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Abstract—Quantified Boolean Formulas (QBF) extend propo-
sitional logic with quantification ∀, ∃. In QBF, an existentially
quantified variable is allowed to depend on all universally quan-
tified variables in its scope. Dependency Quantified Boolean For-
mulas (DQBF) restrict the dependencies of existentially quantified
variables. In DQBF, existentially quantified variables have explicit
dependencies on a subset of universally quantified variables, called
Henkin dependencies. Given a Boolean specification between the
set of inputs and outputs, the problem of Henkin synthesis is
to synthesize each output variable as a function of its Henkin
dependencies such that the specification is met. Henkin synthesis
has wide-ranging applications, including verification of partial
circuits, controller synthesis, and circuit realizability.

This work proposes a data-driven approach for Henkin synthe-
sis called HSynth. On an extensive evaluation of over 563 instances
arising from past DQBF solving competitions, we demonstrate that
HSynth is competitive with state-of-the-art tools. Furthermore,
HSynth solves 26 benchmarks that none of the current state-of-
the-art techniques could solve.

I. INTRODUCTION

Quantified Boolean Formulas (QBF) equip the propositional
logic with universal (∀) and existential quantifiers (∃) for
propositional variables. In QBF, an existentially quantified vari-
able is allowed to depend on all universally quantified variables
within its scope. On the other hand, Henkin quantifiers, often
called Branching quantifiers, generalize the standard quantifi-
cation and allow explicit declarations of dependencies [19].
Propositional logic is equipped with Henkin quantifiers, re-
sulting in the so-called Dependency Quantified Boolean For-
mulas (DQBFs). In DQBF, an existentially quantified variable
is allowed to depend on a pre-defined subset of universally
quantified variables, called Henkin dependencies. For example,
φ : ∀x1, x2∃x1y1.ϕ(x1, x2, y1) is a DQBF formula, where
ϕ is some quantifier-free Boolean formula and existentially
quantified variable y1 is only allowed to depend on x1, which is
the Henkin dependency corresponding to y1. The dependency
specification quantification is called Henkin quantifier [19].

These explicit dependencies provide more succinct descrip-
tive power to DQBF than QBF. However, DQBF is shown
to be in the complexity class of NEXPTIME-complete [23],
whereas QBF is only PSPACE-complete [9]. The payoffs as-
sociated with an increase in the computational complexity are
the wide-ranging applications of DQBF, such as engineering
change of order [18], topologically constrained synthesis [3],
equivalence checking of partial functions [10], finding strategies
for incomplete games [23], controller synthesis [5], circuit
realizability [3], and synthesis of fragments of linear-time
temporal logic [6].

The DQBF satisfiability is a decision problem that looks
for an answer to the question: Does there exist a function
corresponding to each existentially quantified variable, in terms
of its Henkin dependencies, such that the formula substituted
with the function in places of existentially quantified variables
is a tautology? Owing to wide variety of applications that can
be represented as DQBF, recent years have seen a surge of
interest in DQBF solving [8], [10], [25], [28], [29]. In many
cases, a mere True/False answer is not sufficient as one is
often interested in determining the definitions corresponding
to those functions. For instance, in the context of engineering
change of order (ECO), in addition to just knowing whether the
given circuit could be rectified to meet the golden specification,
one would also be interested in deriving corresponding patch
functions [18]. Owing to the naming of dependencies, we call
such patch functions to be Henkin functions.

Recent years have witnessed an increased interest in the
problem of Henkin function synthesis. The current state-of-
the-art techniques, HQS2 [29] and Pedant [25] can synthesize
Henkin functions for True DQBF in addition to DQBF solving.
HQS2 [30] applies a sequence of transformations to eliminate
quantifiers in DQBF instances to synthesize Henkin functions
for True instances, whereas Pedant [25] uses interpolation-
based definition extraction and various SAT oracle calls to
synthesize Henkin functions. Despite the significant progress
over the years, many real-world instances are beyond the reach
of Henkin function synthesis engines.

In this work, we take a step to push the envelope of Henkin
synthesis. To this end, we propose a novel framework for
Henkin function synthesis, called HSynth. HSynth takes an
orthogonal approach to the existing techniques by combining
advances in machine learning with automated reasoning. In
particular, HSynth uses constrained sampling to generate the
data, which is later fed to a machine-learning algorithm to
learn the candidate functions in accordance with the Henkin
dependencies for each existentially quantified variable. Then,
HSynth employs a SAT solver to check the correctness of
the synthesized candidates. If the candidate verification checks
fail, HSynth does a counterexample-driven candidate repair.
Furthermore, HSynth utilizes a MaxSAT solver-based method
to find the candidates that need to undergo repair and uses a
proof-guided strategy to construct a good repair.

To demonstrate the practical efficiency of HSynth, we per-
form an extensive comparison with the prior state-of-the-art
techniques, HQS2 and Pedant, over a benchmark suite of 563
instances. Our empirical evaluation demonstrates that HSynth



shows competitive performance and significantly contributes
to the portfolio of Henkin synthesizers. HSynth achieves the
shortest synthesizing time on 42 of the 204 benchmarks solved
by at least one tool. Furthermore, HSynth is able to synthesize
Henkin functions for 26 instances that none of the state-of-the-
art function synthesis engines could synthesize.

II. PRELIMINARIES

We use a lower case letter to represent a propositional
variable and an upper case letter to represent a set of variables.
A literal is either a variable or its negation, and a clause is
considered as a disjunction of literals. A formula ϕ represented
as conjunction of clauses is considered in Conjunctive Normal
Form (CNF). Vars(ϕ) represents the set of variables appearing
in ϕ. A satisfying assignment(σ) of the formula ϕ maps
Vars(ϕ) to {0, 1} such that ϕ evaluates to True under σ. We
use σ |= ϕ to represent σ as a satisfying assignment of ϕ. For
a set of variables V , we used σ[V ] to denote the restriction
of σ to V . If ϕ evaluates to True for all possible valuation of
Vars(ϕ), ϕ is considered as tautology.

A uniform sampler samples the required number of satisfying
assignments uniformly at random from the solution space of the
formula. We use UnsatCore to represents an unsatisfiable core,
which is a subset of clauses of ϕ for which there does not exists
a satisfying assignment. For a CNF formula in which a set of
clauses is considered as hard constraints and remaining clauses
as soft constraints, a MaxSAT solver tries to find a satisfying
assignment that satisfies all hard constraints and maximizes the
number of satisfied soft constraints.

A formula φ is DQBF if it can be represented as
φ : ∀x1 . . . xn ∃H1y1 . . . ∃Hmymϕ(X,Y ) where X =
{x1, . . . , xn}, Y = {y1, . . . , ym} and Hi ⊆ X represents the
dependency set of yi, that is, variable yi can only depend on
Hi. Each Hi is called Henkin dependency and each quantifier
∃Hi is called Henkin quantifier [16].

A DQBF φ is considered to be True, if there exists a function
fi : {0, 1}|Hi| 7→ {0, 1} for each existentially quantified
variable yi, such that ϕ(X, f1(H1), . . . , fm(Hm)), obtained by
substitution of each yi by its corresponding function fi, is a
tautology. Given a DQBF φ, the problem of DQBF satisfiability,
is to determine whether a given DQBF is True or False.
Problem Statement: Given a True DQBF ∀x1 . . . xn
∃H1y1 . . . ∃Hmymϕ(x1, . . . , xn, y1, . . . , ym) where x1, . . . , xn
∈ X , y1, . . . , ym ∈ Y , Hi ⊆ X , the problem of Henkin
Synthesis is to synthesize a function vector f : 〈f1, . . . , fm〉
such that ϕ(X, f1(H1), . . . , fm(Hm)) is a tautology.
f is called Henkin function vector and each fi is a

Henkin function. We used ∀X∃H1y1 . . . ∃Hmym ϕ(x1, . . . , xn,
y1, . . . , ym) and ∀X∃HY ϕ(X,Y ) interchangeably.

Henkin synthesis generalizes Skolem synthesis in which
H1 = . . . = Hm = X . In such a case, one omits the
usage of Hi and simply represents φ as ∀X∃Y ϕ(X,Y ). In
such a case, f is called Skolem function vector, such that
∀X(∃Y ϕ(X,Y )↔ ϕ(X,f)).

III. OVERVIEW

This section provides a high-level overview of HSynth
framework. While HSynth shares high-level similarity with
Manthan, the recently proposed Skolem function synthesis
engine [12], [13], in its usage of machine learning techniques
and SAT/MaxSAT solvers, the two techniques differ crucially
due to the requirements imposed by Henkin dependencies. It
is worth remarking that handling Henkin dependencies is not
trivial, perhaps best highlighted by the fact that 2-QBF is ΣP

2 -
complete while DQBF is NEXPTIME-complete [23].

HSynth first uses advances in constrained sampling to gener-
ate the data, then use the data to learn a candidate vector f us-
ing a machine learning-based approach. Then, HSynth attempts
to verify if the candidate vector f is a Henkin function vector.
If the candidates pass the formal verification check, HSynth
returns the candidates as a valid Henkin vector. Otherwise, the
candidate vector is repaired to satisfy the counterexample, and
the verification check is repeated. Note that HSynth needs to
take care of restrictions imposed by Henkin dependencies while
learning and repairing the candidates.

We now present high-level overview of HSynth:
Data Generation: As the first step, HSynth uses constrained
samplers [14], [15] to sample the satisfying assignments of
specification ϕ uniformly at random from the solution space
of specification. The sampled satisfying assignments are con-
sidered data to feed the learning algorithms to learn candidate
functions in the next stage.
Candidate Learning: HSynth learns a binary decision tree
classifier for each existentially quantified variable yi to learn
the candidate function fi corresponding to it. The valuations
of yi in the generated samples are considered labels, and
the valuations of corresponding Henkin dependencies Hi are
considered the feature set to learn a decision tree. A Henkin
function fi corresponding to yi is computed as a disjunction
of labels along all the paths from the root node to leaf nodes
with label 1 in the learned decision tree.

Due to the Henkin dependencies, the feature set for yi must
be restricted only to Hi. However, in order to learn a good
decision tree, we can include all the yj in the set of features
for which Hj ⊂ Hi. The function fj can be simply expanded
within fi so that fi is only expressed in terms of Hi. For the
cases when Hj = Hi, such use of the Y variables is allowed
as long it does not cause the cyclic dependencies; that is, if
yj appears in the learned candidate fi, then yi is not allowed
as a feature to learn candidate fj . If yj appears in fi, then we
say yi depends on yj , denoted as yi ≺d yj . HSynth discovers
requisite variable ordering constraints among such Y variables
on the fly as the candidate functions are learned.

A function vector f in which yj appears in fi is a valid vector
if yi does not appear in fj . If f is a valid function vector,
there exists a partial order ≺d over {y1, . . . , ym}. Once, we
have a candidate vector, HSynth obtains a valid linear extension
total order, say denoted as Order, from the partial dependencies
learned in candidate learning over Y variables.
Verification: The learned candidate vector may not always be
a valid Henkin vector. Therefore, the candidate functions must



be verified. f is a Henkin function vector only if ϕ(X, f1(H1),
. . . , fm(Hm)) is a tautology. HSynth first, make a SAT oracle
query on the formula E(X,Y ′) = ¬ϕ(X,Y ′) ∧ (Y ′ ↔ f)

If formula E(X,Y ′) is UNSAT, HSynth returns the function
vector f as a Henkin function vector. If formula E(X,Y ′) is
SAT and δ is a satisfying assignment of E(X,Y ′), HSynth
needs to find out whether ϕ(X,Y ) has a propositional model
extending assignment of X . Therefore, HSynth performs an-
other satisfiability check on formula ϕ(X,Y )∧(X ↔ δ[X]). If
satisfiability checks return UNSAT, the corresponding DQBF
formula is False, and there does not exist a Henkin function
vector; therefore, HSynth terminates. Furthermore, if ϕ(X,Y )∧
(X ↔ δ[X]) is SAT, and π is a satisfying assignment and
we need to repair the candidate function vector. Note that
π[X] is same as δ[X], and π[Y ] is a possible extending
assignment of X , and δ[Y ′] presents the output of candidate
function vector with δ[X]. Now, we have a counterexample σ
as π[X] + π[Y ] + δ[Y ′].
Candidate Repair: We apply a counterexample driven repair
approach for candidate functions. As HSynth attempts to fix
the counterexample σ, it first needs to find which candidates
to repair out of f1 to fm candidates. HSynth takes help of
MaxSAT solver to find out the repair candidates, and makes a
MaxSAT query with ϕ(X,Y )∧(X ↔ σ[X]) as hard constraints
and (Y ↔ σ[Y ′]) as soft constraints. It selects a function fi
for repair if the corresponding soft constraint yi ↔ σ[y′i] is
falsified in the solution returned by the MaxSAT solver. Once,
we have candidates to repair, HSynth employs unsatisfiability
cores obtained from the infeasibility proofs capturing the reason
for candidates to not meet the specification to construct a repair.

Let us now assume that HSynth selects fi corresponding to
variable yi as a potential candidate. HSynth constructs another
formula Gi(X,Y ) (Formula 1) to find the repair:

Gi(X,Y ) : ϕ(X,Y )∧ (Hi∪ Ŷ ↔ σ[Hi∪ Ŷ ])∧ (yi ↔ σ[y′i])

where Ŷ ⊆ Y such that ∀yj ∈ Ŷ : Hj ⊆ Hi

and {Order[index(yj)] > Order[index(yi)]} (1)

Informally, in order to determine whether fi needs to be
repaired, we conjunct the specification ϕ(X,Y ) with the con-
junction of unit clauses that set the valuation of yi to the current
output of fi and the valuation of all the dependencies as per the
counter-example. We describe the intuition behind construction
of Gi(X,Y ). The formula Gi(X,Y ) is constructed to answer
the following question: Whether is it possible for yi to be
set to the output of fi given the valuation of its Henkin
dependencies?.

The answer to the above question depends on whether
Gi(X,Y ) is UNSAT or SAT. Gi(X,Y ) being UNSAT indi-
cates that it is not possible for yi to be set to the output of fi and
the UnsatCore of Gi(X,Y ) captures the reason. Accordingly,
HSynth uses the UnsatCore of Gi(X,Y ) to repair the candidate
function fi. In particular, HSynth uses all the variables corre-
sponding to unit clauses in UnsatCore of Gi(X,Y ) to construct
a repair formula β, and depending on the valuation of y′i in
the counter example σ, β is used to strengthen or weaken the
candidate fi to satisfy the counterexample.

Algorithm 1 HSynth(∀X∃HY.ϕ(X,Y ))
1: Σ← GetSamples(ϕ(X,Y ))
2: D ← {d1 = ∅ . . . , d|Y | = ∅}
3: for 〈Hi, Hj〉 do
4: if Hj ⊂ Hi then
5: dj ← dj ∪ yi
6: for yi ∈ Y do
7: fi, D ←CandidateHkF(Σ, ϕ(X,Y ), yi, D)
8: Order← FindOrder(D)
9: repeat

10: E(X,Y ′)← ¬ϕ(X,Y ′) ∧ (Y ′ ↔ f)
11: ret, δ ← CheckSat(E(X,Y ′))
12: if ret = SAT then
13: res, π ← CheckSat(ϕ(X,Y ) ∧ (X ↔ δ[X]))
14: if res = UNSAT then
15: return ∀X∃HY.ϕ(X,Y ) is False.
16: σ ← π[X] + π[Y ] + δ[Y ′] {σ is a counterexample}
17: f ← RepairHkF(ϕ(X,Y ),f , σ,Order)
18: until ret = UNSAT
19: f ← Substitute(ϕ(X,Y ),f ,Order)
20: return f

On the other hand, if Gi(X,Y ) is SAT, HSynth attempts
to find alternative candidate functions to repair. Gi(X,Y )
being SAT indicates that with the current valuation to Henkin
dependencies, yi could take a value as per the output of
candidate fi; however, to fix the counterexample σ, we need
to repair another candidate function. To this end, let ρ be a
satisfying assignment of Gi(X,Y ), then all yj variables for
which ρ[yj ] is not the same as σ[y′j ] are added to the queue of
potential candidates to repair.

The repair loop continues until either E(X,Y ′) is UNSAT
or ϕ(X,Y ) ∧ (X ↔ δ[X]) is UNSAT, where δ is a satisfying
assignment of E(X,Y ′) . If E(X,Y ′) is UNSAT, we have a
Henkin function vector f , and if ϕ(X,Y ) ∧ (X ↔ δ[X]) is
UNSAT, then the given DQBF instance is False and there does
not exist a Henkin function vector.

IV. ALGORITHMIC DETAILS

HSynth (Algorithm 1) takes a DQBF instance ∀X∃H1y1
. . . ∃Hmymϕ(X,Y ) as input and outputs a Henkin function
vector f := 〈f1, . . . , fm〉.

Algorithm 1 assumes access to the following subroutines:
1) GetSamples: It takes a specification as input and calls

an oracle to produce samples Σ of specifications. Each
sample in Σ is a satisfying assignment of specifications.

2) CandidateHkF: This subroutine generates the candidate
function corresponding to an existential variable. It takes
a specification ϕ, generated samples Σ, existential vari-
able yi corresponding to which we want to learn a
candidate function and a vector D that keeps track of
dependencies among Y variables as input. CandidateHkF
returns a candidate function fi corresponding to yi, and
updates the dependencies in D for yi. We discussed
CandidateHkF routine in detail in Algorithm 2.

3) FindOrder: It takes a set D collection of di, where each
di is the list of Y variables, which can depend on yi.
FindOrder obtains a valid linear extension, Order, from
the partial dependencies in D.

4) CheckSat: It takes a specification as input and makes
a SAT oracle call to do a satisfiability check on the



Algorithm 2 CandidateHkF(Σ, ϕ(X,Y ), yi, D)

1: featset← Hi

2: for yj ∈ Y do
3: if (Hj ⊆ Hi) ∧ (yj /∈ (di ∪ yi)) then
4: featset← featset ∪ yj
5: feat, lbl← Σ↓featset,Σ↓yi
6: t← CreateDecisionTree(feat, lbl)
7: for n ∈ LeafNodes(t) do
8: if Label(n) = 1 then
9: π ← Path(t, root, n) {A path from root to node n in tree t}

10: fi ← fi ∨ π
11: for yk ∈ fi do
12: dk ← dk ∪ yi ∪ di
13: return fi, D

specification. It returns the outcome of satisfiability check
as SAT or UNSAT. In the case of SAT, it also returns a
satisfiable assignment of the specification.

5) RepairHkF: This subroutine repairs the current candidate
function vector to fix the counterexample. It takes the
specification, candidate function vector, a counterexam-
ple, and Order, a linear extension of dependencies among
Y variables as input, and returns a repaired candidate
function vector. Algorithm 3 discusses RepairHkF sub-
routine in detail.

Algorithm 1 starts with generating samples Σ by calling
GetSamples subroutine at line 1. Next, Algorithm 1 initializes
the set D (line 2), which is a collection of di, where di
represents the set of Y variables that depends on yi. Lines 3-
5 introduce variable ordering constraints based on the subset
relations in each 〈Hi, Hj〉 pair, that is, if Hj ⊂ Hi, then yi can
depend on yj . Line 7 calls the subroutine CandidateHkF for
every yi variable to learn the candidate function fi. Next, at
line 8, HSynth calls FindOrder to compute Order, a topological
ordering among the Y variables that satisfy all the ordering
constraints in D.

In line 11, CheckSat checks the satisfiability of the formula
E(X,Y ′) described at line 10. If E(X,Y ′) is SAT, then
HSynth at line 13 performs another satisfiability check to
ensure that propositional model to X can be extended to Y . If
CheckSat at line 13 is UNSAT, then Algorithm 1 terminates
at line 15 as there does not exists a Henkin function vector,
otherwise HSynth has a counterexample σ to fix. The candidate
vector f goes into a repair iteration (line 17) based on the
counterexample σ, that is, the subroutine RepairHkF repairs the
current function vector f such that σ now gets fixed. HSynth
returns a function vector f only if E(X,Y ′) is UNSAT.

We now discuss the subroutines CandidateHkF and
RepairHkF in detail.

Algorithm 2 shows the CandidateHkF subroutine.
CandidateHkF assumes access to CreateDecisionTree
that constructs a decision tree t from labeled data on a set of
features featset. It uses the ID3 algorithm [24] and we used
the Gini Index [24] as the impurity measure.

In Algorithm 2, line 1 includes the feature set, featset, for yi
in the dependency set Hi. Further, line 3 extends the features
to include all the yj variables that have the dependency set
Hj as a subset of Hi, and yj does not depend on yi to allow
the decision tree to learn over such yj as well. Line 5 selects
valuations of feature set and label from samples Σ, and learns a

Algorithm 3 RepairHkF(ϕ(X,Y ),f , σ,Order)
1: H ← ϕ(X,Y ) ∧ (X ↔ σ[X]); S ← (Y ↔ σ[Y ′])
2: Ind← FindCandi(H,S)
3: for yk ∈ Ind do
4: Ŷ ← ∅
5: for yj ∈ Y do
6: if Hj ⊆ Hk ∧ Order[index(yj)] > Order[index(yk)] then
7: Ŷ ← Ŷ ∪ yj
8: Gk ← (yk ↔ σ[y′k]) ∧ ϕ(X,Y ) ∧ (Hk ↔ σ[Hk]) ∧ (Ŷ ↔ σ[Ŷ ])
9: ret, ρ← CheckSat(Gk)

10: if ret = UNSAT then
11: C ← FindCore(Gk)
12: β ←

∧
l∈C

ite((σ[l] = 1), l,¬l)

13: fk ← ite((σ[y′k] = 1), fk ∧ ¬β, fk ∨ β)
14: else
15: for yt ∈ Y \ Ŷ do
16: if ρ[yt] 6= σ[y′t] then
17: Ind← Ind.Append(yt)
18: σ[yk]← σ[y′k]
19: return f

decision tree. Then, Lines 7-10 constructs a logical formula as a
representation of the decision tree by constructing a disjunction
over all paths in the tree that lead to class label 1. In line 12, set
dk is updated for variable yk that appears as a node in decision
tree t for yi.

Algorithm 3 represents the RepairHkF subroutine.
RepairHkF assumes access to the following subroutines:

1) FindCandi: It takes hard constraints and soft constraints
as input. It makes a MaxSAT solver call on a specification
containing hard and soft constraints and returns a set
of variables corresponding to which the soft constraints
are dropped by MaxSAT solver in order to satisfy the
specification.

2) FindCore: It takes a UNSAT formula as an input and
returns unsatisfiable core (UnsatCore) of the formula.

Algorithm 3 first attempts to find the potential candidates
to repair using FindCandi. At line 2, FindCandi subroutine
essentially calls a MaxSAT solver with ϕ(X,Y )∧(X ↔ σ[X])
as hard-constraints and (Y ↔ σ[Y ]) as soft-constraints to find
the potential candidates to repair, it returns a list (Ind) of Y
variables such that candidates corresponding to each of the
variables appearing in (Ind) are potential candidates to repair.
For each of the yk ∈ Ind, line 6 computes Ŷ , which is a set of
yj variable that appears after yk in Order and corresponding
Hj is a subset of Hk. Line 8 constructs Gk by constraining the
repair candidate fk.

Next, Algorithm 3 checks the satisfiability of the Gk formula
at line 9. If Gk is UNSAT, line 11 attempts to find the
UnsatCore of Gk using subroutine FindCore, and line 12
constructs a repair formula β, using the literals corresponding
to unit clauses in UnsatCore. Depending on the value of σ[y′k],
β is used to strengthen or weaken fk at line 13. If Gk is SAT
and ρ |= Gk, lines 15-18 look for other potential candidates to
repair, and add all yt variables for which ρ[yt] is not same as
σ[y′t] to the list Ind.

Note that in line 8, we add a constraint Ŷ ↔ σ[Ŷ ] in
Gi(X,Y ) where Ŷ is a set of Y variables such that for all yj
of Ŷ , Hj ⊆ Hi. Fixing valuations for such yj variables helps
HSynth to synthesize a better repair for candidate fi. Con-



sider the following example. Let ∀X∃H1∃H2ϕ(X,Y ), where
ϕ(X,Y ) : (y1 ↔ x1 ⊕ y2), H1 = {x1} and H2 = {x1}.
Let us assume that we need to repair the candidate f1, and
G1(X,Y ) = (y1 ↔ σ[y′1]) ∧ ϕ(X,Y ) ∧ (x1 ↔ σ[x1]). As
G1(X,Y ) does not include the current value of y2 that led to
the counterexample, it misses out on driving f1 in a direction
that would ensure y1 ↔ x1 ⊕ y2. In fact, in this case repair
formula β would be empty, thereby failing to repair.

By definition of Henkin functions, we know that the follow-
ing lemma holds:

Lemma 1 f is a Henkin function vector if and only if
¬ϕ(X,Y ) ∧ (Y ↔ f) is UNSAT.

HSynth returns a function vector only when E(X,Y ′) :
¬ϕ(X,Y ′)∧(Y ′ ↔ f) is UNSAT, and each function fi follows
Henkin dependencies by construction. Therefore HSynth is
sound, and returned function vector is a Henkin function vector.
Limitations: There are instances for which HSynth might
not be able to repair a candidate vector, and consequently
is not complete. The limitation is that the formula G(X,Y )
(Formula 1) is not aware of Henkin dependencies.

Let us consider an example, φ : ∀X∃H1y1 ∃H2y2 ϕ(X,Y )
where X = {x1, x2, x3}, Y = {y1, y2}, ϕ(X,Y ) := ¬(y1 ⊕
y2), H1 = {x1, x2}, and H2 = {x2, x3}. Note that φ is True
and Henkin functions are f := 〈f1(x1, x2) : x2, f2(x2, x3) :
x2〉. Let us assume the candidates learned by HSynth is
f := 〈f1(x1, x2) : x2, f2(x2, x3) : ¬x2〉. The learned
candidates are not Henkin functions as E(X,Y ′) is SAT. Let
the counterexample to repair is σ is 〈x1 ↔ 0, x2 ↔ 0, x3 ↔ 0,
y1 ↔ 0, y2 ↔ 0, y′1 ↔ 0, y′2 ↔ 1〉.

Let the candidate to repair is y2, and corresponding G2

formula is G2 := ϕ(X,Y )∧ (x2 ↔ 0)∧ (x3 ↔ 0)∧ (y2 ↔ 1).
As H1 6⊆ H2, the formula G2 is not allowed to constrain on y1.
G2 turns out SAT, suggesting that we should try to repair y1
instead of y2, but as y1 is also not allowed to depend on y2, the
formula G1 would also be SAT. Therefore, HSynth is unable to
repair candidate f to fix counterexample the σ. HSynth would
not be able to synthesize Henkin functions for such a case.
Hence, HSynth is not complete.

V. EXPERIMENTAL RESULTS

We implemented HSynth1 using Python, and it employs
Open-WBO [22] for MaxSAT queries, PicoSAT [4] to find
UNSAT cores, ABC [20] to represent and manipulate Boolean
functions, CMSGen to generate the required samples [14],
UNIQUE [26] to extract definition for uniquely defined vari-
ables, and Scikit-Learn [2] to learn the decision trees.

Instances: We performed an extensive comparison on 563
instances consisting of a union of instances from the DQBF
track of QBFEval18, 19, and 20 [1], which encompass equiv-
alence checking problems, controller synthesis, and succinct
DQBF representations of propositional satisfiability problems.

Test hardware: All our experiments were conducted on a
high-performance computer cluster with each node consisting
of a E5-2690 v3 CPU with 24 cores and 96GB of RAM, with

1We will release HSynth open-sourced via Github post-publication.
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Fig. 1: Virtual Best Synthesizing Henkin functions with/without HSynth. VBS
in the plot represents VBS of HQS2 and Pedant. A point 〈x, y〉 implies that
a tool took less than or equal to y seconds to synthesize a Henkin function
vector for x many instances on a total of 563 instances.
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Fig. 2: VBS(HQS2+Pedant) vs. HSynth. A point 〈x, y〉 implies that
VBS(HQS2+Pedant) took x seconds and HSynth tooks y seconds to synthesize
Henkin functions for an instance.

a memory limit set to 4GB per core. All tools were run in a
single core with a timeout of 7200 seconds for each benchmark.

Tools compared with: We performed a comparison vis-
a-vis the prior state-of-the-art techniques, HQS2 [11]2 and
Pedant [25]. Note that we compared HSynth with the tools
that can synthesize Henkin functions for True DQBF; the rest
all the DQBF solvers, including DepQBF [21], DQBDD [27]
do not synthesize such functions. The DQBF preprocessor
HQSpre [30] is invoked implicitly by HQS2. We found that
the performance of Pedant degrades with the preprocessor
HQSPre; therefore, we consider the results of Pedant without
preprocessing. HSynth is used without HQSpre.

Evaluation objective: It is well-known that different tech-
niques are situated differently for different classes of instances
in the context of NP-hard problems. The practical adoption
often employs a portfolio approach [7], [17], [31]. Therefore,
in practice, one is generally interested in evaluating the impact
of a new technique on the portfolio of existing state-of-the-art
tools. Hence, to evaluate the impact of our algorithm on the
instances that the current algorithms cannot handle, we focus
on the Virtual Best Synthesizer (VBS), which is the portfolio
of the best of the currently known algorithms. If at least one
tool in the portfolio could synthesize Henkin functions for a
given instance, it is considered to be synthesized by VBS; that
is, VBS is at least as powerful as each tool in the portfolio.
The time taken to synthesize Henkin functions for the given

2The authors of HQS2 are still working on releasing the version to support
extracting the functions (private correspondence). In our experiments, if an
instance is returned True by HQS2, we assumed HQS2 is able to extract the
Henkin function for that instance.
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Fig. 3: HSynth vs. HQS2.
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Fig. 4: HSynth vs. Pedant
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Fig. 5: HQS2 vs. Pedant

A point 〈x, y〉 implies that the synthesizer on 〈x〉 axis took x sec. while the synthesizer on 〈y〉 axis tooks y sec. to synthesize Henkin functions for an instance.

instance by VBS is the minimum of the time taken by any tool
to synthesize a function for that instance.

Results: Figure 1 represents the cactus plot for VBS of
HQS2 and Pedant vis-a-vis with VBS of HQS2, Pedant, and
HSynth. We observe that the VBS with HSynth synthesizes
functions for 204 instances while VBS without HSynth syn-
thesizes functions for only 178 instances; that is, the VBS
improves by 26 instances with HSynth. Of 563 instances, for
204 instances, Henkin functions are synthesized by at least one
of three tools. HSynth achieves the smallest synthesizing time
on 42 instances, including 26 instances for which none of the
other tools could synthesize Henkin functions.

These 26 instances are mainly where Pedant and HQS2 strug-
gle to scale. Considering the case of controller synthesis [5],
Pedant and HQS2 struggle to synthesize Henkin functions as
Henkin dependencies for winning state variables increase. Con-
sidering, cnt11y and cnt30y instances – cnt11y has 12 variables,
whereas cnt30y has 31 variables as Henkin dependencies for
winning state variable. Pedant, HQS2, and HSynth took 63.43,
144.16, and 3.28 seconds respectively to synthesize Henkin
functions for cnt11y. However, for cnt30y, Pedant could not
synthesize even with 27000 iterations, and HQS2 timed out
while converting DQBF to QBF. Whereas, HSynth took only
12.22 seconds to synthesize Henkin functions.

Figure 2 highlights that the performance of HSynth is or-
thogonal to existing tools. Furthermore, as shown in green area
of Figure 2, for 47 instances HSynth took less than or equal to
additional 10 seconds to synthesize Henkin functions than by
the VBS with HQS2 and Pedant.

Figure 3 (resp. Figure 4) represents scatter plot for HSynth
vis-a-vis with HQS2 (resp. Pedant). The distribution of the
instances for which functions are synthesized shows that all
three tools are incomparable. There are many instances where
only one of these tools succeeds, and others fail.

In total there are 148, 138 and 116 instances for which
HQS2, Pedant and HSynth could synthesize Henkin functions
respectively. Moreover, there are 40 instances for which HSynth
could synthesize Henkin functions, whereas HQS2 could not.
Similarly, there are 37 instances for which Pedant could not
synthesize Henkin functions and HSynth synthesized. There
are in total 88 instances for which HSynth was not able to
synthesize functions, however, either Pedant or HQS2 could

synthesize Henkin functions. Due to incompleteness of HSynth,
it could not handle 49 out of those 88 instances and for
remaining instances it timed out.

Figure 5 shows that there is no best tool even amongst the
existing tools, Pedant and HQS2. Although both tools could
synthesize functions for (almost) the same number of instances,
the instances belong to different classes.

The results show that different approaches are suited for
different classes of instances, and HSynth pushes the envelope
in Henkin synthesis by handling instances for which none of
the state-of-the-art tools could synthesize Henkin functions.

VI. CONCLUSION

Henkin synthesis has wide-ranging applications, including
circuit repair, partial equivalence checking, and controller syn-
thesis. In this work, we proposed a Henkin synthesizer, HSynth,
building on advances in machine learning and automated rea-
soning. HSynth is orthogonal to existing approaches for Henkin
function synthesis that hints that the machine learning-based
algorithm employed by HSynth is fundamentally different from
that used by the current Henkin synthesizers. We are interested
in understanding these points of deviation better. We will
release HSynth open sourced via Github post-publication.
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