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Abstract. A phaser is an expressive barrier-like synchronization con-
struct that supports dynamic task membership. Each task can partici-
pate in a phaser as a signaler, a waiter, or both. In this paper, we present
a highly concurrent and scalable design of phasers for a distributed mem-
ory environment. Our design for a distributed phaser employs a pair of
concurrent skip lists augmented with the ability to collect and propa-
gate synchronization signals. To enable a high degree of concurrency, the
addition and deletion of participant tasks are performed in two steps: a
“fast single-link-modify” step followed by multiple hand-over-hand “lazy
multi-link-modify” steps. We verify our design for a distributed phaser
using the SPIN model checker. We employ a novel “message-based”
model checking scheme to enable a non-approximate complete model
checking of our phaser design. We guarantee the correctness of phaser
semantics by ensuring that a set of linear temporal logic formulae are
valid during model checking. We also present complexity analysis of the
cost of synchronization and structural operations.

1 Introduction

Power consumption is now considered to be a very important parameter in the
design of future HPC systems. Dynamic voltage and frequency scaling is an
essential tool required to operate parallel systems within a tight energy en-
velope [10]. As a consequence, dynamic task-based programming models are
gaining attention as an alternative to static SPMD models. Synchronization
between tasks in the dynamic task-based programming models is becoming in-
creasingly important, as noted in the report “Software Challenges in Extreme
Scale Systems”[9].

Phasers are a general barrier-like synchronization primitive that supports
dynamic registration of tasks. Each task has a choice of participation modes:
signal-only, wait-only, and signal-wait. To date, the only phaser design available
is for shared memory systems [11,12]. In this paper, we present a highly concur-
rent and scalable design of phasers for distributed memory parallel systems.

Recent designs for phaser-like synchronization include Alting barriers in
Communicating Sequential Processes for Java (JCSP) [13] and Clocks in X10 [8].
While Clocks have been implemented for distributed memory environments, they
use a non-scalable design in which a single root task collects information from all
the participants [7]. Alting barriers similarly maintain global state in a central-
ized fashion. In contrast, our phaser design uses a scalable distributed protocol.
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Synchronization protocols that take time linear in the number of participat-
ing tasks are not scalable. Protocols with sub-linear growth in time complexity
are necessary. Skip lists [6] have long been used in shared memory environments,
providing an expected time complexity of O(log n) for operations on a skip list
containing n items. We make use of a pair of distributed concurrent skip lists
as the backbone for a distributed phaser. Insert and delete operations on the
skip lists enable a task to dynamically join or abandon a phaser. Additional
operations on the skip lists support propagation of synchronization signals.

Proving the correctness of distributed protocols is difficult. The manual enu-
meration of communication interleavings is infeasible and writing formal proofs is
error prone. For these reasons, we employ automated formal verification known
as model checking to verify our design. We check whether our design satis-
fies the required phaser semantics with a quorum of Linear Temporal Logic
(LTL) formulae. Model checkers explore all possible paths of execution, verify-
ing the input LTLs at each point along these paths. During this process, the
size of the state space needed to completely model check the operations on a
distributed phaser is significantly more than a terabyte. However, we employ
a novel “message-based” divide-and-conquer strategy to reduce the state space
and provide a non-approximate complete model checking of our design. To the
best of our knowledge, we are the first to employ a message-based scheme for a
non-approximate model checking to prove the correctness of a distributed syn-
chronization protocol.

In this paper, we explore the design of a distributed phaser, complexity of
operations and its correctness. Our contributions are as follows:

– We describe a design for distributed phasers that employs a scalable decen-
tralized event-driven approach to synchronize dynamic tasks.

– We prove livelock- and deadlock-freedom, semantic properties about synchro-
nization and structural-modification operations through a novel “message”-
based model checking scheme.

– We analyze the time and message complexity of operations on distributed
phasers.

Section 2 introduces distributed phasers. Section 3 details the design and
operations. Section 3.4 verifies our design using model checking. Section 4 derives
the complexity of phaser operations. Section 5 discusses related work. Section 6
presents conclusions.

2 Distributed Memory Phasers

A phaser is a flexible, barrier-like primitive used to synchronize a group of parallel
tasks [11]. A phaser enables each task to participate in one of three modes: signal-
only, wait-only, signal-wait. This flexibility lets a phaser be used in a spectrum of
synchronization patterns ranging from a barrier to a producer-consumer pattern.

A phaser supports five operations: create, register, drop, signal, and
wait. create is a collective among a team of tasks that creates a phaser.
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register adds a task as a participant, while drop lets a task remove its mem-
bership. The only way to invoke register is when a task spawns another:
the spawner registers the spawnee. Operations create and register indicate
whether a task participates as a signaler (signal-only), a waiter (wait-only), or
both signaler and waiter (signal-wait). The participation mode affects the two
remaining phaser operations signal and wait, explained next.

A phaser synchronization maintains a monotonically increasing global event
counter called phase. To increment the counter, all signalers that have not
dropped from the phaser must invoke signal exactly once. A waiter issues a
wait to block until the phaser reaches a certain phase i, effectively observing
the i-th collective event. Any task that is both a signaler and a waiter must
always signal before waiting. A wait-only task will observe but not affect syn-
chronization. In contrast, a signal-only task contributes to advancing phase, but
waits for no other, e.g., a producer in a producer-consumer pattern.

On distributed systems, tasks participating in a phaser may reside on differ-
ent compute nodes and must interact with each other through messages1. Below,
we detail the challenges of designing phasers for a distributed memory model and
introduce our solutions to address these challenges.
1) Efficient creation, signal aggregation and diffusion among partici-
pants Communication costs are significantly higher than computation costs in a
distributed memory model. Centralized algorithms lack scalability. Decentralized
algorithms that grow sub-linearly in the number of communication interactions
among participant tasks to perform phaser operations are necessary.

Skip lists [6] have long been used in shared memory environments, providing
an expected time complexity of O(log n) for operations on a skip list containing
n items. The items in a skip list participate at one or more levels. Every item
participates at level 0. An item at level k participates at level k+ 1 with proba-
bility p. A skip list does not require rebalancing after insertion/removal of items
to maintain expected logarithmic time complexity for all operations.

Intuitively, determining the phase of a phaser is equivalent to retrieving the
phase information resident on signalers organized as members of a skip list while
performing a min-reduce of the phase information along the retrieval path.
2) Efficient integration of dynamically created participants The ex-
pected cost of including a task into a distributed phaser should be cost effective
in terms of the number of communication interactions needed.

In our design, the number of communication interactions to either register
or drop a task is sub-linear in the number of phaser participants.
3) Concurrent synchronization and structural modifications A dis-
tributed phaser design needs to provide a separation of concerns by allowing
synchronization signals to propagate through the underlying data structure while
structural modifications (adding or deleting a task) are in progress.

We achieve this concurrency by factoring a register/drop into a sequence of
sub-operations that can be interleaved with signaling operations. In particular,

1 Our design of distributed phasers is idempotent to whether messages are one-sided
(i.e., RDMA) or two-sided.
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we factor every register/drop into a “fast single-link-modify” step followed by a
“lazy multi-link-modify” step similar to the one presented by Crain et al. [3] to
support higher levels of concurrency in a distributed memory environment.

3 Distributed Phaser Design

Our design for a distributed phaser employs a pair of distributed skip lists.
Signalers self organize into a signal collection skip list (referred to as SCSL),
which is used to aggregate signals to a designated signaler at the head of the list.
Waiters self organize into a signal notification skip list (referred to as SNSL) that
is used to diffuse phase information from the head of the list to all the waiters.

Fig. 1: Phaser synchronization achieved through
signal collection and notification skip lists.

In a synchronization round, phase
aggregation occurs in a right to left
sweep with each signaler communi-
cating the minimum phase of itself
and its right neighbors to its high-
est level left neighbor in the SCSL.
The designated signaler at the head
of the SCSL conveys the aggregated
phase to the designated waiter at
the head of the SNSL, who then ini-
tiates a left to right diffusion of the
phase to all the waiters.

To support non-blocking signal operations, we separate the implementation
of a task into actions by a computation and communication thread. The compu-
tation thread executes the task, informs the communication thread at signal,
and proceeds without blocking. The communication thread interacts with other
such threads to perform the required SCSL actions. All the task actions de-
scribed in this paper are those of the communication thread. We explicitly refer
to the computation thread where necessary. In this section, we present detailed
design descriptions of the creation and operations on SCSL. Managing the signal
notification skip list - SNSL is similar, but simpler compared to SCSL. For lack
of space, we omit the design of SNSL.

3.1 Distributed Skip Lists Creation

Create is a collective operation among a set of tasks that is used to create a
phaser. Each task can specify whether it wants to participate in the phaser and if
so, its participation mode. Invoking the create operation leads to the creation
of both SCSL and SNSL, for which we employ the O(log n)-based recursive
doubling algorithm developed by Egecioglu et al. [4] without wrap-around. The
algorithm proceeds in log n rounds of communication. In each round i, a task
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communicates with its hypercube neighbors at 2i links away and accumulates
left and right “frontiers” that indicate visible neighbors at each level.

3.2 Synchronization Signal Aggregation

Definition 1. Local phase is the number of calls to signal by a signaler’s com-
putation thread. Subtree phase at a signaler is the minimum subtree phase

across all the right neighbors connected to the signaler in the SCSL at their
highest level and local phase at the signaler itself. These right neighbors are
referred to as from neighbors. Messages informing the subtree phase at a sig-
naler to the left neighbor at its highest level is called a synchronization signal.
The left neighbor at the highest level is referred to as the to neighbor.

For example, in Fig. 1, s3 is the from neighbor of s2 and also the to neighbor

for both s4 and s5.
Single round of signal aggregation In a round of signal aggregation, each
signaler issues a request (SRQ) to its from neighbors querying whether they can
participate in the next phase, i.e., subtree phase+1. On receiving an SRQ, a sig-
naler waits for responses from all its from neighbors and waits for local phase

to equal the requested phase. After the wait conditions are satisfied, the signaler
increments its subtree phase and sends a response (SRP) to its to neighbor

and forming a request-response chain, which begins at the designated root sig-
naler task in the SCSL. The request-response chain might, however, result in
the ripple of requests from the root to the farthest signaler participating in the
SCSL, and the ripple of responses back to the root in every synchronization
round. To mitigate the latency of such ripples, we require that a signaler is-
sues SRQ for the subsequent synchronization round immediately after sending
a response to its to neighbor.

Definition 2 (Synchronization signal invariant). The to neighbor of any sig-
naler aggregates signals for the same or lower synchronization round than the
signaler itself, formally:

∀s ∈ SCSL, s.subtree phase ≥ s.to neighbor.subtree phase

Since every signaler is transitively connected to the root in the SCSL, this
invariant ensures that an increment of the subtree phase at the root occurs
only after all signalers in the SCSL have signaled for that round.

3.3 Registration of a Signaler

Our design supports the dynamic addition of a task into a phaser. Similar to
phasers in shared memory, only a task currently participating in a phaser, re-
ferred to as parent, registers new tasks, referred to as children, into the phaser.
By doing so, we provide the guarantee that a child begins participating in the
same phase (local phase+1) as that of its parent.
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Inserting a child into the SCSL is decomposed into multiple steps to enhance
concurrency. In each step, the granularity of locking is limited to a maximum of
two links at two adjacent levels of the SCSL. First, a parent eagerly inserts a
child into a link at the lowest level of the SCSL, i.e., L0. Next, the child initiates
a lazy hand-over-hand climb from one level to the next until its final level in the
list; decision to move to level k+1 from k is based on probability p.

There are two modes of signal propagation for a child. After eager insertion,
a child still needs the parent to propagate its signals since it might be at a
lower phase than the subtree phase of the left neighbor at L0 of the SCSL.
We refer to this state as a transient state. Once it reaches the subtree phase

of its left neighbor at L0, then it functions as a typical task in the SCSL
and propagates its signals through its left neighbor. We refer to this state as a
normal state. In the next two sections, we describe the two steps of eager- and
lazy-insertion in detail.

3.3.1 Eager Single-link Modify Here, we describe in detail the pattern of
communications between tasks in the SCSL needed to register a child task with
the phaser. When a parent registers a child, the parent’s computation thread
blocks until the child is linked into the SCSL at L0. The blocking ensures that
no signals of the child are lost. To insert a child at L0 of the SCSL, the first step
is to find the location where the child should be linked. To do so, we employ the
logical rank of the compute node on which a child will execute as a key.

Fig. 2: Message sequence for addition of a task.

TUS
Travel Upstream during

Spawn

TDS
Travel Downstream during

Spawn

MURS/E
Moving Up of Right Neighbor

Started/Ended

MULS/E
Moving Up of Left Neighbor

Started/Ended

AT Attach

ENSP End Of Spawn

Fig. 2 illustrates the message sequence for linking a child to L0 of the SCSL
based on the child’s key. In the figure, n2 links its child n4 into the SCSL. The
first step in this process is to find neighbors n3 and n5 such that n4’s key lies
between n3 and n5. To do so, n2 initiates an upstream message chain, 1-TUS,
that hops from a task to its left neighbor at its highest level terminating at
a task n0, such that n4’s key lies between n0 and its right neighbor or the
highest level of the SCSL is reached and n0’s right neighbor’s key is less than
the child’s key. n0 then initiates a downstream message chain, 2-TDS, that hops
from a task to its right neighbor until it ends at the L0 link where the child
should be linked. The left neighbor of this L0 link, n3, enqueues 3-MURS on
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itself because another inclusion/drop might occur concurrently preventing n3
from handling the 3-MURS immediately. Once, n3 dequeues 3-MURS, it verifies
whether the link with its current right neighbor, n5, remains valid for the
child’s inclusion. If so, n3 proceeds to lock the link to prevent other structural
changes and informs n5 of the child through 4-MULS. n5 sets its to neighbor

to n4, locks its left neighbor at L0 and sends 5-AT to n4. n4 sets its left and
right neighbors at L0 to n3 and n5 respectively and sends 6-MURE, 7-MULE
and 8-ENSP. n4 starts in the same phase as n2. If subtree phase of n3 is higher
than that of n2, then n4 needs to send signals to n2 till it catches up with the
synchronization round of n3, i.e., transient state. On receipt of 6-MURE, n3
sets its right neighbor at L0 to n4 and unlocks it. On receipt of 7-MULE,
n5 sets its left neighbor at L0 to n4 and unlocks it. The right neighbor of
n3 and left neighbor of n5 are set at the end to ensure that search messages
such as 1-TUS and 1-TDS are never blocked and go through a transient task
only after its completely linked at L0. On receipt of 8-ENSP, n2 determines
whether to maintain a signaling link with child task (n4) and notifies its blocked
computation thread to proceed.

3.3.2 Lazy Multi-link Modify The lazy hand-over-hand movement of a
child to its final height in the SCSL does not begin until the child completes
transition from transient state, i.e., signals through its parent, to normal state,
i.e., signals through its left neighbor at L0 in the SCSL. The transition to nor-
mal state occurs once the child reaches the subtree phase of its left neighbor

at L0. In normal state, at each level k, the child decides to move to level k+1
based on probability p until it reaches its final height. To move to level k+1, it
needs to determine its neighbors at level k+1. Using a message chain similar to
1-TUS, the first neighbor on the left of the child with a height of k+1 is deter-
mined. This neighbor, its right neighbor at level k+1, and the child interact in
a hand-shake message sequence exactly like the one for eager insertion to move
the child to level k+1.

For lack of space, we do not provide details about the drop operation. The
message exchanges are similar to the inclusion except the signaler is moving
lazily from k+1 to k before delinking itself from the SCSL completely.

3.4 Verification of SCSL

In this section, we show the correctness of SCSL operations with model check-
ing [2]. In model checking, given a system (specified as a configuration) and some
properties, a model checker tests these properties in all possible execution paths
of the system. The goal of the SCSL verification is to show that the signal aggre-
gated at the root is inclusive of signals from all registered signalers who haven’t
drop’ed; we call this property root aggregation correctness. To this end, we define
a set of linear temporal logic (LTL) formulae that capture the root aggregation
property. We check whether these formulae are satisfied during model checking.
We employ a “message”-based strategy that consists of model-checking LTLs
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against a different configuration for each message type, say 1-TUS. We do so
because a naive process-based model checking strategy required more than 1TB
of RAM in our experiments.

We realize our verification using the state-of-the-art model checker Spin [5].The
complete set of LTLs and configurations is available online at: http://goo.gl/
ypuhaq

3.4.1 Root Aggregation Correctness We introduce three categories of
properties: synchronization signal, structural consistency, and progress.
Synchronization signal Every signaler signals to its to neighbor only after
its from neighbors and itself have signaled, i.e., SCSL maintains the synchro-
nization signal invariant at all times. The synchronization signal invariant, Def-
inition 2, guarantees the integrity of the phase aggregated at the root of the
SCSL. The LTLs that capture this invariant are as follows:

– �(∀i, (! is transient(ni) =⇒
(ni.subtree phase ≥ ni.to neighbor.subtree phase))

– �(∀i, (is transient(ni) =⇒
ni.left neighbor[cur height].subtree phase > ni.subtree phase))

Structural consistency Every signaler is transitively connected to the root,
i.e., SCSL maintains structural consistency at all times. Every signaler has a
single to neighbor whose identifier is lesser than its own, and every signaler has
at most one from neighbor at each level of SCSL. This prevents any independent
clusters in the SCSL and guarantees eventual connectivity to the root of the
SCSL, thereby, ensuring that no signal from a signaler is lost.

– �(∀i,∀L, (ni.left neighbor[L] < ni < ni.right neighbor[L])) states
that for every signaler, its identifier is always between its left neighbor and
right neighbor at every level in which it participates. This monotonically
increasing task-to-to neighbor chain ensures that there are no independent
loops of signalers that are not attached to the SCSL.

– �(∀i,∀L, (ni == ni.left neighbor[L].right neighbor[L])) states that for
every signaler, the right neighbor’s left neighbor is the signaler itself.

– �(∀i, ni == ni.to neighbor.from neighbor[height(ni)])) states that ev-
ery signaler always has a to neighbor and that the from neighbor of the
to neighbor at the height of the signaler is always the signaler itself.

Progress SCSL is deadlock- and livelock-free. This requirement ensures progress.

3.4.2 Message-based Verification Every phaser operation in our design is
implemented as a series of message exchanges in the SCSL, where every message
is handled atomically and terminates with the initiation of the next message
needed for the operation. For example, if a task processes a 1-TUS then it either
sends a 1-TUS or initiates the 2-TDS and does so atomically. Therefore, if each
message of an operation can be processed correctly under any possible structural
change and every message completes by starting the next message needed for
the operation, then the operation is guaranteed to function correctly.

http://goo.gl/ypuhaq
http://goo.gl/ypuhaq
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Message-based Modeling and Model Checking Our scheme uses a quorum
of processes, signalers in our case, to undergo structural changes that challenge
the successful completion of a single message in an operation on the SCSL. The
structural changes include the source of the message delinking from the SCSL
or moving lazily to a higher level, the destination of the message delinking from
the SCSL or moving lazily to a higher level, and a new signaler linking between
the source and destination and later delinking itself. These processes also have
to complete a specific set of synchronization rounds. In the presence of such
structural changes, if a message successfully completes, the LTL constraints are
satisfied, and the specific number of synchronization rounds are complete, then
we conclude that the handling of that message is correct.
Verifying 1-TUS message Consider the 1-TUS message in Fig. 2. n2 initiates
a 1-TUS to n1 in the SCSL. The following structural changes can occur: n1 can
move down from L1 to L0, and n1’s new neighbor at L0, say n01, can drop
out of the SCSL. To ensure the successful handling of 1-TUS message in these
scenarios, we model check a configuration of 6 signalers n0,01,1,2,3,4 such that
n2 inserts n4, n1 and n01 undergo structural changes as mentioned above. This
configuration along with others needed to verify eager insertion are present in
Table 1. In Table 1, column 1 describes the message while column 2-6 lists
configurations of 5 tasks; the root n0 participates at all levels, does not undergo
structural changes, and hence, omitted from the table. Column 7 specifies the
memory consumed and Column 8 specifies the number of states explored. A
configuration of the task is specified as L:X*, where L indicates the initial level
and X* is the sequence of operations comprising of D (drop), M(lazy move up),
E[i] (eager insertion with parent task i).

Message n01 n1 n2 n3 n4

Mem
(GB) States

TUS L0:D L1:D L1 L2 :E(2) 135 1.1e10
TDS L1:D L0:D :E(0) L1 - 23 1.7e9
MURS :E(0)D :E(0) L0:D - - 10 5.6e8
MULS-1 L0 L0 :E(01) :E(0) - 78 7.4e9
MULS-2 L0 L0 :E(01) L0:M - 86 6.7e9
MULS-3 L0 L0 :E(01) L1:D - 50 4.3e9
AT L1 :E(0) :E(0)MDD - - 6 3.1e8
ENSP L1 :E(0) - - - 1 5.4e7

Table 1: Configurations used to model check the eager insertion of a signaler.

A Model of SCSL in PROMELA The input specification to Spin is the
SCSL implemented in PROMELA along with the LTLs. We implement the SCSL
as a group of processes (proctypes), one for each signaler. These signalers in-
teract with each other using channels; a channel holds messages sent from one
process to another. Every signaler is configured to perform a specific number
of phase advancements and its probabilistic height is decided a priori based on
the configuration needed to verify a specific message. Every signaler executes a
message-driven progress engine, which on receipt of a specific message responds
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with messages as specified in previous sections. We model check our configu-
rations on a POWER7 compute node with 256GB RAM. A few experiments
that needed more memory than 256GB were run on NERSC’s Carver system,
which had 1TB RAM. In total, we employed 23 configurations to verify all the
messages in all operations on the SCSL.

Design Influenced by Model Checking: Tagging Messages with Link-
sequence Numbers Monotonically increasing unique integral identifiers are
assigned to links between tasks in the SCSL and messages are tagged with them.
This design feature avoids problems due to stale messages. Consider the scenario
in which n3 initiates a move into the link between n2 and n4 at Li. Concurrently,
n4 also decides to move into the next level, i.e., Li to Li+1, and issues an 1-LLNL
to n2. Before the 1-LLNL is processed at n2, the following events occur: n3 moves
into the link between n2 and n4, n3 processes the move up of n4, n3 drops out
of the phaser, n4 drops a level relinking itself to n2, and n2 processes the 1-
LLNL issued by n4 prior to these events. Processing the stale 1-LLNL leads to
n2 locking the link n2-n4 without n4 having any intention of moving to the upper
level. This led to the introduction of link identifiers.

4 Complexity Analysis

In this section, we present complexity analysis of synchronization and structure
modification operations on the signal collection skip list - SCSL.

Complexity of Signal Aggregation The expected critical path length in a
skip list from any task to the root is logarithmic in the number of tasks in
the skip list. Hence, the expected time complexity taken by a signal from any
participant in the SCSL to reach the designated root is O(log n), where n is the
total number of signalers. The expected time complexity to aggregate signals
from all the signaler tasks is also O(log n) since the aggregation occurs in parallel
across all such chains.

Complexity of Participant Addition Here, we present complexity analysis
of the expected number of message hops, i.e., pairwise communications, needed
to insert a task to the SCSL. Eager insertion requires a skip list search, O(log n),
to find the position to attach and a constant number of operations to finalize
attach. Hence, eager insertion has a time and message complexity of O(log n).
The rest of this discussion derives the complexity for moving a task lazily from
L0 to its eventual height.

Let there be a group of tasks that are lazily moving up to the higher levels
between two stable tasks; stable tasks are those that have already reached their
final height. We useKj

i to indicate the jth task at Li and use |Kj
i | to represent the

distance between the left stable task and Kj
i . To this end, we abstract our model

by making the following assumptions: (1) When considering the movement of
tasks from Li to Li+1, there is a uniform probability distribution over the orders
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in which they move up. For example, if tasks K1
i ,K

2
i ,K

3
i are moving up, then

any of the 6 possible orders are equally likely. (2) The number of hops required
for task Kj

i is

(a) |Kj
i |, if there is no task |Kl

i | < |K
j
i | that moves to Li+1 before Kj

i , and

(b) |Kj
i | − |Kl

i |, if Kl
i moves to Li+1 before Kj

i and there is no other task Kt
i

that reaches before Kj
i and |Kt

i | > |Kl
i |.

The key idea in our complexity analysis is to compute the expected number
of messages for an arbitrary link, Li. We then sum up the number of messages
across levels and divide by the total number of inserted tasks to obtain per
inserted task analysis. Before stating the main result, we prove three helper
lemmas. Let mi denotes the total number of intervals at Li and mT denote the
total number of intervals at L0.

Lemma 1. Let C be the interval contention at L0 in the SCSL and let the
interval contention at Li be denoted by Ci. Then C ∗ pi ≤ E[Ci] ≤ C.

Proof. Let X be the number of newly inserted tasks that move to Li and Y is
the number of stable tasks excluding root that are present at Li. X and Y are
independent of each other and are binomially distributed with probability pi.
mT is the total number of intervals at L0. By definition, Ci = X/(Y + 1) and
hence, E[Ci] = E[X/(Y + 1)]. Since X and Y are independent and binomially

distributed with probability pi, E[X] = mTCp
i and E[1/(Y +1)] = (1−(1−pi)mT )

mT pi .

Since, E[Ci] = E[X] ∗ E[1/(Y + 1)], we have C ∗ pi ≤ E[Ci] ≤ C.

Lemma 2. Let Ki = {K1
i , · · · ,K

ni
i } be the tasks that move up from Li to Li+1,

then the expected value of total number of hops for Ki, denoted by E[Cost(Ki)],

is Σni
j=1

|Kj
i |

ni+1−j .

Proof. We first note that E[Cost(Ki)] = Σni
j=1E[Cost(Kj

i )]. To compute,

E[Cost(Kj
i )], we further partition the space of different configurations based on

the order in which Kj
i moves up and use M(Ki

j , r) to denote the event that Kj
i

is rth task to reach the level i+1. Note that Cost(M(Ki
j , r)) depends only on the

largest Kl
i < Kj

i that reaches Li+1 before Kj
i . To this end, we use MO(Kj

i , r, l)

to denote the event that Kj
i is rth task to reach Li+1 and Kl

i reaches before

Kj
i and there is no other task Kt

i that reaches before Kj
i and |Kt

i | > |Kl
i | . We

use MO(Kj
i , 1, 0) to denote the event when Kj

i is the first task to reach Li+1.

Therefore, E[Cost(Ki)] = Σni
j=1Σ

ni
r=1Σ

ni

l=0,l 6=jE[Cost(MO(Kj
i , r, l))]. The rest of

the proof is completed by first computing E[Cost(MO(Kj
i , r, l))] and then ap-

plying algebraic simplifications to compute E[Cost(Ki)].
To compute E[Cost(MO(Kj

i , r, l))], we first note that E[Cost (MO(Kj
i , r, l))]

= Pr(MO(Kj
i , r, l)) ×Cost(MO(Kj

i , r, l)). Next, Pr(MO(Kj
i , r, l)) is (a)

1
ni

∏ni−l
t=1 (ni−r−t−1

ni−t ) for r 6= 1, j > l − 1, (b) 0 for r 6= 1, j <= l − 1 and (c)

1/n for r = 1. Also, Cost(MO(Kj
i , r, l)) = |Kj

i | − |Kl
i | if r 6= 1, |Kj

i | otherwise.

Therefore, E[Cost(Kj
i )] = |Kj

i | − Σj−1
t=1

|Kj−t
i |

t(t+1) . Summing up over j, we obtain
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E[Cost(Ki)] = Σni
j=1

|Kj
i |

ni+1−j . To simplify this cost expression, we use the follow-
ing lemma.

Lemma 3. Let |K∗i | = min
ni/2
j=1

|Kj
i |+|K

ni+1−j

i |
2 , then E(|K∗i |) ≥

p
4C

i.

Proof. |K∗i | = min
ni/2
j=1

|Kj
i |+|K

ni+1−j

i |
2 ≥ min

ni/2
j=1

|Kj
i |
2 +min

ni/2
j=1

|Kni+1−j

i |
2 . There-

fore, |K∗i | ≥ 1
2 +

|Kni/2

i |
2 ≥ |K

ni/2

i |
2 . Since E(|Kni/2

i |) ≥ p
2C

i, E(|K∗i |) ≥
p
4C

i.

Theorem 1. Let E[HC ] be the expected number of hops consumed by a
task inserted at L0 to reach stable state, then Ω(p3 log(Cp3)) ≤ E[HC ] ≤
O( p

1−p log(C p
1−p )).

Proof. To compute expected number of hops per task, we take the ratio of ex-
pected number of hops for all tasks inserted at L0, denoted by E[HT

C ] and the

total number of tasks at L0. Let HT,i
C denote the total number of hops consumed

by tasks moving from Li−1 to Li, then E[HT
C ] = ΣiE[HT,i

C ]. From Lemma 2,

we have E[HT,i
C ] = E[miΣ

ni
j=1

|Kj
i |

ni+1−j ]. Using Lemma 3 and ∀j,Kj
i < Kni

i ,

we have E[miΣ
ni
j=1

|K∗
i |

ni+1−j ] ≤ E[HT,i
C ] ≤ E[miΣ

ni
j=1

|Kni
i |

ni+1−j ]. From the proof

of Lemma 1, we know that E[ni] = E[Ci]p. Similarly, following the proof of
Lemma 1, we have E[mi] = mT p

i. Since Ω(log ni) ≤ Σni
j=1

1
ni+1−j ≤ O(log ni).

Next, E[Kni
i ] ≤ C and noting the random variables mi, ni,Ki are inde-

pendent, we have mT p
i p
2E[Ci]Ω(logE[ni]) ≤ E[HT,i

C ] ≤ mT p
iCO(logE[ni]).

Hence, mT p
iC pi+1

4 Ω(log(Cpi+1)) ≤ E[HT,i
C ] ≤ mT p

iCO(logCp). Therefore,
mTCp

3Ω(log(Cp3)) ≤ E[HT
C ] ≤ mTC

p
1−pO(log(C p

1−p )). Noting that the to-
tal number of tasks inserted at L0 is mTC we have,
Ω(p3 log(Cp3)) ≤ E[HC ] ≤ O( p

1−p log(C p
1−p ))

5 Related Work

Agarwal et al. present a distributed version of X10 clocks [1]. In this protocol,
each task consults a local snapshot to determine the participant tasks and to
make a decision about moving to the next phase. Processes add or drop them-
selves from these local snapshot. The authors, however, do not depict how this
information is exchanged and state that in a basic implementation, one would re-
quire O(n2) messages. Our protocol describes the complete set of actions needed
to ensure a total of O(n) messages and O(log n) time complexity for synchro-
nization using distributed skip lists.

In the non-blocking skip list protocol presented by Crain et al. [3], changes
to the skip list structure are divided into two stages: eager abstract modifica-
tion and lazy structural adaptation. They employ a single adaptive thread with
global information to perform the structural changes based on neighborhood in-
formation. Our protocol is similar with two stages for insertion and deletion, but
does not rely on an adaptive thread to perform the structural changes.
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6 Conclusions

In this paper, we present a design for phasers, a general barrier-like synchroniza-
tion construct that supports dynamic addition and deletion of parallel tasks, for
a distributed memory-environment. Our design is based on a pair of distributed
concurrent skip lists augmented with the ability to aggregate and diffuse phaser
synchronization signals. By employing eager- and lazy-strategies while perform-
ing structural operations, our distributed phaser design supports a high-degree
of concurrency. We employ a novel “message-based” model checking scheme to
prove the correctness of our design. We derive the expected cost of signal aggre-
gation, i.e., log n and cost for inclusion of a new task in the presence of interval
contention C, i.e., Ω(p3 log(Cp3)) ≤ E[HC ] ≤ O( p

1−p log(C p
1−p )).
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