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ABSTRACT
Owing to the pervasiveness of software in our modern lives, soft-

ware systems have evolved to be highly configurable. Combinatorial

testing has emerged as a dominant paradigm for testing highly con-

figurable systems. Often constraints are employed to define the

environments where a given system under test (SUT) is expected

to work. Therefore, there has been a sustained interest in designing

constraint-based test suite generation techniques. A significant goal

of test suite generation techniques is to achieve 𝑡-wise coverage for

higher values of 𝑡 . Therefore, designing scalable techniques that

can estimate 𝑡-wise coverage for a given set of tests and/or the

estimation of maximum achievable 𝑡-wise coverage under a given

set of constraints is of crucial importance. The existing estimation

techniques face significant scalability hurdles.

The primary scientific contribution of this work is the design of

scalable algorithms with mathematical guarantees to estimate (i)

𝑡-wise coverage for a given set of tests, and (ii) maximum 𝑡-wise

coverage for a given set of constraints. In particular, we design a

scalable frameworkApproxCov that takes in a test setU, a coverage

parameter 𝑡 , a tolerance parameter 𝜀, and a confidence parameter 𝛿 ,

and returns an estimate of the 𝑡-wise coverage ofU that is guaran-

teed to be within (1± 𝜀)-factor of the ground truth with probability

at least 1−𝛿 . We design a scalable framework ApproxMaxCov that,
for a given formula F, a coverage parameter 𝑡 , a tolerance parameter

𝜀, and a confidence parameter 𝛿 , outputs an approximation which is

guaranteed to be within (1±𝜀) factor of the maximum achievable 𝑡-

wise coverage under F, with probability ≥ 1−𝛿 . Our comprehensive

evaluation demonstrates that ApproxCov and ApproxMaxCov can
handle benchmarks that are beyond the reach of current state-of-

the-art approaches. We believe that the availability of ApproxCov
and ApproxMaxCov will enable test suite designers to evaluate the

effectiveness of their generators and thereby significantly impact

the development of combinatorial testing techniques.
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1 INTRODUCTION
For the past 50 years, software systems have permeated nearly all

aspects of our lives, including critical domains such as autonomous

driving, criminal sentencing, surveillance, and healthcare. Given the

diversity of application scenarios, a software system is designed to

be highly configurable to allowwidespread adoption [50]. Economic

factors also support the design of highly configurable systems. It

is desirable for a software vendor to develop a general-purpose

software with a large number of configurations to allow client-

level customization without necessarily requiring redesign of the

underlying software architecture. At the same time, given the usage

of software in critical domains such as healthcare, software failures

can have serious adverse effects. Therefore, the testing of software

systems is of paramount interest.

A configuration of a system refers to the assignment of values to

all the configurable features of the system. Configurability does not

come without a price: feature dependencies are common [54] and

could lead to variability bugs appearing only in some configura-

tions. A straightforward testing strategy would be to check whether

the system behaves as intended for every possible configuration.

However, such an approach is not practical for real-life systems [33]

as it is common to have thousands of features in modern software

systems resulting in a prohibitively large number of possible con-

figurations [4, 5]. The combinatorial explosion of the possible set

of configurations is perhaps best illustrated by the observation that

embedded Linux kernel for micro-controllers has over 7.7 × 10417
configurations [52].

The curse of configuration explosion has been well known for

over three decades, and consequently, the area of combinatorial
testing has emerged as the dominant paradigm for testing of highly

configurable systems [15, 27, 34, 40, 43, 47, 62, 63, 68]. The devel-

opment of combinatorial testing techniques, in large part, has been

motivated by the observation that for most systems, interactions

among a small number of features are sufficient to trigger the buggy

behavior. An influential study by NIST observed that up to 6−wise,

https://doi.org/10.1145/3510003.3510218
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interactions among parameters are responsible for most of the

bugs [33]. Another study showed that discovered variability bugs

in Linux kernel involve up to 5−wise feature interactions [1]. In
combinatorial testing, we are often interested in maximizing 𝑡-wise
coverage1, which measures the fraction of 𝑡-sized combinations of

features appearing in the test suite over all possible 𝑡-sized combi-

nations of features. A test suite that can achieve 𝑡-wise coverage

of 1 is also called a 𝑡-covering array in the literature, i.e., for 𝑛 bi-

nary features, a 𝑡-covering arrayU has all the

(𝑛
𝑡

)
2
𝑡
combinations

appearing in itself.

The complexity of test suite design is exacerbated by the ob-

servation that not every configuration is typically allowed by the

system, and often constraints are employed to describe the valid

set of configurations. In the real world, these constraints represent

scenarios for which the systems are expected to work correctly.

For example, one of the widely used SPLC challenge benchmark

uLinux consists of constraints to capture the variability model in

KConfig [52]. Therefore, given a set of constraints, the possible

𝑡-wise combinations of features are defined only over the satisfying

assignments of these constraints. At this point, it is perhaps worth

emphasizing that even for the case when there are no constraints,

the size of a 𝑡-covering array for 𝑛 features is Ω(2𝑡 log𝑛) [55]. The
presence of constraints brings additional complications to the de-

sign of 𝑡-covering array.

Given the practical importance of the combinatorial testing, the

problem of efficient design of the test suite has witnessed a sus-

tained interest for over three decades, evidenced by the diverse set

of techniques ranging from evolutionary algorithms [6, 14, 37] to

constraint-based systems [12, 17] proposed over the years. The pro-

posal of these techniques is often accompanied by measurement of

𝑡-wise coverage over benchmarks with small 𝑛 as the computation

of 𝑡-coverage for large values of 𝑛 is considered impractical. Given

a test suiteU and a set of constraints F over the parameters, the

estimation of 𝑡-wise coverage requires us to estimate the number

of 𝑡-combinations of features appearing in the test suite U and

the number of possible 𝑡-combinations over the solutions of F. For
the former computation, the state-of-the-art techniques maintain a

hash map of size O(
(𝑛
𝑡

)
2
𝑡 ), and the map is updated for every ele-

ment ofU. Furthermore, to compute the possible 𝑡-combinations

over the solutions of F, the best-known algorithms check whether F
conjuncted with a 𝑡-combination (expressed as a conjunction of lit-

erals) is satisfiable
2
. Unfortunately, for most practical instances, the

computation of both the quantities is beyond the reach of the state-

of-the-art techniques. The limitations of the current techniques

for 𝑡-wise coverage estimations are illustrated in reliance on small

benchmarks or extremely small-sized test suites whenever com-

parisons across different test suite generation methodologies are

presented. In this context, we ask: Can we design scalable algorithms
to closely estimate 𝑡-wise coverage with rigorous guarantees?

1.1 Our Contribution
The primary contribution of our work is an affirmative answer to

the above question. We design, to the best of our knowledge, the

1
defined formally in Section 2

2
An alternate approach would be to enumerate all the solutions of 𝐹 , but for most

formulas of interest, the number of solutions is too large to enumerate.

first scalable technique that provides rigorous estimates of 𝑡-wise

coverage. In particular, we present:

(1) A scalable Monte Carlo-based algorithm ApproxCov that

takes in a test suiteU, a coverage parameter 𝑡 , a tolerance

parameter 𝜀, a confidence parameter 𝛿 as input, and returns

an estimate of |Covt (U)| that is mathematically guaranteed

to bewithin (1±𝜀)-factor of the ground truthwith probability
at least 1 − 𝛿 , where Covt (U) is the set of all 𝑡-wise cover-
ages of elements inU and | · | is a set cardinality. ApproxCov
takes only O(2𝑡 · 𝑡 log𝑛) (for a constant 𝜀 and 𝛿) space in

contrast to the space requirement of O(
(𝑛
𝑡

)
2
𝑡 ) for the ex-

isting techniques. Therefore, for small 𝑡 < 6, we achieve a

reduction from 𝑂 (𝑛𝑡 ) to 𝑂 (𝑡 log𝑛). The running time of the

algorithm is also scalable for instances with parameters that

are currently used in practice.

(2) A scalable counting-based algorithm ApproxMaxCov that

takes in formula F, a coverage parameter 𝑡 , a tolerance pa-

rameter 𝜀, and a confidence parameter 𝛿 as input, and returns

an estimate of |Covt (Sol(F)) | that is guaranteed to be within
(1 ± 𝜀)-factor of the ground truth with probability at least

1−𝛿 .ApproxMaxCov reduces computation of |Covt (Sol(F)) |
to the problem of projected model counting. Our reduction

allows us to build on the recent advances in hashing-based

paradigm for projected model counting [9, 11, 24, 59, 60],

and we employ state-of-the-art hashing-based approximate

model counter ApproxMC4 [58].

(3) We demonstrate the effectiveness of ApproxCov and Approx-
MaxCov via implementations in Python

3
and a comprehen-

sive experimental study. We observe that while the current

state of the art techniques fail to compute coverage for be-

yond 𝑡 = 2, ApproxCov and ApproxMaxCov can efficiently

handle 𝑡 ∈ {2, 3, 4, 5, 6} (and beyond 𝑡 = 6). Furthermore,

for 𝑡 = 2 on feature models with thousands of features,

we observe significant runtime improvement: in particular,

ApproxCov achieves from 2 to 136 factor speedup over prior

state of the art BLMCov, while ApproxMaxCov achieves

from 6 to 86 factor speedup over prior state of the art tech-

nique BLMMaxCov.
(4) We show generalizations of ApproxCov and ApproxMaxCov

to estimate 𝑡-wise coverage on configurable systems where

each feature can take values from a discrete domain. We

demonstrate with experimental evaluation that the general-

ized algorithms are effective and can provide close estimation

of 𝑡-wise coverage.

Few words are in order to explain the critical enabler for the

scalability of ApproxCov and ApproxMaxCov: From our viewpoint,

the scalability of ApproxCov owes to the simple but creative usage

of the Monte Carlo-based strategy, while for ApproxMaxCov, the
reduction to projected model counting allows us to employ and reap

the benefits of the recent progress in the development of hashing-

based techniques [9, 11, 58, 59].

Significance of our contribution:Combinatorial testing is a dom-

inant testing methodology in large and complex software systems.

Therefore it is vital to have tools that allow us to compare differ-

ent test suite generation techniques. Our algorithms ApproxCov

3
https://github.com/meelgroup/approxcov
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and ApproxMaxCov provide the combinatorial testing community

sound tools to compare different test suite generation techniques

for large benchmarks. As an immediate impact, we expect our tech-

niques to allow a thorough comparison of the recently proposed

techniques in CIT community [3, 39] for large instances, which was

not feasible with the state of the art. The fact that our algorithms

are grounded on guarantees that are mathematically proved makes

them an attractive toolset in downstream applications.

Organization: The rest of the paper is organized as follows. We

present notation and preliminaries in Section 2. We present related

work in Section 3. We then present the technical contribution of the

paper in Section 4: ApproxCov in Section 4.1 and ApproxMaxCov
in Section 4.2. In Section 5 we present experimental results over

a comprehensive set of benchmarks. Finally, in Section 6, we give

concluding remarks.

2 NOTATIONS AND PRELIMINARIES
2.1 Boolean Formulas
A literal is a Boolean variable or its negation. A clause is a disjunc-

tion of a set of literals. A propositional formula F in conjunctive

normal form (CNF) is a conjunction of clauses. Vars(F) denotes
the set of variables appearing in F. The Vars(F) is also called the

support of F. A satisfying assignment or witness of F, denoted by

𝜎 , is an assignment of truth values to variables in its support such

that F evaluates to true. We often represent an assignment by the

set of literals that make the variables true. That is, an assignment

of True to variable 𝑥 is represented as 𝑥 and assignment of False to
𝑥 is represented as ¬𝑥 . We also use the binary bit 1 (0) to represent

True (respectively, False) and binary strings to represent an assign-

ment. We denote the set of all satisfying assignments of F as Sol(F).
Given a set of variables 𝑆 ⊆ Vars(F), we use Sol(F)↓S to denote the

projection of Sol(F) on 𝑆 .

Example. Consider the formula F over 4 variables {𝑥1, 𝑥2, 𝑥3, 𝑥4}
given by:

F = (𝑥1 ∨ 𝑥3) ∧ (¬𝑥1 ∨ ¬𝑥3) ∧ (𝑥1 ∨ ¬𝑥2) ∧ (𝑥3 ∨ ¬𝑥4).

Sol(F) = {0010, 0011, 1000, 1100}. In the literal representation the

assignment 0010 is represented as {¬𝑥1,¬𝑥2, 𝑥3,¬𝑥4}. Let 𝑆 =

{𝑥1, 𝑥2}, then |Sol(F)↓S | = {00, 10, 11}.
The propositionalmodel counting problem is to compute |Sol(F)↓S |

for a given CNF formula F and projection set 𝑆 ⊆ Vars(F). A proba-
bly approximately correct (or PAC) counter for Boolean formulas is a

probabilistic algorithm that takes as inputs a formula F, a sampling

set 𝑆 ⊆ Vars(F), a tolerance parameter 𝜀 ∈ (0, 1), and a confidence

parameter 𝛿 ∈ (0, 1], and returns a count 𝑐 such that

Pr

[
(1 − 𝜖) |Sol(F)↓S | ≤ 𝑐 ≤ (1 + 𝜀) |Sol(F)↓S |

]
≥ 1 − 𝛿.

2.2 t-wise Coverage
The formulation of combinatorial interaction testing (CIT) assigns a

variable corresponding to every feature of a software system.While,

in practice each feature can take a finite number of values, in the the

paper we consider the binary version, where each feature can take

two states: True or False. Let 𝑋 = {𝑥1, · · · , 𝑥𝑛} be the set of all the
variables (corresponding to 𝑛 features). Then a configuration 𝜎 of

the system can be represented as an element of the set

∏
𝑖
{𝑥𝑖 ,¬𝑥𝑖 }.

For example, for 𝑋 = {𝑥1, 𝑥2, 𝑥3}, 𝜎 = {𝑥1,¬𝑥2, 𝑥3} is an example

of a configuration.

Given a configuration 𝜎 represented as a set of literals, we define

the 𝑡-wise coverage of 𝜎 denoted by Covt (𝜎) = {𝑇 ⊆ 𝜎 | |𝑇 | = 𝑡},
the set of all subsets of literals of the size 𝑡 in 𝜎 . Covt (𝜎) repre-
sents the set of 𝑡-sized feature combinations due to 𝜎 . We can

extend the notion of Covt to a set U ⊆ ∏
𝑖
{𝑥𝑖 ,¬𝑥𝑖 } of configura-

tions as Covt (U) =
⋃

𝜎 ∈U Covt (𝜎). For a given 𝜎 , |Covt (𝜎) | =( |𝑋 |
𝑡

)
=
(𝑛
𝑡

)
. However, this does not imply |Covt (U)| = |𝑈 | ×

( |𝑋 |
𝑡

)
since |Covt (𝜎1) ∪Covt (𝜎2) | is not necessarily equal to |Covt (𝜎1) | +
|Covt (𝜎2) | due to non-empty intersection ofCovt (𝜎1) andCovt (𝜎2).
Also note that, for

∏
𝑖
{𝑥𝑖 ,¬𝑥𝑖 }, the set of all possible configurations

|Covt (
∏
𝑖
{𝑥𝑖 ,¬𝑥𝑖 }) | = 2

𝑡
( |𝑋 |
𝑡

)
. We will call Covt (

∏
𝑖
{𝑥𝑖 ,¬𝑥𝑖 }) the

universe and denote it by Ω. The above discussion leads to the fol-

lowing observation which is crucial for the proof of correctness of

our algorithm.

Observation 2.1. For anyU ≠ ∅ over a set of variables 𝑋 and
any 1 ≤ 𝑡 ≤ |𝑋 |, (

|𝑋 |
𝑡

)
≤ |Covt (U)| ≤ 2

𝑡

(
|𝑋 |
𝑡

)
.

We will be interested in the coverage of a set of configurations

that satisfy certain constraints over the features. We will focus on

constraints represented by a Boolean formula F. For a set U ⊆
Sol(F), the 𝑡-wise fractional coverage of a setU with respect to a

formula F, denoted by FracCovt (U, F) is defined as follows:

FracCovt (U, F) = |Covt (U)|
|Covt (Sol(F)) |

Example. To illustrate the notions, let us consider again the CNF

formula F

F = (𝑥1 ∨ 𝑥3) ∧ (¬𝑥1 ∨ ¬𝑥3) ∧ (𝑥1 ∨ ¬𝑥2) ∧ (𝑥3 ∨ ¬𝑥4).

The following table lists Covt (Sol(F)) for 𝑡 = 2. For compactness,

we use the bit representation of the assignments and coverage. For

example, a set of literals {¬𝑥1,¬𝑥2} is listed as 00 in the column

indexed (1, 2). |Covt (Sol(F)) | = 17. For 𝑈 = {0010, 0011} (shaded
in the table), |Covt (U)| = 9. FracCovt (U, F) = 9/17.

2-tuples

Sol(F) (1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4)
0010 00 01 00 01 00 10

0011 00 01 01 01 01 11

1000 10 10 10 00 00 00

1100 11 10 10 10 10 00

Total 3 2 3 3 3 3

ForU 1 1 2 1 2 2

Table 1: Coverage for example formula F
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3 RELATEDWORK
3.1 Combinatorial Testing
Since the introduction of combinatorial testing in the 1980s as an

effective option for configurable systems [40, 62], steady progress

has been reported on this topic. We refer the reader to [34, 47, 63]

for a detailed overview of the topic. In the classical combinatorial

testing, the goal is to design a test suiteU such that |Covt (U)| =(𝑛
𝑡

)
2
𝑡
. Such a test suit is also known as a covering array formally

defined in [57]. Covering arrays are orthogonal arrays or matri-

ces with rows representing configurations of a system and ev-

ery possible t-sized combination of variables appears at least in

one column. Over the decades, the construction of covering ar-

rays has witnessed a wide variety of approaches including greedy

search [2, 13, 28, 36, 37, 41, 61, 65, 67], divide-and-compose [51],

genetic algorithms [42], and tabu search [25, 48].

Modern software systems have a large number of features, and

the design of covering array is often impractical for 𝑡 > 2. Fur-

thermore, the modern softwares have associated variability mod-

els, and not every configuration is valid, and therefore, cannot

act as a test. In this context, constraints are employed to capture

the associated variability models or the scenarios under which a

software is expected to behave as per specifications. Combinato-

rial testing in such a constraint setting is called constrained com-

binatorial testing [7]. The presence of constraints has led to the

development of techniques that rely on the progress in combinato-

rial solvers over the past three decades. Several approaches have

been proposed that seek to sample solutions subject to constraints.

These approaches resulted in BDD-based techniques [35], random

seeding of DPLL-based SAT solvers [46], Markov Chain Monte

Carlo-based methods [29–31, 66], interval propagation and belief

networks-based methods [16, 22], MaxSAT-based techniques such

as Quicksampler [19], hashing-based approaches [8, 10, 58], knowl-

edge compilation-based approaches such as KUS [56], WAPS [26],

and Baital [3].

3.2 Model Counting
Valiant initiated the complexity theoretic study of model counting

and showed that the problem of model counting for CNF formula is

#P-complete [64]. The problem of projected model counting which

we employ in this paper is shown to be #·NP-complete [18]. Given

the computational intractability of (projected) model counting, we

are often interested in (𝜀, 𝛿)-approximations of the exact count,

where the goal is to obtain an (1 ± 𝜖) multiplicative approximation

of the exact count with probability at least (1 − 𝛿). Hashing-based
techniques have emerged as a dominant paradigm seeking scalabil-

ity while providing (𝜀, 𝛿)-approximation guarantees. The core idea

of hashing-based techniques is to employ pairwise independent

hash functions to partition the solution space into roughly equal
small cells of solutions. Then, we randomly choose one of the small

cells, enumerate all the solutions using a SAT solver one by one.

The number of solutions is estimated to be simply the number of

solutions in the cell multiplied by the total number of cells. The

pairwise independent hash functions can be realized using XOR-

based hash functions. The hashing-based techniques trace their

origin to Stockmeyer’s seminal work [60], subsequently pursued

by Gomes, Sabharwal, and Selman [23].

Chakraborty, Meel, and Vardi proposed the first scalable approx-

imate model counter, ApproxMC, which invoked the underlying

SAT solver, CryptoMiniSat, O(𝑛) times (where 𝑛 is the number of

variables in the original formula). Subsequently, Chakraborty et

al [11] reduced the number of SAT calls from O(𝑛) to O(log𝑛); the
corresponding counter was called ApproxMC2. Soos and Meel [59]

sought to improve the underlying SAT solver’s architecture; their

new architecture, called BIRD, achieved significant performance

improvement. ApproxMC is currently in its fourth generation, Ap-

proxMC5 [45, 58]
4
.

3.3 𝑡-wise Coverage Estimation
While combinatorial testing has witnessed over four decades of

sustained interests from theoreticians and practitioners, the tech-

niques to estimate |CovU | and |CovSol(F) | have rather been largely

underexplored. Given a setU, the state of the art technique main-

tains a map of the 𝑡-wise combinations seen inU. In the case of a

given formula F, observe that every 𝑡-combination can be expressed

as a conjunction of 𝑡 literals, say 𝜋 . Given such a 𝜋 , the state of the

art techniques simply invoke a SAT solver to check whether F ∧ 𝜋
is satisfiable. In our work, we use the implementation of these tech-

niques due to Baranov, Legay, and Meel [3], which was used in the

evaluation of the current state of the art test generator suite, Baital
5
.

We use BLMCov and BLMMaxCov to denote the implementations

for computations of Covt (U) and Covt (Sol(F)) respectively. To
the best of our knowledge, BLMCov and BLMMaxCov represent
the current state of the art; an assertion confirmed by the authors

of both the recently published studies in SE community [3, 39].

4 ALGORITHMS
In this section we present two algorithms. The first algorithm

ApproxCov (presented in Section 4.1) estimates |Covt (U)|. More

precisely ApproxCov takes as input a setU ⊂ ∏
𝑖 {𝑥𝑖 ,¬𝑥𝑖 }, error

parameter 0 < 𝜖 < 1, and a confidence parameter 0 < 𝛿 < 1, and

outputs a number that, with probability at least (1 − 𝛿), is between
(1 − 𝜖) |Covt (U)| and (1 + 𝜖) |Covt (U)|.

In Section 4.2 we present another algorithm ApproxMaxCov that
given a Boolean formula F, estimates |Covt (Sol(F)) |. More precisely,

ApproxMaxCov takes as input F, an error parameter 0 < 𝜖 < 1 and

a confidence parameter 0 < 𝛿 < 1 and outputs a number that, with

probability at least (1 − 𝛿), is between (1 − 𝜖) |Covt (Sol(F)) | and
(1 + 𝜖) |Covt (Sol(F)) |.

Using ApproxCov and ApproxMaxCovwe can estimate the value

of FracCovt (U, F). Given a Boolean formula F and a setU ⊂ Sol(F),
say we use ApproxCov(U, 𝜖1, 𝛿1) and ApproxMaxCov(F, 𝜖2, 𝛿2) to
obtain estimates for |Covt (U)| and |Covt (Sol(F)) | respectively. Let
Out1 be the output ofApproxCov(U, 𝜖1, 𝛿1) andOut2 be the output
of ApproxMaxCov(F, 𝜖2, 𝛿2). So we have with probability at least

(1 − 𝛿1) the following Equation 1 and with probability (1 − 𝛿2) the
Equation 2 holds.

(1 − 𝜖1) |Covt (U)| ≤ Out1 ≤ (1 + 𝜖1) |Covt (U)|, (1)

(1 − 𝜖2) |Covt (Sol(F)) | ≤ Out2 ≤ (1 + 𝜖2) |Covt (Sol(F)) |. (2)

4
While beta version of ApproxMC5 is released; ApproxMC4’s developer recommend

usage of ApproxMC4

5
We use the implementation available at https://github.com/meelgroup/baital

https://github.com/meelgroup/baital
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So, by union bound, with probability at least (1 − 𝛿1 − 𝛿2) both
the above equations work. Thus with probability (1 − 𝛿1 − 𝛿2) we
have

(1 − 𝜖1)
(1 + 𝜖2)

|Covt (U)|
|Covt (Sol(F)) |

≤ Out1
Out2

≤ (1 + 𝜖1)(1 − 𝜖2)
|Covt (U)|
|Covt (Sol(F)) |

. (3)

Thus given a Boolean formula F, a set U ⊂ Sol(F), an error

parameter 𝜖 and a confidence parameter 𝛿 , if we set 𝜖1, 𝜖2, 𝛿1 and

𝛿2 appropriately we will be able to give an (1 ± 𝜖)-multiplicative

estimate of FracCovt (U, F) with probability (1 − 𝛿). For example,

let us set 𝜖1 = 𝜖2 = 𝜖
2+𝜖 and 𝛿1 = 𝛿2 = 𝛿/2. Note that in that case

(1+𝜖1)/(1−𝜖2) is at most (1+𝜖) and (1−𝜖1)/(1+𝜖2) is at least (1−𝜖).
Then by using ApproxCov(U, 𝜖1, 𝛿1) and ApproxMaxCov(F, 𝜖2, 𝛿2)
to estimate |Covt (U)| and |Covt (Sol(F)) | respectively, from Equa-

tion 3, we have with probability at least (1 − 𝛿)

(1 − 𝜖)FracCovt (U, F) ≤ Out1
Out2

≤ (1 + 𝜖)FracCovt (U, F) .

4.1 Counting the Coverage of a Test Suit
The intuition behind the ApproxCov is similar to the Monte-Carlo

method. Given a set of variables𝑋 = {𝑥1, . . . , 𝑥𝑛}, consider a test set
U ⊆ ∏

𝑖
{𝑥𝑖 ,¬𝑥𝑖 } and the universe set Ω := Covt (

∏
𝑖
{𝑥𝑖 ,¬𝑥𝑖 }) with

all possible 𝑡-wise coverage tuples (the set with all combinations of

size 𝑡 that can be obtained with variables from 𝑋 ). The algorithm

picks a set S of size ℓ of random 𝑡-wise coverage tuples from Ω
(ℓ is appropriately chosen based on the input parameters). Then it

counts the number of elements from S that is realizable by at least

one of the tests inU (membership in Covt (U)). Let this number

be𝑚. Then the output of the algorithm is
𝑚
ℓ · |Ω |.

In detail, ApproxCov shown in Algorithm 1 starts by setting

the size of sample set that it would be picking depending on the

parameters 𝜀 and 𝛿 . In the For loop between line 3 and line 7 we

pick ℓ samples uniformly at random from Ω. The sampling is done

in two steps. For each sample, at first we select uniformly 𝑡 variables

to be used in a sample at line 4. At the second step we select a value

for each variable at random at line 5. Note that this procedure gives

a random element of Ω as the universe set can also be written as

Ω =

{
𝑤 ∈

∏
𝑖∈𝑇
{𝑥𝑖 ,¬𝑥𝑖 }

�� 𝑇 ⊆ (
[𝑛]
𝑡

)}
,

where

( [𝑛]
𝑡

)
is the set of all subsets of the set {1, . . . , 𝑛} of size 𝑡 .

Samples are stored in a map M, where the values indicate

whether the sample is realizable by at least one test inU, initialized

to 0. Note that there may be some elements that are picked multiple

times. In that case we will keep all the copies in the mapM, in other

words,M is actually a multi-map. In the nested for loops between
line 8 and line 14 we update values of the mapM if a sampled

element is a subset of any of the 𝜎 ∈ U. Finally, in line 15 we sum

the variables corresponding to the elements inM and output the

value multiplied with an appropriate scaling number.

Theorem 4.1. Let 𝑋 = {𝑥1, . . . , 𝑥𝑛} be the set of 𝑛 variables and
letU be any subset of

∏
𝑖
{𝑥𝑖 ,¬𝑥𝑖 }. Then for any positive integer 𝑡 and

positive real numbers 0 < 𝜖, 𝛿 < 1, with probability at least (1 − 𝛿)
the output of ApproxCov is an (1 ± 𝜖)-multiplicative approximation

Algorithm 1 ApproxCov(U, 𝜖, 𝛿)

1: ℓ ←
⌈
3
2
𝑡

𝜖2
ln(2/𝛿)

⌉
2: InitialiseM = ∅
3: for 𝑘 = 1;𝑘 ≤ ℓ ;𝑘 + + do
4: Pick a random 𝑇𝑘 from

( [𝑛]
𝑡

)
5: Pick a random𝑤𝑘 from

∏
𝑖∈𝑇𝑘
{𝑥𝑖 ,¬𝑥𝑖 }

6: Put𝑤𝑘 → 0 intoM
7: end for
8: for 𝜎 ∈ U do
9: for 𝑘 = 1;𝑘 ≤ ℓ ;𝑘 + + do
10: if 𝑤𝑘 ⊆ 𝜎 then
11: UpdateM[𝑤𝑘 ] to 1

12: end if
13: end for
14: end for
15: Output

(𝑛𝑡 )2𝑡
ℓ

∑ℓ
𝑘=1
M[𝑤𝑘 ]

of the |Covt (U)|. That is, with probability at least (1 − 𝛿),

(1 − 𝜖) |Covt (U)| ≤
(𝑛
𝑡

)
2
𝑡

ℓ

ℓ∑
𝑘=1

M[𝑤𝑘 ] ≤ (1 + 𝜖) |Covt (U)|.

Moreover, the amount of space needed is 𝑂
(⌈
3
2
𝑡

𝜖2
ln(2/𝛿)

⌉
𝑡 ⌈log

2
𝑛⌉

)
and the run time is 𝑂

(⌈
3
2
𝑡

𝜖2
ln(2/𝛿)

⌉
𝑡 ⌈log

2
𝑛⌉ |U|

)
.

4.2 Counting the Coverage with Constraints
In this section we present the algorithm ApproxMaxCov for esti-
mating |Covt (Sol(F)) |. Notice that it is not straightforward to use

ApproxCov to estimate this quantity as Sol(F) is not given explic-

itly. Hence we design a new algorithm ApproxMaxCov that uses
a projected model counting algorithm on a related formula. It is a

two-step algorithm shown in Algorithm 2. For a Boolean formula

F on variable set 𝑋 , it will first construct a new Boolean formula

GF
on variable set 𝑋 ∪ 𝑆 , where 𝑆 is an additional set of variables,

such that

|Covt (Sol(F)) | = |Sol(GF
↓{S}) | (4)

Then it will use an approximate projected model counting al-

gorithm (which we call ApproxCount) on GF
to output an (𝜖, 𝛿)

estimate of |Covt (Sol(F)) |. Several algorithms are known for the

approximate model counting problem and we discuss the one we

use in Section 5. Since the output of ApproxCount is guaranteed to

be within (1 ± 𝜀) of |Sol(GF
↓{S}) | with probability at least (1 − 𝛿),

the output of ApproxMaxCov is also between (1−𝜖) |Covt (Sol(F)) |
and (1 + 𝜖) |Covt (Sol(F)) |, with probability at least (1 − 𝛿).

Algorithm 2 ApproxMaxCov(𝐹, 𝑡, 𝜀, 𝛿)

1: (GF, 𝑆) ← ConstructGFormula(𝐹 )
2: 𝑐 ← ApproxCount(GF, 𝑆, 𝜀, 𝛿)
3: return 𝑐

Thus the correctness of the algorithm ApproxMaxCov follows
once we show that the formula GF (𝑋, 𝑆) satisfies the condition in

Equation 4.
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Lemma 4.2.

|Covt (Sol(F)) | = |Sol(GF
↓{S}) |

We now present the main idea of the construction of GF
.

Construction of GF: Intuitively, GF
encodes F and all the 𝑡-wise

coverage tuples contained in Sol(F). Given natural numbers 𝑛 and

𝑡 , and a Boolean formula F on 𝑛 variables 𝑋 = {𝑥0, . . . , 𝑥𝑛−1}6 we
will define a new Boolean formula GF

on 𝑛 + 𝑡 ⌈log
2
𝑛⌉ + 𝑡 variables.

First 𝑛 variables are the variables of 𝐹 . The remaining set of

variables 𝑆 can be partitioned into 𝑡 + 1 groups: 𝑌1, . . . , 𝑌𝑡 of size
⌈log

2
𝑛⌉ and 𝑍 = {𝑧1, . . . , 𝑧𝑡 }. Intuitively, 𝑆 encodes a subset of

indices {1, · · · , 𝑛} of size 𝑡 : 𝑌𝑖 is a bit-vector that encodes the 𝑖𝑡ℎ
integer in the subset and 𝑧𝑖 is its value in 𝑋 . To ensure that only

elements ofCovt (Sol(F)) can be assigned to the set 𝑆 , we extend the
formula Fwith additional constraints that is encoded in a formula 𝐹 ′

and the formula GF
is constructed as a conjunction of 𝐹 and 𝐹 ′. For

a binary string 𝑦𝑖 of length ⌈log2 𝑛⌉, let val(𝑦𝑖 ) denote the number

encoded by a binary assignment to the variables in𝑌 . 𝐹 ′ is a formula

over variable 𝑌 ∪ 𝑍 that encodes the following requirements.

(1) 0 ≤ val(𝑦𝑖 ) < 𝑛 for all 1 ≤ 𝑖 ≤ 𝑡 .

(2) val(𝑦𝑖 ) < val(𝑦𝑖+1) for all 1 ≤ 𝑖 ≤ 𝑡 − 1. This constraint

together with (1) ensures that the tuple ⟨𝑦1, · · · , 𝑦𝑡 ⟩ encodes
a subset of indices of size 𝑡 (same index cannot appear in a

combination multiple times and each set can have only one

representation).

(3) 𝑥val(𝑦𝑖 ) = 𝑧𝑖 for all 1 ≤ 𝑖 ≤ 𝑡 . This constraint ensures that the

binary assignment variables𝑌 ∪𝑍 encodes a 𝑡-wise coverage

tuple contained in the assignment to F.

With this intuition it is easy to see that the number of differ-

ent valid assignments to the set 𝑆 = 𝑌 ∪ 𝑍 is the desired value

|Covt (Sol(F)) |.

5 EXPERIMENTS
In this sectionwe evaluate the precision and efficiency of algorithms

ApproxCov and ApproxMaxCov. Both algorithms have been imple-

mented in Python 3. ApproxMaxCov implementation uses a state-

of-the-art tool ApproxMC4 [11, 58, 59] forApproxCount subroutine
(for approximate projected model counting). In the evaluation of the

algorithms, we want to validate that the implementation achieves

the theoretical results on the estimation accuracy and to compare

the performance of the algorithms with the existing approaches.

Therefore, we pose the following research questions:

• RQ1 and RQ2: Are approximations of ApproxCov and
ApproxMaxCov close to the correct values and within the

boundary provided by PAC guarantees?

• RQ3 and RQ4: Are ApproxCov and ApproxMaxCov faster
and more scalable than the existing approaches?

As discussed in Section 4, an estimate of FracCovt (U, F) for
a given sample set U and a formula F can be computed with

ApproxCov and ApproxMaxCov. Such an estimate informs us of the

𝑡-coverage achieved by a given test suite with respect to the maxi-

mum possible 𝑡-wise coverage subject to the set of constraints F.
Evaluation of FracCovt (U, F) is covered by the following research

question:

6
Choosing {𝑥0, . . . , 𝑥𝑛−1 } instead of {𝑥1, . . . , 𝑥𝑛 } is for easiness of presentation.

• RQ5 Can algorithms ApproxCov and ApproxMaxCov be

used to estimate FracCovt (U, F) and provide a close approx-
imation to the correct result?

As noted earlier, it is well known [3, 39] that typically techniques

used for binary domains can be scalably lifted to discrete domains.

We describe the extensions of ApproxCov and ApproxMaxCov for
the general case along with empirical studies in the end of the

section.

5.1 Benchmarks & Experimental Setup
For the experiments we selected a large number of publicly avail-

able feature models from real-world configurable systems that were

used in the literature for the evaluation of sampling tools. In par-

ticular, we took 123 benchmarks appeared in [3, 32, 38, 52, 53].

The benchmarks have between 565 and 11254 variables, between

1164 and 62183 clauses, and between 9.7 × 10
13

and 7.7 × 10
417

solutions. Unfortunately, existing approaches are not capable to

compute |Covt (U)| and |Covt (Sol(F)) | for 𝑡 ≥ 3 on large bench-

marks. Therefore, in order to check approximations for 𝑡 ≥ 3 we

have selected smaller benchmarks from [44]. In particular we have

sorted the benchmarks by the number of variables and randomly

selected 1 for each value between 10 and 500 providing 111 extra

benchmarks. In the remainder of the section we would reference

the first 123 benchmarks as ‘large’ and the last 111 as ‘small’.

The evaluation of ApproxCov requires sample sets, therefore we

generated them with 3 publicly available tools —WAPS [26], Quick-

sampler [20], and Baital [3] —for each of the 234 benchmarks. Each

sample set contains 1000 samples. Since Quicksampler can generate

unsatisfiable samples that are filtered afterwards, we generated

more samples with this tool and selected the first 1000 valid ones.

Note that for several benchmarks, even after requesting 100000 sam-

ples, Quicksampler output contained less than 1000 valid samples,

therefore we did not consider such sample sets in the experiments.

Thus, we used 674 sample sets for the experiment. Similarly to the

feature models, we would call sample sets originating from the first

123 feature models as ‘large’ and the remaining would be ‘small’.

All experiments were conducted on a high performance com-

puter cluster, each node consisting of 2xE5-2690v3 CPUs with 2x12

real cores and 96GB of RAM.

5.2 Methodology
The evaluation of ApproxCov is focused on RQ1 and RQ3. In our

experiment we used ApproxCov to approximate |Covt (U)| for
𝑡 ∈ [2, 6] on 674 sample sets described above. We used 𝜀 and 𝛿

equal to 0.05. ApproxCov computations have been performed 10

times without fixed random seed and in the results we report the

mean running time and the worst-case output; i.e. the output far-

thest from the |Covt (U)|. For comparison, we have performed the

same computations with BLMCov [3]. The timeout was set to 3600

seconds and the memory limit was set to 4Gb for both the tools.

The evaluation of ApproxMaxCov is focused on RQ2 and RQ4.
In our experiments we approximated |Covt (Sol(F)) | on 234 bench-

marks for 𝑡 ∈ [2, 6]. We used 𝛿 = 𝜀 = 0.05. Similarly to the previ-

ous experiment, all computations with ApproxMaxCov have been
performed 10 times without fixed random seed. For comparison,

we have performed the same computations with BLMMaxCov [3].
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Figure 1: Comparison of execution time of ApproxCov and BLMCov
on 674 sample sets for 𝑡 = 2. X axis shows BLMCov time in seconds,
Y axis shows ApproxCov time in seconds. Red line indicates equal
time. Among 3 points at the right border, 2 correspond to timeout
of BLMCov and 1 corresponds to 3295 seconds for BLMCov.

Originally, the timeout was set to 3600 seconds for both tools. Unfor-

tunately, BLMMaxCov is able to compute only 2 ‘large’ benchmarks

within this timeout for 𝑡 = 2. Therefore, we raised the timeout for

BLMMaxCov to 28800 seconds. The memory limit was set to 4Gb.

For the evaluation of RQ5we used the results from the two previ-

ous experiments: the estimation of FracCovt (U, F) is obtained by di-
viding the 𝑖𝑡ℎ result ofApproxCov by the 𝑖𝑡ℎ result ofApproxMaxCov
on the corresponding feature model. The 10 generated approxima-

tions have been compared with the correct values computed with

BLMCov andBLMMaxCov. Confidence parameters of FracCovt (U, F)
are derived from the selection of 𝜀 and 𝛿 in the computation of

Approx- Cov and ApproxMaxCov: 𝛿 = 0.0975, 𝜀 = 0.105.

5.3 Results for ApproxCov
In the first experiment we computed |Covt (U)| with ApproxCov
and BLMCov. For 𝑡 = 2, ApproxCov have successfully terminated

on all sample sets within 25 seconds. BLMCov has timed out on 2

benchmarks. Comparing the computation time for 𝑡 = 2 between

BLMCov and ApproxCov, BLMCov was faster on sample sets with

few variables. Among large sample sets with more than 500 vari-

ables, only 3 were faster with BLMCov, while on the rest of the

sets ApproxCov was from 2 to 136 times faster. Time comparison is

shown Figure 1; among 3 points on the right border, 2 correspond

to timeouts of BLMCov and the remaining corresponds to 3295

seconds for BLMCov. Slower performance on smaller benchmarks

is explained by the fact that the number of picked elements de-

pends on the selected 𝜀 and 𝛿 parameters rather than the number

of variables. Note that on the smallest benchmarks the number of

combinations to pick is greater than the total number of different

combinations. In such cases all combinations are selected and the

result is an exact value rather than approximation.

Figure 2: Approximation error of ApproxCov for 𝑡 = 2 on 672 sample
sets computed as𝑚𝑎𝑥 (𝑎𝑏𝑠 (𝑟𝑒𝑠𝑢𝑙𝑡𝑖 − |Cov2 (U) |)/ |Cov2 (U) |) , where
𝑟𝑒𝑠𝑢𝑙𝑡𝑖 is approximation returned by ApproxCov on the 𝑖𝑡ℎ run. 2
sample sets that timed out with BLMCov are not used in this figure.

Figure 3: ApproxCov execution time on 674 sample sets for 𝑡 ∈ [2, 6].
X axis shows the value of 𝑡 , Y axis shows time in seconds.

To check the accuracy of ApproxCov approximation, we com-

pared the approximation results with the correct value of |Cov2 (U)|
computed by BLMCov. For each sample set we took the maximal

value of 𝑎𝑏𝑠 (𝑟𝑒𝑠𝑢𝑙𝑡 − |Cov2 (U)|)/|Cov2 (U)| among 10 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 of

ApproxCov. Figure 2 shows the histogram of errors, the largest

error was 0.0315 which is smaller than selected 𝜀.

For 𝑡 ≥ 3, BLMCov has successfully terminated only on few

’small’ benchmarks within the given time and memory budget: 292

benchmarks for 𝑡 = 3, 76 for 𝑡 = 4, 36 for 𝑡 = 5, and 22 for 𝑡 = 6. In

comparison, ApproxCov terminated on all benchmarks within 650

seconds for all 𝑡 ≤ 6. The execution time for various values of 𝑡 is

shown in Figure 3. The approximation accuracy was within PAC

guarantees: the largest error was 0.0369. The histogram of errors

on benchmarks computed by BLMCov is shown in Figure 4.

Our experiment shows that the results of the ApproxCov are

close to the |Cov2 (U)| and within the selected boundary from

PAC guarantees, thus answering RQ1. Comparison of execution

time allows us to give a positive answer to RQ3: ApproxCov is can
compute |Covt (U)| for 𝑡 = 6, while existing method fails on half

of the sample sets for 𝑡 = 3.
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Figure 4: Approximation error of ApproxCov for 𝑡 ∈ [3, 6] on all
benchmarks on which BLMCov has successfully terminated - 426
elements in total. The error is computed as 𝑚𝑎𝑥 (𝑎𝑏𝑠 (𝑟𝑒𝑠𝑢𝑙𝑡𝑖 −
|Covt (U) |)/ |Covt (U) |) , where 𝑟𝑒𝑠𝑢𝑙𝑡𝑖 is approximation returned by
ApproxCov on the 𝑖𝑡ℎ run.

Figure 5: Approximation error of ApproxMaxCov for 𝑡 = 2 on 221
benchmarks on which BLMMaxCov terminated. The error is com-
puted as 𝑚𝑎𝑥 (𝑎𝑏𝑠 (𝑟𝑒𝑠𝑢𝑙𝑡𝑖 − |Cov2 (Sol(F)) |)/ |Cov2 (Sol(F)) |) , where
𝑟𝑒𝑠𝑢𝑙𝑡𝑖 the approximation returned by ApproxMaxCov on 𝑖𝑡ℎ run.

5.4 Results for ApproxMaxCov
ApproxMaxCov have successfully terminated on all benchmarks

for 𝑡 = 2 within 360 seconds except 1 benchmark that required

1720 seconds. For comparison, BLMMaxCov has successfully ter-

minated only on 2 ‘large’ benchmarks for 𝑡 = 2 with 3600 seconds

timeout. After raising timeout to 28800 seconds it succeeded on 221

benchmarks out of 234. The speed up factor of ApproxMaxCov on
large benchmarks have range between 6 and 86.

To check the accuracy of ApproxMaxCov approximation, we

compared it with Cov2 (Sol(F)). For each benchmark, we took

the maximal value of 𝑎𝑏𝑠 (𝑟𝑒𝑠𝑢𝑙𝑡 − |Cov2 (Sol(F)) |)/|Cov2 (Sol(F) |
among 10 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 of ApproxMaxCov. Results for 8 benchmarks are

shown in Table 2. Figure 5 shows the histogram of errors, the largest

error was 0.0058 which is smaller than selected 𝜀.

For larger values of 𝑡 , ApproxMaxCov timed out of 3600 sec-

onds on the largest benchmark for 𝑡 ≥ 4 and on one more bench-

mark for 𝑡 = 6. Further exploration of these 2 benchmarks showed

that ApproxMaxCov can generate all results within 8500 seconds.

The execution time for various values of 𝑡 is shown in Figure 6.

Benchmark Ground Truth ApproxMaxCov Error

buildroot 621270 622592 0.0021

busybox_1_28_0 1965023 1967616 0.0013

ecos-icse11 2910229 2913280 0.0010

financial 917150 919040 0.0021

mpc50 2719748 2713600 0.0023

phycore 3008140 3015680 0.0025

psim 2591638 2597888 0.0024

sleb 2624832 2630656 0.0022

Table 2: Comparison of ApproxMaxCov approximations with
|Cov2 (Sol(F)) |. First column shows the benchmark, second and
third columns shows |Cov2 (Sol(F)) | and worst ApproxMaxCov result
from 10 runs, and the last column is computed as (𝑎𝑏𝑠 (𝑐𝑜𝑙𝑢𝑚𝑛3 −
|Cov2 (Sol(F)) |)/ |Cov2 (Sol(F)) |) .

Figure 6: ApproxMaxCov execution time on 234 benchmarks for 𝑡 ∈
[2, 6]. X axis shows the value of 𝑡 , Y axis shows time in seconds.
Points on the top border correspond to timeouts.

Figure 7: Approximation error of ApproxMaxCov for 𝑡 ∈ [3, 6] on
all benchmarks on which BLMMaxCov has successfully terminated
- 114 elements in total. The error is computed as𝑚𝑎𝑥 (𝑎𝑏𝑠 (𝑟𝑒𝑠𝑢𝑙𝑡𝑖 −
|Covt (Sol(F)) |)/ |Covt (Sol(F)) |) , where 𝑟𝑒𝑠𝑢𝑙𝑡𝑖 the approximation re-
turned by ApproxMaxCov on 𝑖𝑡ℎ run.
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Figure 8: Approximation error of FracCovt (U, F) for 𝑡 ∈ [3, 6] on all
benchmarks on which both BLMCov and BLMMaxCov have success-
fully terminated - 952 elements in total. It has been computed as
𝑚𝑎𝑥 (𝑎𝑏𝑠 (𝑟𝑒𝑠𝑢𝑙𝑡𝑖 − FracCovt (U, F))/FracCovt (U, F)) , where 𝑟𝑒𝑠𝑢𝑙𝑡𝑖 is
a quotient of approximations returned by ApproxCov on the 𝑖𝑡ℎ run
and of approximation returned by ApproxMaxCov on the 𝑖𝑡ℎ run on
the corresponding feature model.

BLMMaxCov was able to compute 81 benchmarks for 𝑡 = 3, 19 for

𝑡 = 4, 9 for 𝑡 = 5, and only 5 for 𝑡 = 6. Comparison of approxima-

tion with |Covt (Sol(F)) | showed the largest error of 0.0086 which

is within PAC guarantees. The error histogram is shown in Figure 7

The experiment shows that results computed by ApproxMaxCov
are close to Covt (Sol(F)) and within the selected boundary from

PAC guarantees (RQ2). ApproxMaxCov was significantly faster

than the existing methods on large benchmarks and was able to out-

put the result on the benchmarks upto 𝑡 = 6, where BLMMaxCov
timed out on several benchmarks even with a large time budget on

𝑡 = 2, thus allowing us to positively answer to RQ4.

5.5 Approximation of FracCovt(U, F)
The approximations of FracCovt (U, F) have been obtained by tak-

ing pairs of results of ApproxCov and ApproxMaxCov. We report

the worst approximation obtained by this method. Results for 15

sample sets are shown in Table 3 and the histogram of errors is

shown in Figure 8. The largest error was 0.038 which is smaller

than the derived 𝜀.

This result shows that the approximation of FracCovt (U, F) ob-
tained with ApproxCov and ApproxMaxCov is close to the correct

value. Moreover, considering the scalability of both approximation

algorithms, the approximation can be computed on all benchmarks

except 6 for 𝑡 = 6, while existing methods succeeded only on 13,

thus positively answering RQ5.

5.6 Extension to the General Case
In this section we describe how algorithms ApproxCov and Approx-
MaxCov can be generalized to arbitrary alphabet size: the case

where each feature can take a finite number of values. In the second

part of this subsection we provide results for empirical evaluation.

5.6.1 Generalization of Algorithms. The generalization of Approx-
Cov requires a few changes in Algorithm 1, yet the general idea of

checking inclusion into Covt (U) of randomly selected combina-

tions remains the same. In particular, in lines 1 and 15 we need to

Benchmark Ground Truth Approximation

baital_busybox_1_28_0 0.994542 0.993025

waps_busybox_1_28_0 0.985651 0.983794

quick_busybox_1_28_0 0.253179 0.256468

baital_ecos-icse11 0.975684 0.975041

waps_ecos-icse11 0.790062 0.788512

quick_ecos-icse11 0.282384 0.277069

baital_mpc50 0.980516 0.974432

waps_mpc50 0.797631 0.789341

quick_mpc50 0.538494 0.546906

baital_phycore 0.965864 0.961093

waps_phycore 0.774117 0.782127

quick_phycore 0.513699 0.519799

baital_psim 0.975527 0.971872

waps_psim 0.792510 0.785056

quick_psim 0.494380 0.498117

Table 3: Approximation of FracCov2 (U, F) . Confidence parameters
are 𝛿 = 0.0975, 𝜀 = 0.105.

change the number of selected combinations and the final multiplier

to ensure that the approximation is within the PAC guarantees. The

second change is the uniform selection of combinations in the set

taking into account the number of values each feature can take.

Indeed, the sampling shall choose a feature with multiple values

more often than binary features.

The generalization of ApproxMaxCov is re-implemented, as fol-

lows: we start with a formula F encoded with Quantifier-Free Bit-

Vector logic (QF_BV) representing constraints of the configurable

system. The first step is to construct a QF_BV formulaGF
by extend-

ing F with constraints presented in Section 4.2. At the next step the

formula GF
is converted into CNF. We use the SMT solver z3 with

the following tactics: Then(simplify, bit-blast, tseitin-cnf) (Boolean

variables are added to keep track of the original variables). In the

resulted CNF formula we approximately compute the number of

solutions projected to the set 𝑆 with ApproxMC.

5.6.2 Empirical Results. To illustrate that ApproxCov can directly

operate on instances without reduction to Boolean values, we exper-

imented with the implementation of ApproxCov for feature models

without binarization. Our benchmark suite consisted of 35 feature

models and 35 sample sets from [21]. The feature models have up to

200 variables having between 2 and 6 values. We used the same clus-

ter, 𝜀 = 𝛿 = 0.05 for both ApproxCov and ApproxMaxCov. For com-

parison we used slight modifications of BLMCov and BLMMaxCov:
the former just needed to be capable to read the new inputs, while

in the latter we additionally replaced calls to SAT solver with calls

to SMT solver (z3).

The timeouts were 3600 seconds for BLMCov, ApproxCov, and
ApproxMaxCov, and 14400 seconds forBLMMaxCov. Memory limit

was 4Gb. Both ApproxCov and ApproxMaxCov have been run 10

times, we report mean time among 10 runs and the furthest result

from the exact value computed with BLMCov and BLMMaxCov.
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Figure 9: Comparison of execution time of ApproxCov and BLMCov
for 𝑡 ∈ [2, 6] on sample sets on which BLMCov have successfully ter-
minated - 99 points in total. X axis shows BLMCov time in seconds,
Y axis shows ApproxCovGeneral time in seconds. Red line indicates
equal time.

Figure 10: Approximation error of ApproxCov for 𝑡 ∈ [2, 6] on 99
sample sets on which BLMCov have successfully terminated. The er-
ror is computed as𝑚𝑎𝑥 (𝑎𝑏𝑠 (𝑟𝑒𝑠𝑢𝑙𝑡𝑖 − |Covt (U) |)/ |Covt (U) |) , where
𝑟𝑒𝑠𝑢𝑙𝑡𝑖 is approximation returned by ApproxCov on the 𝑖𝑡ℎ run.

ApproxCov have successfully terminated on all benchmarks for

𝑡 ∈ [2, 6] within 150 seconds. BLMCov has failed 15 benchmarks

for 𝑡 = 4, 30 for 𝑡 = 5, and 31 for 𝑡 = 6 with Out-of-Memory error.

The comparison of execution times is shown on a Figure 9. Due

to the small size of benchmarks, BLMCov was faster on many of

them. The approximation error is shown in Figure 10, the largest

value was 0.0098.

ApproxMaxCov have successfully terminated on all benchmarks

for 𝑡 ∈ [2, 4] within within the given timeout of 3600 seconds. 2

benchmarks for 𝑡 = 5 and 16 benchmarks for 𝑡 = 6 have timed out.

BLMMaxCov has managed to terminate on 4 benchmarks for 𝑡 = 3

and only on 1 benchmark for 𝑡 = 4 within 14400 seconds timeout.

The approximation error is shown in 11, the largest value was 0.005.

Figure 11: Approximation error of ApproxMaxCov for 𝑡 ∈ [2, 3] on 40
benchmarks on which BLMMaxCov terminated. The error is com-
puted as 𝑚𝑎𝑥 (𝑎𝑏𝑠 (𝑟𝑒𝑠𝑢𝑙𝑡𝑖 − |Covt (Sol(F)) |)/ |Covt (Sol(F)) |) , where
𝑟𝑒𝑠𝑢𝑙𝑡𝑖 the approximation returned by ApproxMaxCov on 𝑖𝑡ℎ run.

5.7 Threats to Validity
Internal Validity. Our algorithms provide an estimation of the re-

sult with Probably Approximately Correct guarantees, and several

runs may not yield identical results. To mitigate this threat we

provide theoretical proofs that bound the potential error, and in

the experiments we run each benchmark multiple times. In the

obtained results the difference between multiple runs was below

0.06 for ApproxCov and below 0.021 for ApproxMaxCov, and on

all benchmarks the worst approximation was always within PAC

guarantees interval for both algorithms.

External Validity. To mitigate the threat of non-generalizability of

our study we have used a large number of benchmarks used before

in several prior studies [3, 32, 38, 44, 49, 53]. These benchmarks

cover a wide range in the number of variables, clauses, and config-

urations.

6 CONCLUSION
Scalable and efficient computation of 𝑡-wise coverage is of pivotal

importance for Combinatorial testing. In this work, we propose

algorithms for estimating 𝑡-wise coverage for a given set of tests

and also for tests sets with a given set of constraints. In particular,

we present (1) a scalable Monte-Carlo based framework ApproxCov
that is guaranteed to estimate the size of the coverage of for a given

set of tests within (1±𝜀)-factor of the ground truth with probability
at least 1 − 𝛿 for given 𝜀 and 𝛿 ; (2) a scalable counting-based frame-

work ApproxMaxCov that estimates maximal achievable coverage

for a given formula and guarantees it to be within (1 ± 𝜀)-factor
with probability at least 1 − 𝛿 for given 𝜀 and 𝛿 . The approach have

been evaluated on a large set of benchmarks involving up to 11000

variables and we have shown that both frameworks can provide

highly accurate results even for estimation of 6-wise coverage of

features. We also extended the frameworks to also include non-

binary domains. Our work opens the possibility to compare various

test set generators with the presented frameworks. An important

direction for future work would be to perform an extensive evalua-

tion of the existing test set generators by estimating the maximum

achievable 𝑡-wise coverage and exploring the possibility to improve

them based on the evaluation results.
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