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Abstract
The problem of uniform sampling is, given a formula F , sample solutions of F uniformly at

random from the solution space of F . Uniform sampling is a fundamental problem with widespread
applications, including configuration testing, bug synthesis, function synthesis, and many more.
State-of-the-art approaches for uniform sampling have a trade-off between scalability and theoretical
guarantees. Many state of the art uniform samplers do not provide any theoretical guarantees on
the distribution of samples generated, however, empirically they have shown promising results. In
such cases, the main challenge is to test whether the distribution according to which samples are
generated is indeed uniform or not.

Recently, Chakraborty and Meel (2019) designed the first scalable sampling tester, Barbarik,
based on a grey-box sampling technique for testing if the distribution, according to which the given
sampler is sampling, is close to the uniform or far from uniform. They were able to show that
many off-the-self samplers are far from a uniform sampler. The availability of Barbarik increased
the test-driven development of samplers. More recently, Golia, Soos, Chakraborty and Meel (2021),
designed a uniform like sampler, CMSGen, which was shown to be accepted by Barbarik on all the
instances. However, CMSGen does not provide any theoretical analysis of the sampling quality.

CMSGen leads us to observe the need for a tester to provide a quantitative answer to determine
the quality of underlying samplers instead of merely a qualitative answer of Accept or Reject. Towards
this goal, we design a computational hardness-based tester ScalBarbarik that provides a more nuanced
analysis of the quality of a sampler. ScalBarbarik allows more expressive measurement of the quality
of the underlying samplers. We empirically show that the state-of-the-art sampler, CMSGen is not
accepted as a uniform-like sampler by ScalBarbarik. Furthermore, we show that ScalBarbarik can be
used to design a sampler that can achieve balance between scalability and uniformity.
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9:2 On Quantitative Testing of Samplers

1 Introduction

Given a formula F over the set of variables X, the problem of Boolean satisfiability (SAT) is
to determine whether there exists an assignment σ to X such that F evaluates true under
σ. The past two decades have witnessed a dramatic improvement in the runtime of SAT
solvers owing to the Conflict Driven Clause Learning (CDCL) paradigm, and as a result, SAT
solvers find applications in diverse areas ranging from constrained-random verification [19],
computational biology [10], and artificial intelligence. The progress in SAT solving has led
to development of algorithmic and practical implementations for problems in complexity
classes beyond NP. One such problem that has seen a sustained interest over the past decade
is that of uniform sampling. The problem of uniform sampling is to sample satisfying
assignments of a formula uniformly at random from the space of satisfying assignments of
the formula. Like SAT solver, uniform sampling also has wide variety of applications, like
in configuration testing [7, 15], constrained-random simulation [19], bug synthesis [21], and
function synthesis [12].

The last decade has seen several algorithmic proposals for efficient uniform sampling owing
to its diverse applications. The different techniques for uniform sampling can be divided into
two categories: (1) techniques that provide theoretical guarantees on the distribution from
which the samples are generated, and (2) techniques that do not provide any theoretical
guarantees on the samples produced. The hashing-based sampler UniGen, UniGen3 [6, 5, 23],
and the knowledge compilation-based sampler KUS [22] fall in the first category, however,
experimental evaluation shows that these samplers could not always achieve scalability for
real world instances. At the same time, there exist many other sampling techniques, such as
the mutation-based QuickSampler [8] and BDD-based techniques [16], or randomized CDCL
SAT solvers [13] that can provide empirical scalability, however do not provide guarantees
on the distribution of samples generated.

Algorithmic proposals that cannot provide theoretical grantees on the distribution of
samples generated often rely on statistical test such as KL-divergence [17] to showcase the
quality of the samples generated. These statistical tests are only able to show that samples
produced by the samplers for a small set of benchmarks are close to samples produced
from a uniform distribution. However, such tests do not generalize over entire benchmark
sets. Recently, Chakraborty and Meel proposed the first scalable sampling test framework,
Barbarik [3], to test whether a sampler under test (SUT1) is close to uniform or not. The
tester Barbarik takes an (1) SUT, a (2) base uniform sampler, a (3) tolerance parameter ε, an
(4) intolerance parameter η, a (4) confidence parameter δ, and a (5) formula ϕ and returns
Accept if SUT is close to a uniform sampler. Barbarik returns Reject only if the SUT is far
from a uniform sampler under subquery-consistency assumption, which is to assume that the
SUT does not change its sampling behavior during the test, that is, off the shelf samplers
would be sub-query consistent2.

The main idea behind Barbarik is to reduce the input formula ϕ to ϕ̂ using two satisfying
assignments of ϕ chosen uniformly at random from the solution space of ϕ. One assignment,
say σ1 is drawn using the SUT, and another assignment, say σ2 is drawn according to uniform
distribution using the base sampler. The analysis for Barbarik shows that if the distribution
from which the SUT is sampling the assignments is close to uniform distribution, the

1 The term SUT is from software testing literature, where it is shorthand for System Under Test.
2 We rename the notion of non-adversarial assumption introduced in [3] to subquery-consistency to better

capture its intended properties. We formally define the subquery-consistent assumption in Section 2.
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conditional distribution over {σ1, σ2} is also close to uniform. Similarly, if the distribution
from which the SUT is sampling the assignments is far from uniform, the conditional
distribution over {σ1, σ2} is also far from uniform. It is easy to estimate the distance of
conditional distribution over {σ1, σ2} to uniform distribution using random samples from ϕ̂.
Empirically, it was shown that Barbarik accepts UniGen3, which is a sampler with theoretical
grantees, however, it rejects the state of the art uniform-like samplers, that is, samplers
without theoretical guarantees, such as QuickSampler [8] and STS [9]. Recently, Meel et
al. generalize the idea of Barbarik to handle any arbitrary weight function, that is, to test
whether a SUT generates samples according to a given distribution [18].

Recently, Golia, et al. used Barbarik in a test-driven development fashion to create
the uniform-like sampler CMSGen [13] from the state-of-art SAT solver CryptoMiniSat [24].
CMSGen is based on randomization of the conflict-driven-clause-learning (CDCL) framework
inside CryptoMiniSat and most modern SAT solvers. Based on the feedback from Barbarik, the
authors iteratively changed the hyper-parameters of CryptoMiniSat such as restart intervals,
restart types, polarity picking heuristics and the like, until they arrived at a point where it
was able to pass all tests. Analyzing the CDCL itself is a hard problem, and so the resulting
uniform-like sampler, CMSGen, could not provide theoretical guarantees on the distribution
of samples produced. However, it was shown in [13] that Barbarik returns Accept for CMSGen.

The development of samplers such as CMSGen poses an interesting question regarding
test frameworks such as Barbarik: is it possible that uniform-like samplers such as CMSGen
pass the test, but they are not uniform? If so, how can one demonstrate that they are
not? These questions point towards revisiting the design of sampler test frameworks such as
Barbarik. We need a tester that provides a quantitative analysis instead of qualitative answer
of Accept or Reject to measure the quality of samplers.

The above stated goal to improve sampling testers requires new insights about the
workings of samplers. The improvement of Barbarik that we are envisioning is to generate
input formulas that are specifically crafted to highlight non-uniformity in the samples
produced by the samplers. Towards this goal, we propose the framework ScalBarbarik.

Contributions
The success of CMSGen and the current lack of theoretical analysis leads us to hypothesize
that CMSGen may not be uniform for all the formulas but is not necessarily far from uniform
for a large class of formulas. The current framework of Barbarik provides too coarse grained
analysis to allow users to determine the quality of distributions generated by a sampler such
as CMSGen. To achieve such a fine-grained analysis, we need a parameterized generation of
ϕ̂. To this end, we design an improved algorithm, Shakuni, for construction of ϕ̂ such that ϕ̂
is composed of two sub-formulas with varying computational hardness.

We augment Barbarik with Shakuni to obtain ScalBarbarik that can provide fine-grained
analysis with respect to hardness dial provided by Shakuni. ScalBarbarik allows us to view
that the distribution quality of CMSGen is better than samplers such as QuickSampler
but falls short of samplers with rigorous guarantees such as UniGen. ScalBarbarik can then
be used to fine-tune a heuristic-based uniform-like sampler such as CMSGen to achieve a
different balance between scalability and uniformity. Towards this, we empirically analyze the
distribution of samples generated by CMSGen with different restart intervals. We then show
that CMSGen could generate samples from a close to uniform distribution with increased
restart intervals, sacrificing speed for better uniformity.

It is worth remarking that an important strength of ScalBarbarik is its simplicity. Based
on our empirical analysis, ScalBarbarik with varying computational hardness is able to show

CP 2022



9:4 On Quantitative Testing of Samplers

that CMSGen is not a uniform sampler. The availability of ScalBarbarik has the potential
to spur a virtuous cycle of development of samplers and testing techniques: the developers
can design sampling methods that can be accepted by testers such as Barbarik/ScalBarbarik
and consequently improve testers so that such samplers are rejected in the following version
of it. With the help of ScalBarbarik, we can tune a sampler to achieve the balance between
scalability and uniformly. Our experimental evaluation demonstrates that as we increase the
restart intervals of CMSGen, we need to increase the computational hardness of ScalBarbarik
to reject CMSGen, that is, with increased restart intervals CMSGen is able to generate samples
from a close to uniform distribution; however, it takes longer time to generate the samples.
The availability of ScalBarbarik allows us to improve to samplers such as CMSGen.

The rest of the paper is organized as follows: In Section 2, we present the formal definitions
and also present a brief description of state-of-the-art tester Barbarik. In Section 3, we present
the improved test framework ScalBarbarik based on a cryptographically hard function. We
provide a detailed algorithmic description in Section 4, and we present the experimental
evaluation in Section 5. Finally, we conclude in Section 6.

2 Notation and Background

A literal is a Boolean variable or its negation. A formula is considered to be in conjunctive
normal form (CNF) if the formula is conjunction of clauses. A clause is a disjunction of
literals. Let ϕ be the formula in CNF, and let Supp(ϕ) represent the set of variables in ϕ.
A satisfying assignment to ϕ is an assignment of truth values to Supp(ϕ) under which the
formula ϕ evaluates to True. Let σ be a satisfying assignment of ϕ, and let S ⊆ Supp(ϕ),
σ↓S represents the projection of σ over S. Let Rϕ be the set of all satisfying assignments of
formula ϕ. We used L[n : m] to represent the substring of L, starting with position n to m.

Chain Formulas: Chain formulas were introduced in [4]. Given positive integers k and m,
chain formulas are Boolean formulas with exactly k satisfying solutions with dlog(k)e ≤ m
variables.

I Definition 1 ([4]). Let c1, c2, . . . , cm be the m-bit binary representation of k, where cm is
the least significant bit. A chain formula ϕk,m(.) on m Boolean variables v1, v2, . . . , vm is as
follows:
For every j in {1, . . . ,m− 1}, let Cj be the connector “∨" if cj = 1, and the connector “∧"
if cj = 0, and the formula ϕk,m(v1, v2, . . . , vm) = v1C1(v2C2(. . . (vm−1Cm−1vm)))

A Sampler: A CNF sampler or simply a sampler takes a formula ϕ, a number of
required satisfying assignments N , S ⊆ Supp(ϕ), and returns satisfying assignments
σ1↓S

, σ2↓S
, . . . , σN↓S

. A uniform sampler, say G takes ϕ,N, S ⊆ Supp(ϕ) that generates

a satisfying assignment σi for all i ∈ {1, N} with probability 1
|Rϕ|

. Similarly, a sampler is

considered to be an additive almost-uniform sampler, if the following holds with 0 ≤ ε ≤ 1:

∀σ ∈ Rϕ,
1− ε
|Rϕ|

≤ Pr[G(ϕ,N) = σ] ≤ 1 + ε

|Rϕ|

We use a sampler G(., ., .) or G(., .) when S is Supp(ϕ), or simply G when N and S are
clear from context. We use pG(.,.,) to denote the probability with that G samples a satisfying
assignment σ, and DG(ϕ,.,.) to denote the distribution induced by sampler G over solution
space of ϕ.

Given a formula ϕ, and an intolerance parameter η, a sampler G is considered to be η-far
from a uniform sampler if `1 distance between the distribution induced by G over solution
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space of ϕ to the uniform distribution is at least η, that is,

∑
x∈sol(ϕ)

∣∣∣∣pG(ϕ,x) −
1

|sol(ϕ)|

∣∣∣∣ ≥ η
A Sampler Tester: Given a uniform sampler, a sampler tester tests if the sampler is

sampling an assignment from the solution space Rϕ, and the samples are generated from a
close to uniform distribution. A sampler test framework is defined as follows:

I Definition 2. Given a Boolean formula ϕ, a sampler G, a tolerance parameter ε, an
intolerance parameter η, a confidence parameter δ, a sampler tester T (·, ·, ·, ·, ·) returns
Accept or Reject (with a witness) with the following guarantees:
1. If the sampler G(ϕ, ., ) is an additive almost-uniform generator, then T (G,ϕ, ε, η, δ)

returns Accept with probability at least 1− δ
2. If the sampler G(ϕ, ., ) is η-far from uniform generator, then T (G,ϕ, ε, η, δ) returns Reject

with probability at least 1− δ

Barbarik

Chakraborty and Meel [3] designed the tester Barbarik that takes a base uniform sampler U , a
Sampler Under Test (SUT) G, a tolerance parameter ε, an non-tolerance parameter η, and a
confidence parameter δ. ε, η, δ take values between 0 to 1. The problem under consideration
is to distinguish between the case where G is close to U , and the case when G is far from U .
We know the probability of each assignment in the support for uniform sampler U , that is,
Pr[U(., ., .)] = 1

|Rϕ|
. However, distribution for G is unknown, we only have access to samples

from G. Given access to a uniform sampler U , Barbarik provides guarantees described in
Definition 2. Furthermore, in case Barbarik rejects the SUT, it also provides a CNF formula
ϕ̂ as a witness. The formula ϕ is reduced to ϕ̂ such that ϕ̂ has exactly two assignments for
the variables in the support S, and the distribution DG(ϕ̂) from which samples are generated
for ϕ̂ is η far from uniform.

To achieve the aforementioned guarantees, Barbarik uses the idea of conditional sampling.
Barbarik samples a satisfying assignment σ1 from the SUT G, and another satisfying assign-
ment σ2 from the base uniform sampler U . Let T be {σ1, σ2}. If the distribution DG(ϕ) from
which SUT is sampling is close to uniform distribution, then the conditional distribution
DG(ϕ)|T is also close to uniform distribution. Similarly, if the distribution DG(ϕ) is far from
uniform distribution, then the conditional distribution DG(ϕ)|T is also far from uniform
distribution. Therefore, instead of focusing on the distribution DG(ϕ), Barbarik considers the
distribution DG(ϕ)|T as it is easier to test.

In order to consider the distribution DG(ϕ)|T , Barbarik constructs a formula ϕ̂ from ϕ with
the help of the subroutine Kernel. The subroutine Kernel takes a formula ϕ, two satisfying
assignments σ1 and σ2, and an integer N which represents the number of assignments ϕ̂ and
returns a formula ϕ̂. The subroutine Kernel ensures that ϕ̂ and ϕ have the similar structure,
and Supp(ϕ) ⊂ Supp(ϕ̂). Furthermore, |∀σ ∈ Rϕ̂|σ↓S = σ1| = |∀σ ∈ Rϕ̂|σ↓S = σ2|.

The formula ϕ̂ should satisfy the two conditions: (i) If the SUT G(ϕ) is ε-additive
almost-uniform generator, the distribution from which sampler is generating samples, say
DG(ϕ̂,S) is close to uniform distribution over the set {σ1, σ2}, and (ii) If the SUT G(ϕ) is
η-far from uniform sampler, then the distribution U , the distribution DG(ϕ̂,S) is far from
uniform distribution over the set {σ1, σ2}.

CP 2022



9:6 On Quantitative Testing of Samplers

If the sampler G is an additive almost-uniform generator on any input formula ϕ, the first
condition would be satisfied. However, to satisfy the second condition, we need subquery-
consistent assumption as per [3]:

I Definition 3. The subquery-consistent sampler assumption states that if (ϕ̂, Ŝ) is
the output obtained from Kernel(ϕ, S, σ1, σ2, N) then

S ⊆ Ŝ
the output of G(ϕ̂, S,N) is N independent samples from the conditional distribution
DG(ϕ,S) |T , where T = {σ1, σ2}.

Thus, if for any formula ϕ the sampler G(ϕ) is η-far from the uniform sampler in the `1
distance and the sampler satisfies the subquery-consistent sampler assumption then
Barbarik will Reject with probability (1− δ).

3 A Quantitative Tester

The behavior of Barbarik shows that while Barbarik is able to return Reject for samplers
without guarantees such as STS or QuickSampler, it returns Accept for CMSGen. It is
important to note that the theoretical analysis of soundness of Barbarik is unconditional
but the analysis of completeness is conditional, i.e., when Barbarik returns Reject, then the
sampler is non-uniform, but the output Accept from Barbarik needs to be interpreted through
the lens of subquery-consistent assumption.

It is worth emphasizing that the existence of strong lower bounds on the black-box
approach necessitates introduction of a grey-box approach, and in turn subroutines such as
Kernel along with subquery-consistent assumption are likely unavoidable. Therefore, in order
to improve Barbarik, we focus on extending Kernel via parameterization to allow a nuanced
analysis of the quality of distributions. To this end, we first focus on identifying properties of
formulas that may make it hard for algorithms without rigorous guarantees to sample well.

3.1 Computational Hardness
As discussed in Section 1, there are a number of decisions taken by CMSGen, as in all samplers
and solvers, for increasing efficiency. Many of these decisions/heuristics are inherited from
CryptoMiniSat. One of the crucial components of CDCL-based SAT solvers is the usage of
restarts [2]. While theoretical understanding of the power and need for restarts in CDCL
SAT solvers is limited, a predominant view among practitioners is that frequent restarts help
the solver avoid being stuck in a part of assignment space.

The usage of heuristics that seek to avoid a sampler being stuck in a part of assignment
space may have implications on its ability to sample uniformly. In particular, one can argue
that usage of frequent restarts may lead CMSGen to not sample uniformly for a certain class
of formulas, where the solution space of the formula can be categorized into easy and hard —
such that solutions belong to the easy set are easier to find without the need for excessively
large number of conflicts while the solutions belonging to the hard set require significantly
more conflicts. In such a scenario, CMSGen may find it harder to sample uniformly as the
restarts will push CMSGen towards the easier side while it may almost never end up finding
an assignment from the harder side. At this point, one may ask if this observation can be
used to inform the design of the sampler tester.

To design a test framework to Reject a sampler such as CMSGen, we need to formalize
our observation. To this end, we seek to define the notion of computational hardness for
our case formally. At the onset, it is worth accepting that our limited understanding of the
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workings of CDCL solvers in the context of classical complexity-theoretic notions imply that
we need to use constructs based on practical aspects of SAT solvers. Roughly speaking, the
computational hardness of a CNF-formula should indicate how hard it is for a SAT solver to
find a satisfying assignment. It is well known that while modern SAT solvers are extremely
efficient at solving many problems, there are entire classes of problems that pose significant
challenges. One such class of problem is cryptographic challenges, which are designed to
be hard to be solved by any tool. The consumption of resources such as a memory by an
algorithm varies with time, and we seek to capture the peak resource consumption as follows:

I Definition 4. Given an algorithm A, input I, and time t, for a particular run of the
algorithm A on input I the PeakCost(A, I, t) measures the maximum resource consumption
by A at execution step t on that particular run. This function is a non-decreasing function
in t and stops to increase from the moment the run of the algorithm stops.

Given a set of solvers/samplers G, a CNF-formula ϕ is said to have computational
hardness κ with respect to G if for A ∈ G

Pr[ lim
t→∞
{PeakCost(A, ϕ, t)} ≥ κ] ≥ 1− o(1),

where the probability is taken over the internal randomness of A, and o(1) refers to “little-o”
notation.

To capture the behavior of samplers that employ cutoff parameters, we define the notion
of intractable formulas for cutoff κ as the set of formulas whose computational hardness is at
least κ with respect to G, i.e.,

I Definition 5. Intractable(κ,G) = {ϕ | ϕ has computational hardness ≥ κ w. r. t. G}

In the next section, we seek to use the notion of Intractable(κ,G) to improve Barbarik.

3.2 From Kernel to Shakuni
In this section, we turn to the design of an improved version of Barbarik, called ScalBarbarik,
that can employ the set of formulas belonging to Intractable so as to distinguish samplers that
were beyond the reach of Barbarik. ScalBarbarik takes as input an SUT G, a uniform sampler
U , tolerance parameter ε, intolerance parameter η, accuracy parameter δ, a CNF-formula ϕ,
a set S ⊆ Supp(ϕ) and a computational hardness parameter κ. It outputs Accept or Reject
depending on whether the SUT is ε-additive close to a uniform sampler or whether it is η-far
from the uniform sampler. It is supposed to output the correct answer with probability at
least (1− δ). The computational hardness parameter is passed onto the subroutine Shakuni.

Shakuni takes in a CNF-formula ϕ, a set S ⊆ Supp(ϕ), two assignments σ1 and σ2 from
sol(ϕ)↓S and a positive integer N and returns a new formula ϕ̂ such that the following
conditions are satisfied:

ϕ̂ has at least N satisfying assignments
Every satisfying assignment of ϕ̂ restricted to the set S is either σ1 or σ2
If Rσ1 and Rσ2 are the set of assignments of ϕ̂ that when restricted to the set S is σ1
and σ2 respectively, then |Rσ1 | = |Rσ2 |

In contrast to Kernel [3], Shakuni constructs ϕ̂ such that the set Rσ1 is significantly different
from the set Rσ2 in a structure such that finding assignments from one is easier than finding
assignments from the other. More precisely, Shakuni assumes access to a subroutine GenHard
that takes in the computational hardness parameter κ and estimated count parameter τ as
inputs and returns (ψ, τ̂) such that τ̂ = |sol(ψ)| and ψ ∈ Intractable(κ,CCDCL) where CCDCL

CP 2022



9:8 On Quantitative Testing of Samplers

refers to the set of all the efficient CDCL solvers. As discussed above, given our lack of
understanding of CDCL solvers, we do not seek to define CCDCL formally, but we discuss
the approach to construct formulas that seem to exhibit desired properties in practice in
Section 3.3.

Assuming existence to GenHard, Shakuni starts by first finding a formula ψ with com-
putational hardness parameter κ. Then, it uses ψ to construct the CNF-formula ϕ̂ such
that the assignments in Rσ1 correspond to solutions of ψ while the assignments of Rσ2

corresponds to solutions of a Chain Formula obtained according to [4] and having a much
smaller computational hardness measure.

3.3 Formulas with Computational Hardness Measure
As discussed above, Shakuni (and in turn, ScalBarbarik) assumes access to a subroutine

GenHard that takes in a counting parameter τ and hardness parameter κ and returns a
formula (ψ, τ̂) such that (1) |sol(ψ)| = τ̂ , where τ̂ ≈ τ , and (2) the hardness of finding a
solution of ψ using a CDCL-based SAT solver is proportional to κ.

To this end, we employ the construct of cryptographic hash functions, widely studied in
cryptography. A cryptographic hash family, Hcrypto := {h : {0, 1}∗ → {0, 1}m} is a family
of hash functions that compute a fixed-length hash value, also known as fingerprint, for
arbitrarily long message msg. In the context of this work, we are interested in a collection of
such families, {H1

crypto,H2
crypto, . . . ,Hκcrypto . . .} that satisfy the following two properties:

Pre-Image Resistance For all h ∈ Hκcrypto, given y, the computational hardness of the task
of finding msg such that h(msg) = y is a monotonically non-decreasing function of the
hardness3 parameter κ [11]. In our context, we are interested in the hardness measured
as runtime of a CDCL SAT solver to find msg such that h(msg) = y.

(Weak) Collision Resistance For x, y ∈ {0, 1}∗ we have Pr[h(x) = h(y)] ≈ 1
2m , where

probability is defined over random choice of x and y.

The understanding in the cryptographic community is that most of the widely used hash
families satisfy the above properties. In this work, we work with one of the widely studied
hash families, SHA-1, whose hardness parameter can be varied by changing the number of
so-called rounds of the algorithm [14]. We exploit the above properties of SHA-1 to be able
to generate formulas that are similar but have tunable complexity and number of solutions.
We use the SHA-1 preimage CNF instance generator4 by Nossum [20], which generates the
function HSHA-1 := {h : {0, 1}512 7→ {0, 1}160}. The generator allows us to set any number
of randomly fixed input bits, any number of output bits, and to vary the number of rounds
κ. For example, using 10 rounds, fixing 0 bits of input and 160 bits of output, the generator
takes a random 512 bits input msg, runs SHA-1 on msg to obtain y, then generates a formula
to encode the problem h−1(y), where h ∈ H10

SHA-1.
We need to construct a formula ψ with predefined number of satisfying assignments.

Therefore, in order to be able to decide the number of satisfying assignments of the generated
formula, and to have adjustable complexity, we change the problem slightly. We consider a
random 512 bits input, msg, and we calculate y = hκ(msg), where κ is the number of rounds.
We generate the formula ψ using the generator as above, encoding the function y = hκ(msg).

3 A formal characterization from complexity theoretic viewpoint along with the standard cryptographic
assumptions is beyond the scope of this work.

4 Available at https://github.com/vegard/sha1-sat

https://github.com/vegard/sha1-sat
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We then fix the first e bits of msg and the first f bits of y in ψ. Hence, our formula has the
following parameters: κ, e, f . We use these parameters to allow us to generate any number
of problems of approximate complexity and of approximate number of solutions.

Generating hard problems with multiple solutions

Due to the collision resistance effect, with κ = 80, e = 500, f = 160, it is most likely that
there is only one solution to the generated formula: there are only 12 bits to vary for msg
and there is at least one solution given the way the problem is generated. Checking the
actual number of solution is easy given an optimized SHA-1 implementation, as it only needs
212 executions of SHA-1. Now, to create a formula with multiple solutions, let us consider
the parameters κ = 80, e = 500, f = 0. Here, there are almost certainly 212 solutions, as any
lower than 212 would mean a collision on SHA-1, which is extremely unlikely. However, this
formula is very easy to solve, as any of the 12 bits can be varied and a solution obtained.

Putting the above two cases together, one might use the parameters κ = 80, e = 500, f = 5
to get the number of solutions to be approximately s = 2512−e−f = 27. There are 12 bits that
are unset in the input and there are 5 bits set in the output, leading to a difference of 7 bits
combined with the weak collision effect, leads to approximate 27 solutions. If we generate
with the same parameters but f = 6 the number of solutions halves, and the complexity of
finding a solution approximately doubles, as now there is one more fingerprint bit that must
match. To change the complexity with a finer grain than doubling or halving it, one can also
change the number of rounds, κ. Therefore, we can vary κ, e and f to generate a formula ψ
with varying complexity that can have solution τ̂ , where τ̂ approximate the τ .

4 Algorithmic Description

We augment Barbarik with Shakuni to obtain ScalBarbarik. We now provide the detailed
algorithm description of Shakuni.

Algorithm 1 presents the pseudocode of the Shakuni subroutine. Shakuni takes a formula
ϕ, two satisfying assignments of ϕ, σ1 and σ2, the desired number of samples τ , and the
hardness parameter κ. Shakuni assumes access to following two subroutines:

GenHard: Takes a counting parameter τ and hardness parameter κ and returns a formula
(ψ, τ̂).
ConstructChain: Takes τ̂ and variables of ψ as input and constructs a chain formula ψ̂ as
discussed in Section 2.

Shakuni first finds a lit that is the first literal that appears in σ1, but not in σ2. On line 2,
Shakuni conditions the formula ϕ over σ1 and σ2, and considers the new formula as ϕ′. Then,
on line 3, Shakuni calls GenHard subroutine with τ and κ. GenHard returns a formula ψ and
τ̂ . On lines 4 and 5 Shakuni constructs the formula ϕ̂. ϕ̂ is the formula ϕ′ conjuncted with
positive literal lit implies ψ, and literal ¬lit implies the formula returned by ConstructChain.
Finally, Shakuni adds the variables of ϕ̂ in S, and stores them as Ŝ on line 6. Finally, Shakuni
returns the formula ϕ̂ and Ŝ.

As discussed, Shakuni assumes access to the subroutine GenHard. Algorithm 2 presents
GenHard. GenHard takes a integer τ , and a hardness parameter κ as inputs. GenHard further
assumes access to following two subroutines:

Compute: Takes an integer τ and returns two positive integers m and f such that m− f
is equal to dlog τe.
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Algorithm 1 Shakuni(ϕ, S, σ1, σ2, τ, κ)

1 lit← (σ1 \ σ2)[0] /* Choose first literal lit s.t. lit ∈ σ1, and lit 6∈ σ2 */
2 ϕ′ = ϕ ∧ (σ1 ∨ σ2)
3 (ψ, τ̂)← GenHard(τ, κ)
4 ϕ̂← ϕ′ ∧ (lit→ ψ)
5 ϕ̂← ϕ̂ ∧ (¬lit→ ConstructChain(τ̂ , Supp(ψ)))
6 Ŝ ← S ∪ Supp(ϕ̂)
7 return (ϕ̂, Ŝ).

Algorithm 2 GenHard(τ, κ)

1 (m, f)← Compute(τ) /* Compute m, f such that m, f ≥ 0,m− f = dlog τe */
2 M ←r {0, 1}512−m

3 F ←r {0, 1}f
4 ψ ← NossumFormulaGen(κ,m,M, f, F )
5 τ̂ ← 0
6 for value ∈ {0, 1}m do
7 if hκ(M + value)[1 : f ] = F /* hκ is a hash-function, hκ ∈ HκSHA-1 */
8 then
9 τ̂ ← τ̂ + 1

10 return ψ, τ̂

NossumFormulaGen: Takes the SHA-1 number of rounds κ, integers m and f , and strings
over {0, 1} M and F . It considers a random 512 bits msg and fixes the first m bits of
msg to M . It runs SHA-1 with κ rounds on msg to obtain y, whose first f bits are fixed
to F . NossumFormulaGen returns a formula ψ which encodes the problem h−1

κ (y).

GenHard first computes the value of m and f by calling subroutine Compute. On line 2
GenHard generates a random string M of length 512 − m over {0, 1} from all possible
sets of such strings. Similarly, on line 3, GenHard generates a string F of length f over
{0, 1} randomly from all possible such strings. On line 4, GenHard calls NossumFormulaGen
subroutine that returns a formula ψ. Finally, to calculate the exact number of satisfying
assignments of ψ, on lines 6-9, GenHard iterates over all possible strings, denoted as value,
of {0, 1} of size m. If first f bits of hκ(M + value) matches with F , then the count of τ̂ is
increased by 1. At the end, GenHard returns the formula ψ and τ̂ .

The algorithmic description of ScalBarbarik is almost identical to the Barbarik except for
a notable difference of replacement of Kernel subroutine with Shakuni and the argument
of hardRange. For completeness, we now provide the detailed algorithmic description of
ScalBarbarik in Algorithm 3. Note that the expressions for tj , βj , Nj in Algorithm 3 have
been revised after fixing minor errors in [3].

Algorithm 3 represents ScalBarbarik. ScalBarbarik has three loops, the outermost loop,
lines 2-19 varies the computational hardness parameter κ as per the given range. The second
loop, lines 3-19 makes log( 4

2ε+ η
) many rounds. And, in each round, first ScalBarbarik on

line 9 computes the number of satisfying assignments, called Nj to be sampled from SUT.
The inner loop of ScalBarbarik iterates tj many times, which is computed in each round on
line 4. In the inner loop, ScalBarbarik first samples a satisfying assignment σ1 from the ideal
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Algorithm 3 ScalBarbarik(G, U , S, ε, η, δ, ϕ, hardRange)

1 S ← Supp(ϕ)
2 for κ ∈ hardRange do
3 for j ← 1 to dlog( 4

2ε+η )e do
/* constants required to compute the # of samples */

4 tj ← d2j (η+2ε)
(η−2ε)2 log(4(2ε+ η)−1)( 4e

(e−1) ) ln(δ−1)e

5 βj ← (2j−1+1)(2ε+η)
4+(2ε+η)(2j−1−1)

6 BoundFactor ← log
(

24e
e−1

δ−1

(η−2ε)2 log( 4
2ε+η ) ln( 1

δ )
)
e

7 γ ← (βj − 2× ε)
4

8 ConstantFactor ←
⌈

1
(8.79× γ × γ)

⌉
9 Nj ← d(ConstantFactor× BoundFactor )e

10 for i← 1 to tj do
11 while L1 = L2 do
12 L1 ← G(ϕ, S, 1); σ1 ← L1[0] /* G samples σ1 from Sol(ϕ) */
13 L2 ← U(ϕ, S, 1); σ2 ← L2[0] /* U samples σ2 from Sol(ϕ) */

14 (ϕ̂, Ŝ)← Shakuni(ϕ, S, σ1, σ2, Nj , κ)
15 L3 ← G(ϕ̂, S,Nj) /* G samples Nj solutions from Sol(ϕ̂) */
16 b← Bias(σ1, L3, S)
17 if b < 1

2 (1− cj) or b > 1
2 (1 + cj) then

18 return REJECT

19 return ACCEPT

distribution using the base sampler on line 12, and then it samples a satisfying assignment
σ2 from the SUT on line 13. Then, on line 14 ScalBarbarik calls subroutine Shakuni with
formula ϕ, sampling set S, σ1, and σ2,Nj and κ. Subroutine Shakuni returns a new formula
ϕ̂ and a sampling set Ŝ. On line 15, ScalBarbarik asks the SUT to sample Nj many satisfying
assignments of ϕ̂, which is stored in list L3. On line 16, ScalBarbarik calls subroutine Bias.
The subroutine Bias takes σ1, L3, and S as input and returns the cardinality of intersection
of the σ1 and L3 over the sampling set S. The returned cardinality from Bias is stored
in b. Finally, ScalBarbarik checks if the value of b is either lower than the low threshold or
higher than the high threshold on line 17. If that is the case, ScalBarbarik rejects the SUT
on line 18, otherwise, it continues with the inner loop on line 10.

4.1 Theoretical Analysis

First we need to prove the correctness of GenHard. From the code of GenHard (also, refer to
Section 3.3) the following theorem follows:

I Theorem 6. If GenHard(τ, κ) returns ψ, τ̂ then |Rψ| = τ̂ , where τ̂ ≥ τ .

Now, the correctness of Shakuni is almost identical to that of Kernel from [3]. We can
prove the following theorem:
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I Theorem 7. If ϕ̂ is the output of Shakuni(ϕ, S, σ1, σ2, τ, κ) then Rϕ̂ can be written as a
disjoint union of two sets Z1 and Z2 such that for |Z1| = |Z2| and for all σ ∈ Z1, σ|S = σ1
and for all σ ∈ Z2, σ|S = σ2.

Proof. On line 2 it is ensured that ϕ′ has only two satisfying assignments — namely σ1
and σ2. From Theorem 6 we see that GenHard (on line 3) returns a formula (ψ, τ̂) where
Rψ = τ̂ and at the same time ConstructChain (on line 5) returns a formula ψ̂ with Rψ̂ = τ̂

and Supp(ψ) = Supp(ψ̂). Thus by the construction of ϕ̂ on lines 4 and 5, if σ is a satisfying
assignment of ϕ̂ then firstly σ|S is either σ1 or σ2. Also if σ|S is σ1 then σ|Supp(ϕ̂\S is
a satisfying assignment of ψ. Moreover, there is a one-to-one correspondence between
the satisfying assignments of ϕ̂, that satisfy σ|S = σ1, with Rψ. Similarly, if σ|S is σ2
then σ|Supp(ϕ̂\S is a satisfying assignment of ψ̂. and there is a one-to-one correspondence
between the satisfying assignments of ϕ̂, that satisfy σ|S = σ2, with Rψ′ . Thus we have the
theorem. J

Given the correctness of Shakuni, we observe that the theoretical analysis and query
complexity of ScalBarbarik are almost identical to that of Barbarik from [3]. That is, if SUT G
is ε-additive close to the uniform sampler then with probability (1− δ), ScalBarbarik outputs
Accept. If the SUT is η far from uniform and it abides by the subquery-consistent assumption,
ScalBarbarik outputs Reject with probability (1− δ). In case ScalBarbarik outputs Reject for
sampler G on input ϕ, the assignments σ1 and σ2 can be seen as a certificate because the
sampler G samples them with significantly different probabilities. Therefore, the output of
ScalBarbarik is a list of tuples of the values of κ and the corresponding output.

5 Experimental Evaluation

To analyze the behavior of ScalBarbarik, we built a prototype implementation in Python and
performed empirical evaluation on the 50 benchmarks that were used for the evaluation of
Barbarik so as to situate our results with prior context [3]. For our evaluation, we used
SPUR [1] as a base uniform sampler.

Test Hardware. All our experiments were conducted on a high-performance computing
cluster with each node consisting of a E5-2690 v3 CPU with 24 cores and 96GB of RAM,
with a memory limit of 4GB/core.

Test Parameters. We considered tolerance parameter ε, intolerance parameter η, and
confidence δ to be 0.2, 1.6, and 0.1, respectively for experimentation evaluation using
ScalBarbarik. For our chosen parameters, the number of samples required to return Accept for
a given SUT is 2.173×103. We considered the following hardness parameters for ScalBarbarik:
κ = 10, 11, 12, and 13. In the implementation of GenHard, we used m = 14, f = 4.

Samplers Tested. We performed empirical evaluation with four state-of-the-art samplers,
QuickSampler [8], STS [9] CMSGen [13], and UniGen3 [23]. Of these, STS, QuickSampler,
and CMSGen cannot provide theoretical guarantees on the distribution of samples generated,
whereas UniGen provides guarantees. Furthermore, we experimented with different restart
intervals for CMSGen. We set the parameter restart intervals to 300 and 500, that is, restarts
at every 300 or 500 conflicts. We used CMSGen300 and CMSGen500 to refer to our prototype
of CMSGen, respectively. The default version of CMSGen restarts at 100 conflicts.

The objective of our experimental evaluation is to analyze the impact of different compu-
tational hardness levels on the ability of ScalBarbarik to distinguish between state-of-the-art
samplers. Furthermore, we seek to use ScalBarbarik to establish the balance between scalabil-
ity and uniformity in order to tune the sampler to the application at hand. Towards this,
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we analyses the impact of different restart intervals of CMSGen on the quality of samples
generated through ScalBarbarik. In particular, we seek to answer the following questions:

(1) Can ScalBarbarik distinguish between distributions generated by the various
state-of-the-samplers? (2) Can we use ScalBarbarik to design a sampler that can
balance scalability and uniformity?

Summary of results. In summary, we observe that ScalBarbarik Rejects STS and Quick-
Sampler, and returns Accept for UniGen for all the benchmarks. Moreover, as we increase the
hardness parameter for ScalBarbarik, it could Reject CMSGen. These experiments show that
the quality of distribution for the samples generated by CMSGen is between the distribution
generated by samplers without guarantees such as STS and QuickSampler, and by samplers
with guarantees, such as UniGen3. Furthermore, with the help of ScalBarbarik, we are able
to show that the quality of distribution generated improves with increased restart intervals
for CMSGen, however, it takes more time to generate the samples.

5.1 Performance of ScalBarbarik
The first column of Table 1 shows the value of κ and rest of the table consists of two columns
for each of the samplers. The columns with Accept/Reject represent the number of instances
for which ScalBarbarik outputs Accept or Reject, respectively.

Table 1 Analysis of different samplers with ScalBarbarik over 50 benchmarks. Parameters used
were ε : 0.2, η : 1.6, δ : 0.1, and samples required to output Accept: 2.173× 103.

ScalBarbarik
(κ)

QuickSampler STS CMSGen UniGen3
Accept Reject Accept Reject Accept Reject Accept Reject

10 0 50 0 50 50 0 50 0
11 0 50 0 50 41 9 50 0
12 0 50 0 50 19 31 50 0
13 0 50 0 50 0 50 50 0

Note that for κ = 10, ScalBarbarik outputs Accept on all instances for CMSGen, whereas
it Rejects QuickSampler and STS. Upon increasing the value of κ to 11 and 12, ScalBarbarik
outputs Reject on 9 and 31 instances, respectively. Finally, ScalBarbarik outputs Reject for
CMSGen on all 50 instances with κ = 13. On the other hand, ScalBarbarik outputs Accept
for all values of κ on all instances for UniGen3.

It is worth emphasizing that in comparison to Barbarik, ScalBarbarik returns a fine-grained
analysis of the quality of distributions generated by the given sampler. Such a fine-grained
analysis allows one to observe that the quality of distributions generated by CMSGen lie
between QuickSampler, STS and UniGen3.

5.2 Achieving Balance between Scalability and Uniformity
Based on the discussion in Section 3.1, we can hypothesize that the quality of samples
produced increase with an increase in restart interval for SAT solver based sampler such
as CMSGen. To put our hypothesis to test, and to understand the behavior of CMSGen
with different restart intervals, we performed evaluation using ScalBarbarik on CMSGen,
CMSGen300, and CMSGen500. To provide a prospective, we also considered a sampler with
theoretical guarantees, UniGen. We set the computation hardness parameter κ = 11, 15, 18,
and 22. In Table 2, we list the number of instances for which ScalBarbarik returned Accept
and Reject corresponding to the aforementioned samplers.
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Table 2 # of benchmarks for which CMSGen, CMSGen300, CMSGen500, and UniGen3 are Accepted
or Rejected by ScalBarbarik. Total of 50 benchmarks. Parameters ε : 0.2, η : 1.6, δ : 0.1, and samples
required to return Accept 2.173× 103. The default version of CMSGen used restart at 100 conflicts.

ScalBarbarik
(κ)

CMSGen CMSGen300 CMSGen500 UniGen3
Accept Reject Accept Reject Accept Reject Accept Reject

11 41 9 47 3 47 3 50 0
15 0 50 37 13 42 8 50 0
18 0 50 0 50 36 14 50 0
22 0 50 0 50 0 50 50 0

Table 3 CMSGen, CMSGen300, CMSGen500 with ScalBarbarik with different hardness parameters.

(κ) Benchmarks CMSGen CMSGen300 CMSGen500

Result Samples Result Samples Result Samples

15

GuidanceService Reject 742 Accept 2.173× 103 Accept 2.173× 103

70.sk-310 Reject 265 Accept 2.173× 103 Accept 2.173× 103

BlastedSpring24 Reject 318 Accept 2.173× 103 Accept 2.173× 103

ActivityService Reject 106 Reject 848 Accept 2.173× 103

IterationService Reject 265 Reject 742 Reject 1.802× 103

18

GuidanceService Reject 159 Reject 265 Accept 2.173× 103

70.sk-310 Reject 53 Reject 848 Accept 2.173× 103

BlastedSpring24 Reject 159 Reject 742 Reject 849
ActivityService Reject 106 Reject 689 Accept 2.173× 103

IterationService Reject 53 Reject 265 Reject 1.961× 103

We observe that ScalBarbarik needs to increase the computation hardness in order to
Reject CMSGen500 for all the benchmarks — it Rejects CMSGen, CMSGen300, and CMSGen500
at κ values 13, 18, and 22 respectively.

Table 3 presents the result of ScalBarbarik with κ set to 15 and 18 over a subset of repres-
entative benchmarks. The first column in Table 3 presents the hardness parameter κ used
with ScalBarbarik. The second column has the benchmarks details and the following columns
indicate the outcome of ScalBarbarik for samplers CMSGen, CMSGen300 and CMSGen500.
There are two columns for each of the samplers: (i) the first column shows whether the
sampler is accepted by ScalBarbarik as a uniform sampler, and (ii) the second column shows
the number of samples required by ScalBarbarik to decide Accept/Reject. Table 3 shows that
ScalBarbarik needs less samples to reject CMSGen as compared to CMSGen300 and CMSGen500.
Furthermore, as the hardness parameter κ is increased, ScalBarbarik rejects more instances
with less number of samples for all three SUTs.

The results in Table 2 and Table 3 strongly support that as we increase the restart
intervals, the distribution of samples generated are more likely to be uniform.

At this point, one may wonder whether there are costs associated with the improved
quality of sampling in terms of runtime efficiency. To this end, we conducted a study of
runtimes over 70 benchmarks used in prior studies [13]. We present the runtime comparison
of CMSGen, CMSGen300, and CMSGen500 to generate 1000 samples in Figure 1. To put the
runtimes in perspective, we also plot the curve corresponding to UniGen3. Figure 1 represents
a cactus plot — a point 〈x, y〉 represents that a sampler took less than or equal to y seconds to
sample 1000 satisfying assignments for x many benchmarks. With a timeout of 7200 seconds,
CMSGen, CMSGen300, CMSGen500, were all able to generate 1000 samples for 52 benchmarks,
and we see a significant increase in the runtime for those instances with CMSGen500 and



M. Soos, P. Golia, S. Chakraborty, K. S. Meel 9:15

0 10 20 30 40 50 60 70
Benchmarks

0

1000

2000

3000

4000

5000

6000

7000

R
un

tim
e

CMSGen
CMSGen500

CMSGen300

UniGen3

Figure 1 Cactusplot showing runtime performance of CMSGen, CMSGen300, CMSGen500, and
UniGen3 to generate 1000 samples within a timeout of 7200s.

CMSGen300 as compared to CMSGen.
The gain of uniformity at the loss of runtime efficiency in the case of CMSGen500 illustrates

the trade-off between uniformity and runtime performance, and highlights opportunities
for design of large number of samplers based on the needs of the underlying applications.
While ideally, one would perform in-depth theoretical analysis to characterize the distribution
generated by different samplers, modern CDCL solvers have not been shown to be amenable
to such analysis. In this regard, having access to test frameworks such as ScalBarbarik to
test uniformity is crucial.

6 Conclusion

Uniform sampling is a fundamental problem in computer science with widespread applications.
This variety of applications has led to the design of many samplers with varying theoretical
guarantees. There exists many uniform-like samplers that do not provide any guarantees on
the distribution from which the samples are generated. The existence of such samplers led to
the design of the first tester, Barbarik to test whether the distribution generated is ε-close or
η-far from the uniform distribution. Barbarik was used in a test-driven development manner
to create a uniform-like sampler CMSGen that cannot provide theoretical guarantees on the
sampling distribution but is accepted as a ε-close uniform sampler by Barbarik.

The development of such a sampler led us to improve the testing framework Barbarik. In
this work, we propose the sampler tester ScalBarbarik that provides quantitative answers to
measure the quality of samplers, that is, it provides a hardness dial to achieve a fine-grained
analysis of quality of samples. We showed that that the quality of samples generated by
CMSGen are better than the other state-of-the-art samples such as STS and QuickSampler
that do not provide theoretical guarantee; however, it is not as good as the samplers
that provide guarantees on the distribution generated, such as UniGen3. Furthermore, the
availability of ScalBarbarik can be used to achieve a balance between scalability and uniformity
of samplers. We hope the demonstration of virtuosity of the cycle between testing and design
will encourage other developers to design their own samplers while using ScalBarbarik as the
underlying testing engine.
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