
Gaussian Elimination meets Maximum Satisfiability∗

Mate Soos and Kuldeep S. Meel
National University of Singapore

Abstract

Given a set of constraints F and a weight function W over
the assignments, the problem of MaxSAT is to compute a
maximum weighted solution of F . MaxSAT is a fundamental
problem with applications in numerous areas. The success
of MaxSAT solvers has prompted researchers in AI and for-
mal methods communities to develop algorithms that can use
MaxSAT solver as oracle. One such problem that stands to ben-
efit from advances in MaxSAT solving is discrete integration.
Recently, Ermon et al. achieved a significant breakthrough
by reducing the problem of integration to polynomially many
queries to an optimization oracle where F is conjuncted with
randomly chosen XOR constraints.
The primary contribution of this paper is a new MaxSAT
solver, GaussMaxHS, with built-in XOR support. The archi-
tecture of GaussMaxHS is inspired by CryptoMiniSat, which
has been the workhorse of hashing-based approximate model
counting techniques. Our solver, GaussMaxHS, outperforms
MaxHS over 9628 benchmarks arising from spin glass models
and network reliability domains. In particular, with a timeout
of 5000 seconds, MaxHS could solve only 5473 benchmarks
while GaussMaxHS could solve 6120 benchmarks.

1 Introduction
Given a formula F and weight function W over assign-
ments, the problem of MaxSAT is to find maximum weighted
solution of F . MaxSAT is the optimization version of the
canonical NP-complete decision problem of Boolean satisfi-
ability (SAT) and has found applications in numerous areas
such as probabilistic inference, cost-optimal planning, causal
discovery, model-based diagnosis and the like (Park 2002;
Chen et al. 2009; Hyttinen et al. 2013).

The success of MaxSAT solvers has led to the development
of algorithms for several other fundamental problems that
rely on usage of MaxSAT solvers as oracles. To motivate our
work, we discuss one such problem, called discrete integra-
tion, in detail. We would like to emphasize that the focus of
this work is development of general purpose MaxSAT solver
and not just limited to improving discrete integration tools.
Discrete Integration is a fundamental problem in artificial in-
telligence. Given a set of constraints F and a weight function
W , the problem of discrete integration is to compute the total

∗The accompanied tool will be released open-source at https:
//github.com/meelgroup/gaussmaxhs

weight of the set of solutions of input constraints. This has ap-
plications in numerous areas, including probabilistic reason-
ing, machine learning, planning, statistical physics, inexact
computing, and constrained-random verification (Bacchus,
Dalmao, and Pitassi 2003; Domshlak and Hoffmann 2007;
Ermon et al. 2014; Gomes, Sabharwal, and Selman 2009;
Jerrum and Sinclair 1996; Madras and Piccioni 1999; Mur-
phy 2012).

Given computational intractability of discrete integration,
efforts have focused on the study of approximate variants
of the problem (Gogate and Dechter 2007; Gomes et al.
2007). Over the past decade, there has been a surge of interest
in the design of hashing-based approaches to approximate
#SAT wherein the weight function assigns equal weight
to all the assignments. The core idea of the hashing-based
framework is to employ 2−universal hash functions, ex-
pressed as XOR constraints, to partition the solution space
into roughly equal small cells, wherein each cell can be
explored with the usage of a SAT solver. Since the SAT
solver is invoked with the query consisting of the origi-
nal constraints conjuncted with a set of randomly chosen
XOR constraints, prior work on hashing-based techniques
have advocated usage of CryptoMiniSat, an efficient SAT
solver designed to handle CNF+XOR formulas by interleav-
ing of search and Gaussian elimination procedures. The avail-
ability of CryptoMiniSat has allowed hashing-based tech-
niques such as ApproxMC4 to handle formulas involving
hundreds of thousands of variables (Soos and Meel 2019;
Soos, Gocht, and Meel 2020).

Recently, in a significant breakthrough, Ermon et al.
showed that the problem of discrete integration could be re-
duced to polynomially many calls to optimization queries (Er-
mon et al. 2013a). Their proposed approach, called WISH,
also employs 2-universal hash functions to compose n queries
to MaxSAT oracle where each query is composed of the
original set of constraints F augmented with randomly cho-
sen XOR formulas. In contrast to ApproxMC4’s success for
#SAT, WISH has so far not been able to achieve similar scal-
ability. In a series of follow-up papers, Ermon et al. identify
the hardness of solving optimization problems conjuncted
with random XOR constraints as one of the primary bot-
tlenecks to the scalability of WISH. Unlike CryptoMiniSat,
none of state of the art MaxSAT solvers are capable of per-
forming Gaussian Elimination at levels other than top-level.

https://github.com/meelgroup/gaussmaxhs
https://github.com/meelgroup/gaussmaxhs

Motivated by the success of CryptoMiniSat in aiding the
scalability of hashing-based approximate counters for #SAT,
one may ask: Is it possible to design a MaxSAT solver with
native support for XORs and whether such a solver would be
efficient in practice?

The primary contribution of this paper is an affirmative
answer to the above question. We augment the state of the
art MaxSAT solver MaxHS (Davies and Bacchus 2013) with
native XOR support such that Gaussian elimination can be
performed at every level of the search process The result-
ing MaxSAT solver, GaussMaxHS outperforms MaxHS in
runtime performance over 9628 benchmarks arising from
two applications domains: partition function computation of
spin glass models and network reliability for power grids
of small to medium size cities in US. While the develop-
ment of GaussMaxHS was motivated by its applications in
discrete integration and network reliability, we hope that
having a MaxSAT solver with native support for XORs
would open new research directions and new applications
in a way similar to new research direction owing to existence
of CryptoMiniSat.

The rest of the paper is organized as follows: we first
discuss notations and preliminaries in Section 2 followed
by a survey of prior work in Section 3. We then present
primary technical contribution of this paper, the architecture
of our solver GaussMaxHS in Section 4. We then present
experimental analysis in Section 5 and finally conclude in
Section 6.

2 Notations and Preliminaries
A literal is a Boolean variable or its negation. Let X =
{x1, x2, . . . xn} be the set of Boolean variables. Given a
Boolean formula F , the set of variables appearing in F is
called the support of F . A satisfying assignment or witness,
denoted by σ, of F is an assignment of truth values to vari-
ables in its support such that F evaluates to true. We denote
the set of all witnesses of F as Sol(F).

We say F is in conjunctive normal form if F can be
expressed as C1 ∧ C2 ∧ · · ·Cm, where every CNF clause
Ci is disjunction of literals. An XOR clause is of the form
a1x1 ⊕ a2x2 ⊕ . . . anxn = b wherein ai, b ∈ {0, 1}. A for-
mula that is conjunction of CNF and XOR clauses is called
CNF-XOR formula. GF (2) refers to the Galois field over
two elements.

Given a weight function W : {0, 1}n 7→ [0, 1], we use
W (σ) to denote the weight of an assignment σ. To avoid
notational clutter, we overload W (·) to denote the weight
of an assignment or a formula, depending on the context.
Given a set Y of assignments, we use W (Y) to denote∑
σ∈Y W (σ). Consequently, for a given formula F and

weight function W , we have W (F) =
∑
σ∈Sol(F)W (σ)

Given F and W : {0, 1}n 7→ [0, 1], the discrete integration
problem is to compute W (F).

A weighted MaxSAT instance consists of two kinds of
CNF clauses: hard clauses, denoted by HC, and soft clauses,
denoted by SC such that F = HC ∧ SC. The weight function
in the context of a weighted MaxSAT problem is defined
over soft clauses. For clarity of exposition, we denote weight

function defined over soft clauses as ρ. For a given F and ρ,
we define weight of an assignment

W (σ) =

0, σ 6|= Ci, where Ci ∈ HC∑
Ci∈SC|σ|=Ci

ρ(Ci)

For sake of brevity, we use MaxSAT to denote the weighted
MaxSAT instance.

3 Background
Prior work (Heule and van Maaren 2004; Chen 2009;
Soos, Nohl, and Castelluccia 2009) has focused on aug-
mented the CDCL solvers with native support for XOR con-
straints. Tightly integrating Gaussian elimination into CDCL
solvers was shown to be efficient in cryptographic scenarios
by Soos et al. in (Soos, Nohl, and Castelluccia 2009). The
close integration of these radically different solving mecha-
nisms was achieved by invoking Gaussian elimination before
every branching decision in the CDCL solver. If the Gaus-
sian elimination finds any truths, be them propagation(s) or a
conflict, the correct action is taken by CDCL: either further
propagations are carried out, or the conflict analysis rou-
tine is used to analyze the conflict returned by the Gaussian
elimination procedure. Recently, Soos et al. proposed a new
architecture, called BIRD, to handle CNF+XOR formulas,
which has since been further improved (Soos and Meel 2019;
Soos, Gocht, and Meel 2020). Integration of BIRD for
MaxSAT solving is beyond the scope of this work, and is
therefore, left to future work.

4 Architecture
We now describe the primary technical contribution of this
paper: GaussMaxHS, a new MaxSAT solver with native
support of XORs. GaussMaxHS is built by augmenting
the framework of MaxHS with Gaussian elimination. The
core architecture to support Gaussian elimination builds
on (Soos, Nohl, and Castelluccia 2009; Han and Jiang 2012;
Laitinen, Junttila, and Niemelä 2012), which has been em-
ployed in the SAT solvers: significant differences have been
discussed in detail below along with MaxSAT solver specific
low level optimizations.

We first discuss the representation of the matrix in Sec-
tion 4.2. We describe several key low-level optimizations
and the integration of Gaussian elimination in MaxHS in
Section 4.3.

4.1 From Soft XOR clauses to Hard XOR clauses
We first discuss how every instance with soft XOR clauses
can be transformed into an equivalent instance consisting of
XOR clasues as only hard clauses: Let Ci be a soft XOR
clause with weight ρ(Ci) = w. Without loss of generality,
assume RHS of Ci is set to 1, i.e., Ci is of the form Σaixi ⊕
b = 1 for some choices of {ai} and b. Now we can introduce
a new variable y and replace Ci with a hard XOR clause
y ⊕ Ci = 0 conjuncted with soft unit clause Cj := (y) such
that ρ(Cj) = w.

0

0

A

B

+A B

Figure 1: A matrix with two separate components.

Figure 2: Progressively smaller matrices

4.2 R- and S-Matrix Sets
Since the XOR constraints are a linear set of equations over
GF (2), we use the matrix representation to perform Gaussian
elimination. There are three key objectives that our frame-
work needs to achieve: (i) O1: Keep track of assignments to
variables, (ii) O2: For a given set of assignments, determine
if the system of XOR constraints imply a unit propagation,
(iii) O3: if a given set of assignments cause conflict in XOR
constraints, determine the conflict clause for the same. The
two objectives highlight the trade-off in the representation
of the state of XOR constraints at a given level. One pos-
sible representation is to use a matrix to represent original
XOR constraints (after Gaussian elimination), denoted by
the matrix R and store the current assignment in a vector,
denoted by V. In this representation, objective O1 is trivially
handled but to achieve objective O2 and objective O3; we
need to substitute V in R to obtain the effective matrix at the
current level, denoted by S, which is very expensive since V
is modified at every decision level.

To save computationally expensive recomputation, Soos
et al. proposed to store both R and S, where the matrix S
is updated with the current assignment of variables and is
kept upper-triangular. The matrix R is never updated with
variable assignments, but every row transformations on S
(such as those arising during Gaussian elimination on S) is
applied to R as well. We initialize R and S to be the same,
which is determined by the XOR constraints arising from the
2-universal hash functions. An example setup is present in
Fig. 3.

As the search progresses, we observe that XOR constraints
can be partitioned into a disjoint set of clauses such that
two sets of clauses are defined over a mutually exclusive
set of variables. Therefore, in contrast to Soos et. al (Soos,
Nohl, and Castelluccia 2009), we maintain multiple pairs of
S and R matrices. To construct such pairs, we perform a
component search over the current set of XORs by starting

S−matrix
with x3 assigned to true

x1 x2 x3 x4 x5 aug
1 1 0 1 1 0
0 1 0 0 0 0
0 0 0 1 1 1
0 0 0 0 1 0
0 0 0 0 0 0

R−matrix

x1 x2 x3 x4 x5 aug
1 1 0 1 1 0
0 1 1 0 0 1
0 0 0 1 1 1
0 0 1 0 1 1
0 0 1 0 0 1

Figure 3: The S-matrix indicates propagation of x2 = false and
x5 = false. The XOR constraint causing these propagations are
in the R-matrix: x2 ⊕ x3 = true and x3 ⊕ x5 = true, respec-
tively. The S-matrix is kept upper triangular, while the R-matrix is
kept in a state that any XOR constraint in it is a combination of the
original problem’s XOR constraints.

out with all the variables in individual groups and iteratively
group variables such that variable x1 and x3 appear in the
same group if there exists an XOR where x1 and x3 appear
together. We then make a linear pass over all the XORs
and separate XORs according to the groups’ variables in a
XOR belong to. Note that such a grouping of XORs does not
come at the cost of the reduction in the algorithmic power
of Gaussian elimination: if these matrices were in one larger
matrix, and the columns and rows of the matrix were suitably
ordered such as to obtain a matrix that resembles the left-
hand side of Fig. 1, then running Gaussian elimination on
such a matrix would lead to the same result as that on running
Gaussian elimination on two separate matrices, as illustrated
on the right-hand side of the same figure.

On the other hand, having separate matrices results in
the reduction of complexity of Gaussian elimination. For
example, the algorithmic complexity of performing Gaus-
sian elimination on a n × m matrix is roughly O(nm2).
Suppose the procedure described above can discover and
separate two equally-sized separate matrices, the complex-
ity is reduced from cnm2 (where c is a suitable constant) to
2c(n/2)(m/2)2 = cnm2/4, i.e., to the quarter of the original
complexity.

4.3 Important Data Structures
Similar to SAT solving, data structures play a significant
role in the efficiency of GaussMaxHS. We now discuss three
key data structures that we maintain and their role in crucial
subroutines of GaussMaxHS.

Assume that at some depth, let matrix R be as presented in
Figure 2. Recall that we perform Gaussian elimination and en-
sure that the top left part of R consists of the identity matrix.
Let column marked with ? be the leftmost column that was
updated by the CNF part of the underlying SAT solver. We
use the diagonal to divide R into three parts as shown above:
A,B, and C. Now we make an important observations: The
reduction to row-echelon form needs to perform only for
the sub-matrix C while cells in B can only participate in
propagation and conflict clause generation. Therefore, we
first perform Gaussian elimination over C and then look for

propagation and conflict clause generation over B and C. To
identify C, we maintain two data structures: left col mod,
which keeps track of the variable in the leftmost column that
was assigned by the solver and last 1 row for every column
keeps the index of the row that has the last 1 in the column.
Note that left col mod and last 1 col can identify C in con-
stant time; thus saving potentially a search procedure that
would take time linear in the size of the matrix. This leads to
a progressively smaller matrix as the search gets deeper into
the search tree as shown in Fig 2. This property is advanta-
geous as CDCL spends the majority of the time deep in the
search tree, where the active part of the matrix is expected to
be the smallest and consequently the Gaussian elimination to
be the fastest.

Note that a row in the matrix R can participate in prop-
agation only if all except one element are 0. Furthermore,
we need to check only the rows that were modified due to
assignments by the solver. To compute whether a row B
has exactly one element as 1, we need to scan the complete
row in the worst case. To this end, we maintain the variable
first 1 col for every row, which keeps track of the index
of the first column with “1”. As the search progresses, this
allows us to reduce our search space from entire row to the
length determined by first 1 col.

Low-level Optimizations We next discuss two low-
level optimizations that are crucial to the performance of
GaussMaxHS and are of potential interest to the satisfiability
and constraints community.

The first optimization concerns the storage of our matrix
data structure. We considered the sparse matrix representa-
tion (Gibbs, Poole, and Stockmeyer 1976); however, sparser
representation is useful only with a low density. In contrast
for XOR arising from Hxor(n,m) the density is set to 0.5.
Therefore, we store both R and S in a dense, bit-packed
format while we store the augmented column in unpacked
format. The dense, bit-packed format has three key advan-
tages: (1) XOR-ing rows can be done 32, 64 or more bits at
a time, depending on the available SIMD instruction set of
the processor such as SSE, AVX; (2) it is easy to check the
augmented column’s value, which is checked often; and (3)
the bit-packed format is memory efficient, which is important
for speed of storage and retrieval of matrices.

The second optimization concerns the storage of matrices
R and S. We store R and S in an interlaced fashion in a
memory array. The rows follow each other in the memory
as: S[0],R[0], . . . S[r − 1],R[r − 1] . . ., where S[0] is the
first row of the A-matrix, R[0] is the first row of the R-
matrix. This storage structure is advantageous, since when
the two m-long rows x and y need to be swapped or XOR-
ed, they need to be swapped/XOR-ed in both matrices, and
the memory swap/XOR operation can work on two 2m-long
memory areas S[x] . . . S[x] + 2m and S[y] . . . S[y] + 2m
instead of working on four m-long memory areas. Since row
swapping and XOR-ing can account for up to 1/3rd of the
total time spent in Gaussian elimination, this is an important
optimization.

Implementation Details: We focused on modular integra-
tion of Gaussian elimination into MaxHS to allow further
development.

We focused on storage of clauses inside MaxHS. Clauses
are stored using the Packed vecs class in Wcnf’s
hard cls and soft cls. These store literals in contigu-
ous memory, with a separate vector of sizes keeping track
of when one clause starts and the other ends. We modified
sizes to store a struct sz and xor instead of only the
size, where we now also store whether the clause is an XOR
or a regular clause. We then modified the getVec func-
tion of Packed vecs and made sure to insert the clauses
according to their type into the two MiniSat instances that
GaussMaxHS keeps.

5 Evaluation
Our solver, called GaussMaxHS, is built by augmenting the
code of state of the art MaxSAT solver, MaxHS1, with Gaus-
sian elimination. To determine runtime performance and test
correctness of GaussMaxHS, we conduct experiments over
instances constructed by queries of hashing-based techniques
for benchmarks arising from two application domains: (i)
computation of partition function for spin-glass models, and
(ii) network reliability. It is worth pointing out that prior
work on discrete integration present results corresponding to
spin-glass models but we have also incorporated results from
another domain of network reliability to showcases general-
izability of the performance of GaussMaxHS. In total, our
benchmark suite consisted of 9628 instances.

It is worth emphasizing that each of our benchmark is a
MaxSAT instance generated by WISH and in particular, none
of the instances are synthetic benchmarks constructed by us.

The primary objective of our experimental evaluation was
to answer the following question: How does the performance
of GaussMaxHS compare to that of MaxHS?

In summary, we observe that GaussMaxHS is able to
achieve speedup of up to 2 orders of magnitude (i.e.,
100× speedup) over MaxHS augmented with top-level
Gaussian elimination. Furthermore, for all the cases where
MaxHS terminated, the weight of the answers computed by
GaussMaxHS and MaxHS match. Note that GaussMaxHS
and MaxHS do not necessarily compute the same solution
if there are more than one optimal solutions. The baseline
version that we compared against performs the following
steps: first perform Gaussian Elimination (GE) at the top
level, then cuts XORs into short XORs and convert into CNF
formulas and passes the resulting formula to MaxHS. In other
words, we integrated top-level GE in MaxHS to demonstrate
that performing GE at top-level is not sufficient, thereby em-
phasizing the need for the design of our solver. It is again
worth emphasizing that our focus is on evaluating MaxSAT
solvers and we defer a detailed analysis of impact of our
solver on underlying algorithms for different applications to
future work.

The experiments were conducted on a high performance
computing cluster with nodes consisting of E5-2690v3 CPUs

1MaxHS won 2020 MaxSAT competition in complete track

Max Gauss Speed-
Instance vars cls xors HS MaxHS up

sping2-x 11 49 193 11 246.70 15.67 15.74
sping1-x 6 49 193 9 22.43 1.77 12.64
sping2-x 5 49 193 50 0.02 0.02 1.00
sping3-x 11 49 193 22 1557.77 116.89 13.33
sping5-x 3 49 193 15 310.97 9.70 32.06
sping5-x 15 49 193 29 - 2930.45 -
sping5-x 11 49 193 45 - 0.01 -
sping6-x 7 49 193 46 - 0.02 -
Net12 24 13 cnt 106 191 320 14 591.33 10.84 54.57
Net12 24 13 cnt 106 191 320 12 596.24 21.08 28.29
Net22 60 8 cnt 116 219 350 22 - 353.91 -
Net22 60 8 cnt 116 219 350 9 40.54 8.99 4.51
Net3 51 19 cnt 65 117 197 21 2652.90 671.09 3.95
Net22 84 16 cnt 116 219 350 190 - 501.74 -
Net22 84 16 cnt 116 219 350 196 - 16.22 -
Net27 81 58 cnt 118 230 356 202 - 1133.91 -
Net27 81 58 cnt 118 230 356 199 - 4825.98 -
Net27 90 62 cnt 118 230 356 202 - 311.05 -

Table 1: Runtime performance comparison of GaussMaxHS vis-a-vis MaxHS for a subset of benchmarks

with 24 cores and 96GB of RAM each. We conducted ex-
periments for over 9628 benchmarks. For lack of space, we
present individual results for only a subset of representa-
tive benchmarks. Every experiment ran GaussMaxHS and
MaxHS with a 5000s timeout. Our benchmarks were derived
from the following two application domains:

Spin Glass Model : A spin glass model is defined with vari-
ables xi ∈ {−1,+1} for i ∈ [n], where each variable repre-
sents a spin. We focused on grid models where each spin vari-
able has 4 neighbors. The interactions between neighbors xi
and xj are captured by θi,j such θi,j(xi, xj) = βi,jxixj . Fi-
nally, the potential function of the spin glass model is defined
as θ(x1, x2, · · ·xn) =

∑
i∈V αixi +

∑
(i,j)∈E(βi,jxixj).

Keeping in line with the previous work (Kuck, Sabharwal,
and Ermon 2018), we focus on 7× 7 spin glass model. The
parameters αi are chosen uniformly at random from [−1, 1]
while β are chosen uniformly at random from [0, c) for dif-
ferent values of c.

Network Reliability A power grid can be modeled as a
graph G = (V,E) each of whose edges e ∈ E fail inde-
pendently with probability pe. Given two particular nodes
of interest, say s and t, the problem of network reliability
is to compute the probability that s and t are connected. It
was shown that the problem of network reliability can be
reduced to discrete integration (Duenas-Osorio et al. 2017).
In this work, similar to recent work (Duenas-Osorio et al.
2017), we consider benchmarks arising from transmission
grids of medium sized cities in USA. We refer to the reader
to (Duenas-Osorio et al. 2017) for more details on encoding.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 2500 3000 3500 4000 4500 5000 5500 6000 6500

T
im

e
 (

s
)

Solved instances

MaxHS
GaussMaxHS

Figure 4: Cactus plot showing behavior of MaxHS and
GaussMaxHS

5.1 Results
Figure 4 shows the cactus plot for GaussMaxHS vis-a-vis
MaxHS. We present the number of benchmarks on x-axis and
the time taken on y−axis. A point (x, y) implies that x bench-
marks took less than or equal to y seconds to solve. With
a timeout of 5000 seconds, MaxHS could solve only 5473
benchmarks while GaussMaxHS could solve 6120 bench-
marks.

Table 1 presents the performance of GaussMaxHS vis-a-
vis MaxHS over a subset of our benchmarks. Column 1 of
this table gives the benchmark name, while columns 2, 3,
and 4 list the number of variables, non-XOR clauses, and
XOR clauses respectively. Columns 5 and 6 list the runtime
(in seconds) of GaussMaxHS and MaxHS respectively. We
use “–” to denote timeout after 5000 seconds. It is natural

to wonder how the problem on just 49 variables is challeng-
ing: in this context, it is worth emphasizing that the hardness
comes from XORs as the problem without XORs is very sim-
ple for MaxSAT solvers, thereby highlighting the need for
MaxSAT solvers with native support for XORs. Also, there is
no noticeable overhead in the performance of GaussMaxHS.
Table 1 clearly demonstrates GaussMaxHS significantly out-
performs MaxHS. Furthermore, as the number of XOR con-
straints increase, GaussMaxHS performs better than MaxHS.
Recall that for a given formula F over n variables, WISH
constructs MaxSAT queries where queries are formed by
conjuncting the original formula F with i XOR constraints
where i ranges from 1 to n. Therefore, every invocation of
WISH would produce MaxSAT queries with large number of
XOR constraints. The superior performance of GaussMaxHS
over MaxHS is encouraging as the previous implementations
of hashing-based techniques had to settle for lower bound
approximations of integrals due to inability of existing op-
timization tools to handle XOR constraints (Ermon et al.
2013b)

While we have presented empirical comparisons vis-a-vis
MaxHS, the performance of other MaxSAT solvers on these
instances is similar to that of MaxHS owing to their lack of
Gaussian Elimination.

6 Conclusion
The success of MaxSAT solvers have led to the develop-
ment of algorithms that invoke the state of the art MaxSAT
solvers as oracles. Recent hashing-based approaches have
highlighted the need for MaxSAT solvers that can support
queries conjuncted with random XOR constraints. In this pa-
per, we propose a new MaxSAT solver, GaussMaxHS, with
native XOR support. We have shown GaussMaxHS outper-
forms the state of the art MaxSAT solver, MaxHS, by 1-2
orders of magnitude. We hope the success of GaussMaxHS
will lead to new research directions and new applications
of MaxSAT. From technical perspective, an interesting line
of work would be to augment GaussMaxHS with the re-
cently proposed BIRD architecture (Soos and Meel 2019;
Soos, Gocht, and Meel 2020).

Acknowledgements
This work was supported in part by National Research Foun-
dation Singapore under its NRF Fellowship Programme[NRF-
NRFFAI1-2019-0004] and AI Singapore Programme [AISG-
RP-2018-005], and NUS ODPRT Grant [R-252-000-685-13].
The computational work for this article was performed on
resources of the National Supercomputing Centre, Singapore
(https://www.nscc.sg).

References
Bacchus, F.; Dalmao, S.; and Pitassi, T. 2003. Algorithms
and complexity results for #SAT and Bayesian inference. In
Proc. of FOCS, 340–351.
Chen, Y.; Safarpour, S.; Veneris, A.; and Marques-Silva, J.
2009. Spatial and temporal design debug using partial maxsat.
In Proceedings of the 19th ACM Great Lakes symposium on
VLSI, 345–350. ACM.

Chen, J. 2009. Building a hybrid SAT solver via conflict-
driven, look-ahead and XOR reasoning techniques. In Proc.
of SAT, 298–311.
Davies, J., and Bacchus, J. 2013. Postponing optimization to
speed up MAXSAT solving. In Proc. of CP, volume 8124 of
Lecture Notes in Computer Science, 247–262. Springer.
Domshlak, C., and Hoffmann, J. 2007. Probabilistic planning
via heuristic forward search and weighted model counting.
Journal of Artificial Intelligence Research 30(1):565–620.
Duenas-Osorio, L.; Meel, K. S.; Paredes, R.; and Vardi,
M. Y. 2017. Counting-based reliability estimation for power-
transmission grids. In Thirty-First AAAI Conference on Arti-
ficial Intelligence.
Ermon, S.; Gomes, C. P.; Sabharwal, A.; and Selman, B.
2013a. Optimization with parity constraints: From binary
codes to discrete integration. In Proc. of UAI.
Ermon, S.; Gomes, C. P.; Sabharwal, A.; and Selman, B.
2013b. Taming the curse of dimensionality: Discrete in-
tegration by hashing and optimization. In Proc. of ICML,
334–342.
Ermon, S.; Gomes, C. P.; Sabharwal, A.; and Selman, B. 2014.
Low-density parity constraints for hashing-based discrete
integration. In Proc. of ICML, 271–279.
Gibbs, N. E.; Poole, Jr., W. G.; and Stockmeyer, P. K. 1976.
A comparison of several bandwidth and profile reduction
algorithms. ACM Trans. Math. Softw. 2(4):322–330.
Gogate, V., and Dechter, R. 2007. Approximate counting
by sampling the backtrack-free search space. In Proc. of the
AAAI, volume 22, 198.
Gomes, C. P.; Hoffmann, J.; Sabharwal, A.; and Selman, B.
2007. From sampling to model counting. In Proc. of IJCAI,
2293–2299.
Gomes, C. P.; Sabharwal, A.; and Selman, B. 2009. Model
counting. In Biere, A.; Heule, M.; Maaren, H. V.; and Walsh,
T., eds., Handbook of Satisfiability, volume 185 of Frontiers
in Artificial Intelligence and Applications. IOS Press. 633–
654.
Han, C.-S., and Jiang, J.-H. R. 2012. When boolean satisfia-
bility meets gaussian elimination in a simplex way. In Proc.
of CAV, 410–426.
Heule, M., and van Maaren, H. 2004. Aligning CNF- and
equivalence-reasoning. In Hoos, H. H., and Mitchell, D. G.,
eds., SAT (Selected Papers, volume 3542 of LNCS, 145–156.
Springer.
Hyttinen, A.; Hoyer, P. O.; Eberhardt, F.; and Jarvisalo,
M. 2013. Discovering cyclic causal models with latent
variables: A general sat-based procedure. arXiv preprint
arXiv:1309.6836.
Jerrum, M. R., and Sinclair, A. 1996. The Markov Chain
Monte Carlo method: an approach to approximate count-
ing and integration. Approximation algorithms for NP-hard
problems 482–520.
Kuck, J.; Sabharwal, A.; and Ermon, S. 2018. Approximate
inference via weighted rademacher complexity. In Thirty-
Second AAAI Conference on Artificial Intelligence.

https://www.nscc.sg

Laitinen, T.; Junttila, T.; and Niemelä, I. 2012. Extending
clause learning sat solvers with complete parity reasoning.
In 2012 IEEE 24th International Conference on Tools with
Artificial Intelligence, volume 1, 65–72. IEEE.
Madras, N., and Piccioni, M. 1999. Importance sampling
for families of distributions. Annals of applied probability
1202–1225.
Murphy, K. 2012. Machine Learning: A Probabilistic Per-
spective. MIT Press.
Park, J. D. 2002. Map complexity results and approximation
methods. In Proceedings of UAI, 388–396.
Pote, Y.; Joshi, S.; and Meel, K. S. 2019. Phase transition
behavior of cardinality and xor constraints. In Proc. of IJCAI.
Soos, M., and Meel, K. S. 2019. Bird: Engineering an
efficient cnf-xor sat solver and its applications to approximate
model counting. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, 1592–1599.
Soos, M.; Gocht, S.; and Meel, K. S. 2020. Tinted, detached,
and lazy CNF-XOR solving and its applications to counting
and sampling. In Proc. of CAV.
Soos, M.; Nohl, K.; and Castelluccia, C. 2009. Extending
SAT solvers to cryptographic problems. In SAT, 244–257.

	Introduction
	Notations and Preliminaries
	Background
	Architecture
	From Soft XOR clauses to Hard XOR clauses
	R- and S-Matrix Sets
	Important Data Structures

	Evaluation
	Results

	Conclusion

