · · · , qn, the estimate W1 can be computed in polynomial time. For
all i, the weight qi is, by definition, the solution of the following optimization
problem:

qi = max
{

w(σ) : τ(w(σ)) ≥ 2i}
So the approximation of the discrete integral ρ(F) has been reduced to n + 1
optimization sub-problems.

3.3 From discrete integration to counting

To find W1 we have done rectangles approximation on Eq (4). In this section
we investigate the estimate resulting from a similar approximation on Eq (5).
The first step is the partition of the tail axis. We will assume, for notational
clarity, that wmax ≤ 1. This bound is legitimate in the context of probabilistic
inferences [14], and the results of this paper can be extended to any arbitrary
but fixed bound. Recall that the weights are written with p bits in binary repre-
sentation, so the bounds wmax ≤ 2p and wmin ≥ 2−p are always valid. For our
partition, we define the splitting tails as followed:

Definition 2. The i-th splitting tail τi is the tail at weight 1/2i: τi = τ(1/2i).

Given the assumption on the range value of w, the interesting tails are τ0, · · · , τp.
They form a non-decreasing sequence. The partition of integral (5) at the split-
ting tails gives:

ρ(F) = τ0 +
p−1

∑
i=0

∫ τi+1

τi

w(t)dt

Dual Hashing-based Algorithms for Discrete Integration (Extended Abstract) 9

where
∫ τi+1

τi
represents the integral on]τi, τi+1]. Since the tail τ0 does not lie in

any interval we add the term τ0w(τ0) manually. τ0 is the number of assignments
heavier than weight 1. Either there are no such assignment and τ0 = 0, or there
are some, in which case w(τ0) = wmax = 1. In both cases we find that τ0w(τ0) =
τ0. If t is in]τi, τi+1], then 2−i−1 ≤ w(t) ≤ 2−i. So for each tail in]τi, τi+1], we
bound the corresponding weight within a factor of 2. Figure 3 illustrates this
rectangle approximation on the interval]τ1, τ2].

2−i−1
∫ τi+1

τi

dt ≤
∫ τi+1

τi

w(t)dt ≤ 2−i
∫ τi+1

τi

dt

2−i−1 (τi+1 − τi) ≤
∫ τi+1

τi

w(t)dt ≤ 2−i (τi+1 − τi)

Note that the bound holds when]τi, τi+1] is empty (τi = τi+1). Summing all
bounds together and rearranging the terms to get rid of differences of tails, we
obtain:

τp2−p +
p−1

∑
i=0

τi2−(i+1) ≤ ρ(F) ≤ τp2−p +
p−1

∑
i=0

τi+12−(i+1)

The two bounds are within a ratio of 2 of each other because the integral on
each interval was bounded within a ratio of 2. Let us choose the lower bound
to be our first estimate of ρ(F) and name it W2 = τp2−p + ∑

p−1
i=0 τi2−(i+1). We

have
W2 ≤ ρ(F) ≤ 2W2 (7)

Given τ0, · · · , τp, the estimate W2 can be computed in polynomial time. For all
i, the tail τi is, by definition, the solution of the following counting problem:

τi =
∣∣{σ : w(σ) ≥ 2−i}

∣∣
So the approximation of the discrete integral ρ(F) has been reduced to p + 1
counting sub-problems.

3.4 On the limitations of the estimates

The two estimates W1 and W2 are not only similar in terms of construc-
tion but also in terms of theoretical guarantees and limitations. Both are lower
bounds of ρ(F) and approximate ρ(F) within a ratio of 2. Furthermore, both W1
and W2 use some unknown quantities, respectively the weights q0, · · · , qn and
the tails τ0, · · · , τp. These are to be approximated.

Assuming that for positive some ε and δ we have an algorithm A returning
C, a (δ, ε)-approximations of W1 (resp. W2). Then with probability at least 1− δ,
C is a bounded estimate of ρ(F) such that ρ(F)

2(1+ε)
≤ C ≤ (1+ ε)ρ(F). In any case,

the quality of the estimate is capped: the best approximation interval possible is
[ρ(F)/2, ρ(F)]. However, note that we obtained 2-approximations of ρ(F) using

10 Alexis de Colnet and Kuldeep S. Meel

base-2 partitions of the tail and weight axis for the rectangles approximations. If
we use base-β partitions instead, with β < 2, we can improve our estimates. For
instance for β = 1 + ε, we partition the weight axis at the (1 + ε)i-th quantile
weights and the tail axis at the tails τ((1 + ε)−i). Rectangles approximations
W ′1 and W ′2 are then both in [ρ(F), (1+ ε)ρ(F)]. Now, algorithmA returns some
quantity in

[
ρ(F)/(1 + ε)2, (1 + ε)ρ(F)

]
with probability at least 1 − δ. So A

computes a (3ε, δ)-approximation of ρ(F) (for ε < 1 we have (1 + ε)−2 ≥ (1 +
3ε)−1).

2n

2n−1

2n−2

qn qn−1 qn−2 w

τ

Fig. 2: Rectangles approximation
on Eq (2)

2−12−2

τ1

τ2

w

τ

Fig. 3: Rectangles approximation
on Eq (3)

4 Algorithms

In this section we present two algorithms to approximate the discrete in-
tegral ρ(F). The first one approximates W1. It uses a hashing-based approach
to approximate solutions for the optimization/MPE sub-problems described in
section 3.2. Given the lack of any approach to find 2i-th quantiles, hashing is
used to reduce the task to that of standard optimization. The second algorithm
approximates W2 and also implements a strategy based on hashing functions
to approximately solve the counting sub-problems described in section 3.3, this
choice is motivated by the success of hashing-based technique for model count-
ing [5]. Since it is known that (1+ ε)-approximations can be obtained from con-
stant factor approximations by standard amplification techniques [8], we will
focus on obtaining constant factor approximations. Possibilities of extension of
the algorithms to reach arbitrary precision approximations following the strat-
egy of section 3.4 will be discussed in section 4.4.

4.1 An NP Oracle

The procedure for discrete integration via optimization was first discovered
by Ermon et al [8]. They expressed the complexity of their algorithm as the
number of calls to an MPE oracle. It is customary to express complexity with
respect to oracles corresponding to decision problems. Therefore, we express

Dual Hashing-based Algorithms for Discrete Integration (Extended Abstract) 11

complexities in terms of invocations of an NP oracle. The oracle is a system
capable of solving a decision problem in O(1) time. In this paper, the oracle is
given a boolean formula F, a weight function ρ computable in polynomial time
and a real number u, and returns YES if and only if there exists a satisfying
assignment of F of weight greater than u. More formally, it solves the problem
SAT(F ∧ {ρ(σ) ≥ u}) where the constraint ρ(σ) ≥ u is not necessarily boolean.
Given a solution σ, the condition σ |= F can be tested in polynomial time, and
so is ρ(σ) ≥ u by hypothesis on ρ. So the decision problem is in NP.

4.2 Discrete integration by optimization: WISH

We present a modified version of the algorithm of Ermon et al [8]: WISH
(Weighted Integration and Sum by Hashing). When comparing our version of
WISH to the original, we will refer to the latter as WISH EGSS, from the initials
of its authors. WISH takes in a formula F, a weight function ρ, and a confidence
parameter δ, and returns an estimate for W1.

Algorithm 1 WISH(F, ρ, δ)

1: T ←
⌈
128 ln(2n/δ)

⌉
2: for all 1 ≤ t ≤ T do
3: A0 ← [] , b0 ← []
4: for all 0 ≤ i ≤ n do
5: Sample constraint Ci in {0, 1}n and βi in {0, 1}
6: Ai+1 ← concat(Ai, Ci) , bi+1 ← concat(bi, βi)

Let mt
i be maxσ(w(σ) : Ai+1σ⊕ bi+1 = 0)

7: m̂t
i ← 2κ where κ = max(k : 2k ≤ mt

i)
8: end for
9: end for

10: ∀i , q̂i ← Median(m̂1
i , · · · , m̂T

i)

11: return
√

2
(

q̂0 + ∑n−1
i=0 q̂i+12i

)

WISH’s main task is to estimate the quantiles weights qi. The general idea
is to use hash functions projecting the truth assignments into 2i buckets and
to take the heaviest assignment in a random bucket. Hash functions are built
adding xor constraints incrementally: concat(A, C) adds the line C to the ma-
trix of constraints A. By uniformity property, an arbitrary bucket contains in
expectation 2n−i truth assignments after i constraints. Since there are roughly
2i−1 assignments heavier than qi−1, the expected amount mapped to the chosen
bucket should be close to zero. So hopefully the heaviest weight of the bucket
(noted mt

i for the t-th run) is in [qi, qi−1], and it is chosen as candidate for the
estimate q̂i. The following lemma gives guarantees on the range of the heaviest
weight of a bucket (proof is deferred to appendix).

12 Alexis de Colnet and Kuldeep S. Meel

Lemma 1. For all t in [[1, T]] and all i in [[1, n]], there is

Pr
[
mt

i ≥ qi
]
≥
(

3
4

)2
and Pr

[
mt

i ≤ qi−1
]
≥
(

3
4

)2

Iterating this process T times and taking the median candidate amplifies the
confidence of the estimation.

Lemma 2. For i > 0, let q̂i be the median of m1
i , · · · , mT

i resulting from the T inde-
pendent iterations. And let Ii be the interval [qi, qi−1]. There is:

Pr [q̂i ∈ Ii] ≥ 1− 2 exp
(
−T

α

)
where α = 27 = 128.

In the algorithm, q̂i is actually not the median of m1
i , · · · , mT

i but the median
of their 2-approximations m̂1

i , · · · , m̂T
i . With this modification, the statement of

the lemma holds for Ii = [qi/2, qi−1]. An estimate of the integral is finally gen-
erated using the formula for W1 and replacing the qi by their estimates q̂i.

We make several contributions to WISH EGSS in WISH. We first reduce the
MPE queries employed in WISH EGSS to find the weights mt

i to binary searches
using the NP oracle queries. Weights are written with p bits so finding mt

i takes
O(p) oracle queries. However we prefer the approximate variant in which the
binary search explores [[0, p]] to find κ = blog(mt

i)c and returns 2κ . This variant
reduces the cost to O(log(p)) queries while approximating mt

i within a fac-
tor of 2. A second contribution is the usage of dependence among different
hash functions: hash functions of i + 1 constraints are no longer sampled inde-
pendently but built upon hash functions of i constraints (hence the concat(·,·)
function). Our last contribution is the significant improvement of WISH EGSS’s
guarantees: the original analysis used only the pairwise independence of hash
functions, but we use 3-wise independence to obtain the improved lemma 1.
This lemma ultimately allows us to prove that WISH approximates ρ(F) within
a factor of 8, while the initial factor was 256. The reduce factor is still quite large
but greatly accelerates the amplification process described in [8].

Theorem 1. For any δ > 0, WISH(F, ρ, δ) makesO (n log(p) log(n/δ)) calls to NP
oracle and returns an approximation of ρ(F) within

[
ρ(F)/(2

√
2), 2
√

2ρ(F)
]

with
probability at least 1− δ.

4.3 Discrete integration by counting: SWITCH

We now describe an algorithm for discrete integration that utilizes the re-
duction to counting sub-problems. We call the algorithm SWITCH (Sum of Weights
and Integral via Threshold Counting and Hashing). SWITCH takes in a formula
F, a weight function ρ, and a confidence parameter δ, and returns an estimate

Dual Hashing-based Algorithms for Discrete Integration (Extended Abstract) 13

for W2. SWITCH’s main task is to estimate the tails τi = τ(2−i). The core idea
is to view tails as cardinals of some subsets of witnesses of F and use hash-
ing to estimate these cardinalities. The approximation method is very similar to
previous hashing-based techniques [16,5]. For a given subset of size τi, we suc-
cessively apply constraints until its projection on an arbitrary bucket is empty.
Each new randomly sampled constraint halves the remaining set in expectation,
so the number of constraints necessary to reach the empty set can be viewed as
a good approximation of li = log(τi) and its power of 2 approaches τi.

Algorithm 2 SWITCH(F, ρ, δ)

1: T ← d128 ln(4p/δ)e
2: for all 1 ≤ t ≤ T do
3: Sample A in {0, 1}n×n and b in {0, 1}n

4: for all 0 ≤ i ≤ p do
5: l̂ t

i ← max
{

k | ∃ σ such that σ |= F, ρ(σ) ≥ 2−i and Akσ⊕ bk = 0
}

where Ak ← A[1..k] and bk ← b[1..k]
6: end for
7: end for
8: ∀i , l̂i ← Median(l̂ 1

i , · · · , l̂ T
i) , τ̂i = 2l̂i

(handle cases τi = 0 and τi = 1 exactly)

9: return
√

2
(

τ̂p2−p + ∑
p−1
i=0 τ̂i2−i−1

)

Lemma 3. If li > 0 (τi > 1), then there is for all t in [[1, T]]:

Pr
[
l̂ t
i ≤ dlie

]
≥
(

3
4

)2
and Pr

[
l̂ t
i ≥ blic

]
≥
(

3
4

)2

One may note that τi is not necessarily a power of 2, so our method of approxi-
mating logarithms by integers is imprecise and the estimation error is amplified
as a power of 2. Furthermore, there are two cases not handled by the lemma

• The case τi = 0 (li = −∞): there are no witness of F of weight greater than
2−i. One call to the NP oracle is enough to spot this case.
• The case τi = 1 (li = 0): a set of 1 element stays intact after 1 constraint

with probability 1/2, so we overestimate is size with probability 1/2. This
case is spotted with two NP oracle queries (adding a block clause before the
second query).

Assuming we are not in any such cases, we amplify the confidence on the esti-
mates of li repeating the process T times and choosing the median candidate.

Lemma 4. Let l̂i be the median of the T independent l̂ 1
i , · · · , l̂ T

i . Assume τi > 1 and
let Ji be the interval [blog(τi)c, dlog(τi)e]. There is:

Pr
[
l̂i ∈ Ji

]
≥ 1− 2 exp

(
−T

α

)

14 Alexis de Colnet and Kuldeep S. Meel

where α = 27 = 128. Therefore τ̂i = 2l̂i is an estimate of τi that lies in
[τi

2 , 2τi
]

with
same probability.

The tails estimates are finally used to compute an estimate of W2.

The NP oracle is called to check if a set is empty after application of con-
straints. When approximating li line 5, the constraints are taken from the same
set of n constraints stored in A and b (Ak and bk representing the first k lines
of A and b). Consequently, if there are witnesses satisfying Ajσ ⊕ bj = 0 for
some j, they also satisfy Aiσ ⊕ bi = 0 for all i ≤ j. Similarly if no witness sat-
isfy Ajσ ⊕ bj = 0, none satisfy Aiσ ⊕ bi = 0 for i ≥ j. So to find how many
constraints are enough to empty the set of witnesses of F heavier than 2−i, one
can proceed by binary search in [[0, n]]. Following this idea, the procedure line 5
makes O(log(n)) calls to the NP oracle.

Theorem 2. For any δ > 0, SWITCH(F, ρ, δ) makes O(p log(n) log(p/δ)) calls to
NP oracle and returns a approximation of ρ(F) within

[
ρ(F)/(2

√
2), 2
√

2ρ(F)
]

with
probability at least 1− δ.

Theorems 1 and 2 show that WISH and SWITCH approximate the discrete
integral within a factor of 8 but have dual complexities, in the sense that there
is a function f , such that WISH makes O(f (n, p, δ)) NP oracle calls against
O(f (p, n, δ)) calls for SWITCH. We have found this function to be f (n, p, δ) =
n log(p) log(n/δ). Furthermore, the analysis shows that the constants hidden
by the O notation are of same order of magnitude. So depending on the value
of n and p, one may prefer one algorithm to the other.

4.4 On the extension to arbitrary precision algorithms

In the discussion on the limitation of the estimates section 3.4, we pointed
out that generating approximations of W1 or W2, one could not hope for better
than approximations of the discrete integral within a factor 2. This capped ap-
proximation factor comes from doing base 2 partitions of the integration axis
when defining the quantiles weights qi and the splitting tails τi. We explained
that using base β (β in]0, 1[) partitions, one could easily find estimates of arbi-
trarily close approximations.

Typically WISH and SWITCH should be adapted so as to ensure arbitrarily
close approximations of the quantiles weights and splitting tails defined from
base β partitions. Both algorithm rely on hash functions which particularity is
to halve cardinality with each new constraint added. For WISH, such hash func-
tions are fitted when computing base 2 quantile weights, because the tails are
also halved from one quantile to the next. But for base β quantile weights, we
have yet to find how to adapt the algorithm. Another alternative would be to
use Stockmeyer’s trick for converting an algorithm A returning constant factor
approximation into arbitrary precision algorithm by invoking A on multiple
copies of F [1,8].

Dual Hashing-based Algorithms for Discrete Integration (Extended Abstract) 15

For SWITCH, there exists hashing-base algorithms for approximate model
counting which return (ε, δ)-approximations [5,6,15]. SWITCH can be adapted
taking inspiration from these algorithms so as to generate arbitrarily close ap-
proximations of all base β splitting tails.

5 Conclusion

In this paper, we provide a framework for developing algorithms for ap-
proximate discrete integration. In this framework, discrete integrals are trans-
formed into integrals of non-increasing real functions which are subsequently
approximated using classical methods. We build two algorithms from this frame-
work: we demonstrate how transformations over the discrete integral give rise
to two different algorithmic approaches. One approach, WISH, relies on usage
of optimization queries while the other, SWITCH, reduces the problem of dis-
crete integration to that of several unweighted counting problems. The anal-
ysis that lead to these two reductions were shown to be very alike, in that
they follow similar steps in the transformation of the discrete integral. The
similarity extends to the algorithms as we have shown that SWITCH makes
O(p log(n) log(p/δ)) calls to NP oracle in contrast to O (n log(p) log(n/δ))
calls in the context of WISH, so that the two complexities are dual on n and
p. This result provides insight on deciding which approach to use depending
on the context, as the approach expected to do fewer oracle queries depends on
n and p.

It would be of interest to understand empirical performance comparison
of WISH and SWITCH and we hope that the aforementioned algorithmic ap-
proaches will motivate practitioners to develop the underlying required solvers:
(i) SAT solvers capable of handling XOR and PB constraints, and (ii) MaxSAT
solvers capable of handling XOR constraints. The current MaxSAT solvers and
the CNF-PB solvers handle these XOR constraints blasting them into CNF after
performing top-level Gaussian elimination. The recent success of BIRD frame-
work owing to a tighter integration of CNF and XOR solving for CNF-XOR
formulas motivates the tighter integration of (i) XOR and PB constraints , and
(ii) MaxSAT solving with XOR constraints [15].

Acknowledgements This research has been supported in part by the National
Research Foundation Singapore under its AI Singapore Programme [R-252-000-
A16-490] and the NUS ODPRT Grant [R-252-000-685-133].

16 Alexis de Colnet and Kuldeep S. Meel

References

1. Bellare, M., Petrank, E.: Making zero-knowledge provers efficient. In: Proceedings
of the 24th Annual Symposium on the Theory of Computing, ACM. Citeseer (1992)

2. Brooks, S., Gelman, A., Jones, G., Meng, X.L.: Handbook of markov chain monte
carlo. Chapman & Hall/CRC (2011)

3. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. Journal of Computer
and System Sciences (1977)

4. Chakraborty, S., Fremont, D.J., Meel, K.S., Seshia, S.A., Vardi, M.Y.: Distribution-
aware sampling and weighted model counting for sat. In: Proc. of AAAI. pp. 1722–
1730 (2014)

5. Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable approximate model counter. In:
Proc. of CP. pp. 200–216 (2013)

6. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Algorithmic improvements in approximate
counting for probabilistic inference: From linear to logarithmic SAT calls. In: Proc.
of IJCAI (2016)

7. Ermon, S., Gomes, C., Sabharwal, A., Selman, B.: Embed and project: Discrete sam-
pling with universal hashing. In: Proc. of NIPS. pp. 2085–2093 (2013)

8. Ermon, S., Gomes, C., Sabharwal, A., Selman, B.: Taming the curse of dimensional-
ity: Discrete integration by hashing and optimization. In: Proc. of ICML. pp. 334–342
(2013)

9. Gogate, V., Dechter, R.: Approximate counting by sampling the backtrack-free
search space. In: Proc. of the AAAI. vol. 22, p. 198 (2007)

10. Gomes, C., Sabharwal, A., Selman, B.: Near-uniform sampling of combinatorial
spaces using xor constraints. In: Proc. of NIPS. pp. 481–488 (2006)

11. Jerrum, M.R., Sinclair, A.: The Markov chain Monte Carlo method: an approach
to approximate counting and integration. Approximation algorithms for NP-hard
problems pp. 482–520 (1996)

12. Kitchen, N., Kuehlmann, A.: Stimulus generation for constrained random simula-
tion. In: Proc. of ICCAD. pp. 258–265 (2007)

13. Paredes, R., Duenas-Osorio, L., Meel, K.S., Vardi, M.Y.: Network reliability estima-
tion in theory and practice. Reliability Engineering and System Safety (2018)

14. Roth, D.: On the hardness of approximate reasoning. Artificial Intelligence (1996)
15. Soos, M., Meel, K.S.: Bird: Engineering an efficient cnf-xor sat solver and its appli-

cations to approximate model counting. In: Proceedings of AAAI Conference on
Artificial Intelligence (AAAI)(2019) (2019)

16. Stockmeyer, L.: The complexity of approximate counting. In: Proc. of STOC. pp. 118–
126 (1983)

17. Tzikas, D.G., Likas, A.C., Galatsanos, N.P.: The variational approximation for
Bayesian inference. In: IEEE Signal Processing Magazine. pp. 131–146 (Nov 2008)

18. Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer
Science 8, 189–201 (1977)

19. Wainwright, M.J., Jordan, M.I.: Graphical models, exponential families, and varia-
tional inference. Found. Trends Machine Learning 1(1-2), 1–305 (2008)

	Dual Hashing-based Algorithms for Discrete Integration (Extended Abstract)

