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Abstract
Given a CNF formula F on n variables, the problem of model counting, also referred to as #SAT , is to compute
the number of models or satisfying assignments of F . Model counting is a fundamental but hard problem in
computer science with varied applications. Recent years have witnessed a surge of effort towards developing
efficient algorithmic techniques that combine the classical 2-universal hashing (from [34]) with the remarkable
progress in SAT solving over the past decade. These techniques augment the CNF formula F with random XOR
constraints and invoke an NP oracle repeatedly on the resultant CNF-XOR formulas. In practice, the NP oracle
calls are replaced by calls to a SAT solver and it is observed that runtime performance of modern SAT solvers
(based on conflict-driven clause learning) on CNF-XOR formulas is adversely affected by the size of XOR
constraints. The standard construction of 2-universal hash functions chooses every variable with probability
p = 1

2 leading to XOR constraints of size n
2 in expectation. Consequently, the main challenge is to design

sparse hash functions, where variables can be chosen with smaller probability and lead to smaller sized XOR
constraints, which can then replace 2-universal hash functions.

In this paper, our goal is to address this challenge both from a theoretical and a practical perspective. First,
we formalize a relaxation of universal hashing, called concentrated hashing, a notion implicit in prior works
to design sparse hash functions. We then establish a novel and beautiful connection between concentration
measures of these hash functions and isoperimetric inequalities on boolean hypercubes. This allows us to obtain
tight bounds on variance as well as the dispersion index and show that p = O( log2 m

m
) suffices for the design of

sparse hash functions from {0, 1}n to {0, 1}m belonging to the concentrated hash family. Finally, we use sparse
hash functions belonging to this concentrated hash family to develop new approximate counting algorithms. A
comprehensive experimental evaluation of our algorithm on 1893 benchmarks demonstrates that the usage of
sparse hash functions can lead to significant speedups. To the best of our knowledge, this work is the first study
to demonstrate runtime improvement of approximate model counting algorithms through the usage of sparse
hash functions, while still retaining strong theoretical guarantees (à la 2-universal hash functions).
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1 Introduction

Given a Boolean formula F in conjunctive normal form (CNF), the problem of model counting, also
referred to as #SAT, is to compute the number of models of F . Model counting is a fundamental
problem in computer science with a wide variety of applications ranging from quantified information
leakage [20], probabilistic reasoning [30, 31, 10, 19], network reliability [39, 15], neural network
verification [6], and the like. For example, given a probabilistic model describing conditional
dependencies between different variables in a system, the problem of probabilistic inference, which
seeks to compute the probability of an event of interest given observed evidence, can be reduced to a
collection of model counting queries [30].

In his seminal paper, Valiant showed that #SAT is #P-complete, where #P is the set of counting
problems associated with NP decision problems [39]. Theoretical investigations of #P have led to
the discovery of deep connections in complexity theory, and there is strong evidence for its hardness
[4, 35]. In particular, Toda showed that every problem in the polynomial hierarchy could be solved by
just one call to a #P oracle; more formally, PH ⊆ P#P [35].

Given the computational intractability of #SAT, researchers have focused on approximate variants.
Stockmeyer presented a randomized hashing-based technique that can compute (ε, δ) approximation
within the polynomial time, in |F |, ε, δ, given access to a NP oracle where |F | is the size of formula,
ε is the error tolerance bound and δ is the confidence3. The computational intractability of NP
dissuaded development of algorithmic implementations of Stockmeyer’s hashing-based techniques
and no practical tools for approximate counting existed until the 2000’s [22]. By extending Stock-
meyer’s framework, Chakraborty, Meel, and Vardi demonstrate a scalable (ε, δ)-counting algorithm,
ApproxMC [12]. Subsequently, several new algorithmic ideas have been incorporated to demonstrate
the scalability of ApproxMC; the current version of ApproxMC is called ApproxMC4 [13, 33, 32].
Recent years have seen a surge of interest in the design of hashing-based techniques for approximate
counting [17, 19, 10, 23, 27, 11, 33, 32].

The core theoretical idea of the hashing-based framework is to employ 2-universal hash functions
to partition the solution space, denoted by sol(F ) for a formula F , into roughly equal small cells,
wherein a cell is called small if it has solutions less than or equal to a pre-computed threshold, thresh.
An NP oracle is employed to check if a cell is small by enumerating solutions one-by-one until
either there are no more solutions or we have already enumerated thresh + 1 solutions. To ensure
polynomially many NP calls, thresh is set to be polynomial in input parameter ε. The choice of
the threshold gives rise to a tradeoff between the number of NP queries and size of each query. To
achieve probabilistic amplification of the confidence, multiple invocations of underlying subroutines
are performed.

A standard family of 2-universal hash functions employed for this is the Hxor family comprising
of functions expressed as conjunction of XOR constraints. In particular, viewing the set of variables
Y of the formula F as a vector of dimension n×1, one can represent the hash function h : {0, 1}n 7→
{0, 1}m as h(Y ) = AY + b where A is a m× n matrix while b is m× 1 0-1 vector and each entry
of A and b is either 0 or 1. Each entry of A is chosen to be 1 with probability p = 1/2, therefore

3 Although Stockmeyer did not present a randomized variant in his 1983 paper, Jerrum, Valiant, and Vazirani credit
Stockmeyer for the idea [24]
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the average number of 1’s in each row is n
2 . Each row of h(Y ) thus gives rise to XOR constraints

involving n
2 variables in expectation. Similarly a cell α can be viewed as a 0-1 vector of size m× 1.

Now, the solutions of F in a given cell α are the solutions of the formula F ∧ (AY + b = α). As the
input formula F is in CNF, this formula is a conjunction of CNF and XOR-constraints, also called an
CNF-XOR formula. Given a hash function h and a cell α, the random variable of interest, denoted
by |Cell〈F,h,α〉| is the number of solutions of F that h maps to cell α. As mentioned earlier, the
NP-oracle is invoked (polynomially many times) to check if such a cell is small.

The practical implementation of these techniques employ a SAT solver to perform NP oracle calls.
The performance of SAT solvers, however, degrades with increase in the number of variables in XOR
constraints (also called their width) and therefore recent efforts have focused on design of sparse hash
functions where each entry is chosen with p� 1/2 (p is also referred to as density) [21, 19, 23, 5, 1, 2].
The primary theoretical challenge is that 2-universality has been crucial to obtain (ε, δ)-guarantees,
and sparse hash functions are not 2-universal. In fact, despite intense theoretical and practical interest
in the design of sparse hash functions, the practical implementation of all prior constructions have
had to sacrifice theoretical guarantees (as further discussed in Section 2.2).

Given the applications of counting to critical domains such as network reliability, the loss of
theoretical guarantees limits the applications of approximate model counters. Therefore, in this
context, the main challenge is: Is it possible to construct sparse hash functions and design algo-
rithmic frameworks to achieve runtime performance improvement without losing theoretical
guarantees?

In this paper, we address this challenge. To this end, we formalize the implicit observation in prior
works that hashing-based counting algorithms, similar to other applications of universal hashing, are
primarily concerned with the application of concentration bounds. We start by providing, in Section 2,
a definition of concentrated hash functions, a relaxation of universal hashing. The guarantees offered
by concentrated hashing depend crucially on the size of the set, unlike in universal hashing. Next, we
turn towards the construction of sparse hash functions that belong to the concentrated hash family.
Finally, we explain how these sparse hash functions can be used to build an efficient algorithm
for approximate model counting. More precisely, the technical contributions of this paper are the
following:

1. We first obtain a characterization of sol(F ) that would achieve the maximum variance as well
as dispersion index for |Cell〈F,h,α〉| for sparse hash functions. In a significant departure from
earlier works [16, 5, 40, 1] where the focus was to use analytical methods to obtain upper bound
on the variance of |Cell〈F,h,α〉|, we focus on searching for the set sol(F ) that would achieve
the maximum variance of |Cell〈F,h,α〉|. To do this, we utilize a beautiful connection between
the maximizing of variance as well as dispersion index of |Cell〈F,h,α〉| and minimizing the “t-
boundary” (the number of pairs with Hamming distance at most t) of sets on the boolean hypercube
on n dimensions. This allows us to obtain novel and stronger upper bounds by using deep results
from Boolean functional analysis and isoperimetric inequalities [7, 28]. This connection could
possibly be applied in other contexts as well.

2. Utilizing the connection between dispersion index and “t-boundary” allows us to introduce a
new family of hash functions, denoted byHRennes, which consists of hash functions of the form
AX + b, where every entry of A[i] is set to 1 with pi = O( log2 i

i ). The construction of the new
family marks a significant departure from prior families in the behavior of the density dependent
on rows of the matrix A. We believeHRennes is of independent interest and can be substituted
for 2-universal hash functions in several applications of hashing.

3. Finally, we use the above concentrated hash family to develop a new approximate model counting
algorithm ApproxMC5, building on the existing state-of-the-art algorithm ApproxMC4. The
primary challenge lies in the design and analysis of a hashing-based algorithm that does not
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assume any bound on |sol(F )| but is able to use concentrated hash functions whose behavior
depends on the size of the set being hashed. A comprehensive experimental evaluation on 1893
benchmarks demonstrates that usage ofHRennes in ApproxMC5 leads to significant speedup in
runtime over ApproxMC4. It is worth viewing the runtime improvement in the context of prior
work where significant slowdown was observed. To the best of our knowledge, this work is the
first study to demonstrate runtime improvement through sparse hash functions without loss of
(ε, δ)−guarantees, demonstrating the tightness of our bounds in practice.

Structure of the paper

We define notations and preliminaries in Section 2 along with a survey of state of the art for design
of sparse hash functions in the context of approximate model counting. We then outline the main
technical contributions of this paper in Section 3. In Section 4, we utilize deep results from Boolean
functional analysis and isoperimetric inequalities to bound the dispersion index as well as variance of
|Cell〈F,h,α〉|. We then use the bounds on dispersion index to construct sparse hash families belong to
concentrated hashing in Section 5. Section 6 deals with construction of approximate model counting
algorithm that uses hash functions belong to concentrated family. We finally describe extensive
empirical evaluation in Section 7 and conclude in Section 8.

2 Definitions and State of the Art

The model counting problem

Let F be a Boolean formula in conjunctive normal form (CNF), and let Vars(F ) be the set of variables
appearing in F . The set Vars(F ) is also called the support of F . An assignment σ of truth values
to the variables in Vars(F ) is called a satisfying assignment or witness of F if it makes F evaluate
to true. We denote the set of all witnesses of F by sol(F ). Throughout the paper, we will use n to
denote |Vars(F )|.

We write Pr [Z : Ω] to denote the probability of outcome Z when sampling from a probability
space Ω. For brevity, we omit Ω when it is clear from the context. The expected value of Z is
denoted E [Z] and its variance is denoted σ2 [Z]. The quantity σ2[Z]

E[Z] is called the dispersion index
of the random variable Z . Given a distribution D, we use Z ∼ D to denote that Z is sampled
from the distribution D. Let Bern(p) denote the Bernoulli distribution with probability p such that if
Z ∼Bern(p), we have Pr[Z = 1] = p.

The propositional model counting problem is to compute |sol(F )| for a given CNF formula F .
A probably approximately correct (or PAC) counter is a probabilistic algorithm ApproxCount(·, ·, ·)
that takes as inputs a formula F , a tolerance ε > 0, and a confidence δ ∈ (0, 1], and returns a (ε, δ)-
estimate c, i.e., Pr

[
|sol(F )|

1+ε ≤ c ≤ (1 + ε)|sol(F )|
]
≥ 1 − δ. PAC guarantees are also sometimes

referred to as (ε, δ)-guarantees.
A closely related notion is of projected model counting wherein we are interested in computing the

cardinality of sol(F ) projected to a subset of variables P ⊆ Vars(F ). While for clarity of exposition,
we focus on the problem of model counting, the techniques developed in this paper apply to projected
model counting as well. In our empirical evaluation, we consider such benchmarks as well.

Universal hash functions

Let n,m ∈ N and H(n,m) , {h : {0, 1}n → {0, 1}m} be a family of hash functions mapping
{0, 1}n to {0, 1}m. We use h R←− H(n,m) to denote the probability space obtained by choosing a
function h uniformly at random from H(n,m). To measure the quality of a hash function we are
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interested in the set of elements of S mapped to α by h, denoted Cell〈S,h,α〉 and its cardinality, i.e.,
|Cell〈S,h,α〉|.

I Definition 1. A family of hash functions H(n,m) is strongly 2-universal 4 if ∀x, y ∈ {0, 1}n,

α ∈ {0, 1}m, h R←− H(n,m),

Pr[h(x) = α] = 1
2m = Pr[h(x) = h(y)] (1)

I Proposition 2. LetH(n,m) be a strongly 2-universal hash family and let h R←− H(n,m), then
∀S ⊆ {0, 1}n, |S| ≥ 1,

E[|Cell〈S,h,α〉|] = |S|2m (2)

σ2[|Cell〈S,h,α〉|]
E[|Cell〈S,h,α〉|]

≤ 1 (3)

Equation (3) can thus be restated as saying that for universal hash functions, the dispersion index
must be at most 1.

Prefix hash families

While universal hash families have nice concentration bounds, they are not adaptive, in the sense that
one cannot build on previous queries. In several applications of hashing, the dependence between
different queries can be exploited to extract improvements in theoretical complexity and runtime
performance. Thus, we are typically interested in a restricted class of hash functions, called a prefix-
family of hash functions defined in [13] as follows. For α ∈ {0, 1}m, α[i] represent i-th element of
α.

I Definition 3. Let n ∈ N and H(n, 1) be a family of hash functions. A family of hash func-
tions H(n, n) is called a prefix-family with respect to H(n, 1) if for all h ∈ H(n, n), there exists
h1, h2, · · ·hn ∈ H(n, 1) such that

1. h(x)[i] = hi(x)
2. for all i ∈ [n], the probability spaces for {hi | h

R←− H(n, n)} and {g | g R←− H(n, 1)} are
identical.

For every m ∈ {1, . . . n}, the mth prefix-slice of h, denoted h(m), is a map from {0, 1}n to
{0, 1}m, such that h(m)(y)[i] = hi(y), for all y ∈ {0, 1}n and for all i ∈ {1, . . .m}. Similarly,
the mth prefix-slice of α, denoted α(m), is an element of {0, 1}m such that α(m)[i] = α[i] for all
i ∈ {1, . . .m}. In this paper we will primarily be focussed on prefix-hash functions and concentration
bounds on them. To avoid cumbersome terminology, we abuse notation and write Cell〈S,m〉 (resp.
Cnt〈S,m〉) as a short-hand for Cell〈S,h(m),α(m)〉 (resp. |Cell〈S,h(m),α(m)〉|).

In what follows, for a formula F , we write Cell〈F,m〉 (resp. Cnt〈F,m〉) to mean Cell〈sol(F ),m〉 (resp.
Cnt〈sol(F ),m〉). Finally, the usage of prefix-family ensures monotonicity of the random variable,
Cnt〈S,i〉, since from the definition of prefix-family, we have that for all i, h(i+1)(x) = α(i+1) =⇒
h(i)(x) = α(i). Formally,

I Proposition 4. For all 1 ≤ i < m, Cell〈S,i+1〉 ⊆ Cell〈S,i〉

4 The concept of 2-universal hashing proposed by Carter and Wegman [9] only required that Pr[h(x) = h(y)] ≤ 1
2m

and therefore, the phrase strongly 2-universal is often used as also noted by Vadhan in [37].
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Symbol Short for Meaning
Cell〈S,m〉 Cell〈S,h(m),α(m)〉 S ∩ {y | h(m)(y) = α(m)}
Cnt〈S,m〉 |Cell〈S,h(m),α(m)〉| |Cell〈S,m〉|

Table 1 List of Important Notations

Explicit families and sparse hash functions

While the above definitions of hash families are abstract, applications to model counting need
explicit hash functions. The most common explicit hash family used for this are as follows: Let
H{pi}1≤i≤m

, {h : {0, 1}n → {0, 1}m} be the family of functions of the form h(x) = Ax+ b with
A ∈ Fm×n2 and b ∈ Fm×1

2 where the entries of A[i] and b are independently generated according
to Bern(pi) and Bern( 1

2 ) respectively. Note that taking pi = 1
2 gives H{ 1

2 ,
1
2 ,···

1
2}

(n,m), which is
precisely the strongly 2-universal hashing family proposed by Carter and Wegman [9], also denoted
as Hxor(n,m) in earlier works [27]. pi is referred to as the density of i-th row of A and 1 − pi is
referred to as the sparsity of i-th row of A. We will use the term sparse hash functions to refer to
hash functions with pi � 1

2 .
Observe thatH{pi}1≤i≤n

is a prefix-family with h(m)(x) = A(m)x+ b(m), where A(m) denotes

the submatrix formed by the first m rows and n columns of A and b(m) is the first m entries of the
vector b.

2.1 Concentrated hash functions

Several applications such as sketching and counting [34, 14] involving universal hash functions
invoke strongly 2-universality property solely to obtain Proposition 2, i.e., obtain strong concentration
bounds, but as mentioned above this requires fixing pi = 1

2 .
In this context, one might ask if one can relax the requirement of 2-universality, while still

attaining similar bounds for expectation and dispersion index. In a spirit similar to other attempts to
design sparse hash functions for approximate counting techniques, we seek to design hash functions
whose behavior depends on the size of |S|. To this end, we formalize the concept of concentrated
hash family.

I Definition 5. Let qs, k ∈ N, ρ ∈ (0, 1/2]. A family of hash functions H(n, n) is prefix-
(ρ, qs, k)-concentrated, if for each m with qs ≤ m ≤ n, and S ⊆ {0, 1}n where |S| ≤ k · 2m,

α ∈ {0, 1}n, h R←− H, we have

E[Cnt〈S,m〉] = |S|2m (4)

σ2[Cnt〈S,m〉]
E[Cnt〈S,m〉]

≤ ρ (5)

It is easy to see that this definition is monotonic in k and it generalizes strongly 2-universal
hash functions. Note that the above definition differs from the property of strongly 2-universal hash
functions in two ways: first, it bounds the dispersion index by a constant instead of 1, and second, the
definition depends on size of S.

I Proposition 6. If H(n, n) is prefix-(ρ, qs, k)-concentrated, then H(n, n) is prefix-(ρ′, qs′, k′)-
concentrated for all ρ′ ≥ ρ, qs′ ≥ qs, and k′ ≤ k.

Finally, we may show that applying the usual Chebyshev and Paley-Zymund inequalities to this
definition immediately gives us the following properties of concentrated hash families.
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I Proposition 7. If H is prefix-(ρ, qs, k)-concentrated family, then for every 0 < β < 1, qs ≤
m ≤ n, and for all |S| ≤ 2m · k, we have the following:

1. Pr
[∣∣Cnt〈S,m〉 − E[Cnt〈S,m〉]

∣∣ ≥ βE[Cnt〈S,m〉]
]
≤ ρ

β2E[Cnt〈S,m〉]

2. Pr
[
Cnt〈S,m〉 ≤ βE

[
Cnt〈S,m〉

]]
≤ ρ

ρ+(1−β)2E[Cnt〈S,m〉]
Indeed, the rationale behind the design of (ρ, k)-concentrated hash families is that one can

design such families with significant sparsity. Such sparse hash functions can then contribute to
runtime performance of the underlying applications. The notion of concentrated hashing bears some
similarity to the notion of strongly concentrated random variables defined in [16]. In particular,
a prefix (ρ, qs, k) concentrated family implies that the random variable Cnt〈S,m〉, for m ≥ qs, is

strongly-
(

(βE[Cnt〈S,m〉])2,
β2E[Cnt〈S,m〉]

ρ

)
concentrated. We refer the reader to the Appendix A.1 for

the formal statement as well as its relations to other useful notions of hashing.

2.2 State of the Art

The current state of the art hashing-based techniques for approximate model counting can be broadly
classified into two categories: the first category of techniques [36, 18, 2, 1], henceforth called Cat1,
compute a constant factor approximation by setting thresh to be a constant and use Stockmeyer’s
trick of constructing multiple copies of the input formula. The second class of techniques, henceforth
called Cat2, consists of techniques [12, 13, 27] that directly compute an (ε, δ)-estimate by setting
threshold = O( 1

ε2 ), and hence invoking the underlying NP oracle O( 1
ε2 ) times. The proofs of

correctness for all the hashing-based techniques involve the usage of concentration bounds due to
strong 2-universal hash functions. Recall that given a hash function h ∈ H(n,m) and a cell α, the
random variable of interest is Cnt〈F,m〉 the number of solutions of F that h maps to cell α. The Cat1
techniques require the coefficient of variation, defined as the ratio of standard deviation of Cnt〈F,m〉 to
E[Cnt〈F,m〉], to be upper bounded by a constant while, for Cat2 techniques, it is sufficient to have the
dispersion index be bounded by a constant. It is worth noting that the analyses for both the techniques
allow one to focus on the case of E[Cnt〈F,m〉] being greater than 1. In this case, if dispersion index is
upper bounded by a constant, then so is the coefficient of variation (but not vice versa!). In this sense,
Cat2 techniques are stronger than Cat1.

Recently, [5] and [40] independently showed that 2-universality can be relaxed while using Cat1
techniques. More precisely, they showed that choosing entries with probability p = O(logn/n)
asymptotically suffices to guarantee that the coefficient of variation is upper bounded by constant,
i.e., dispersion index is upper bounded by mean of Cnt〈F,m〉 when log(|sol(F )|) ∈ Ω(n). Further-
more, [2] showed that (sparse) hash functions constructed using LDPC codes also asymptotically
suffice to guarantee that the coefficient of variation is upper bounded by constant. However, these
results come with three caveats:

1. Only Cat1 techniques can employ these sparse hash functions as they can provide upper bound
on coefficient of variation but not dispersion index. On the other hand, Cat2 techniques scale
significantly better than Cat1 techniques in practice. [8]

2. The asymptotically large constant in the upper bound of coefficient of variation makes the practical
usage usage of the above hash functions infeasible as discussed extensively in prior work (cf:
Section 9 of [1]).

3. The results only hold true for log(|sol(F )|) ∈ Ω(n), which is usually not the case for many
practical applications.

In summary, when p < 1
2 , previous techniques are unable to obtain a constant upper bound on the

dispersion index and therefore do not yield to usage in Cat2 techniques (and hence in developing
efficient practical algorithms for approximate model counting).
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3 Main Results

To accomplish the design of scalable approximate counters via sparse hashing, we follow a three step
recipe: (i) derive an expression to bound the dispersion index (of the random variable Cnt〈S,m〉) via
boolean functional analysis and isoperimetric inequalities, (ii) construct a sparse (ρ, k)-concentrated
hash family and (iii) design an approximate model counter which can take advantage of concentrated
hashing. In this section, we highlight our strategy, the core ideas involved and the main theorem
statements.

3.1 Bounding the Dispersion Index

The first step is to obtain a closed form expression for the upper bound on dispersion index for an
arbitrary set S ⊆ {0, 1}n. To this end, we focus on obtaining an expression that depends on n, |S|
and the range of hash function, i.e., m for h(m).

For 1 ≤ i ≤ n− 1, pi ∈ (0, 1
2 ], consider the family H{pi}(n, n) , {h : {0, 1}n → {0, 1}n} of

functions of the form h(x) = Ax+ b with A ∈ Fn×n2 and b ∈ Fn×1
2 where the entries of A[i] (for

1 ≤ i ≤ n) and b are independently generated according to Bern(pi) and Bern( 1
2 ) respectively. For

1 ≤ m ≤ n, let

q(w,m) =
m∏
j=1

(
1
2 + 1

2(1− 2pj)w
)

r(w,m) = q(w,m)− 1
2m

Note that r(w,m) is a decreasing function of w for a fixed m. With this we have the following bound
on the dispersion index, which is one of the main technical contributions of this paper, of possible
independent interest.

I Theorem 8. For 1 ≤ m ≤ n, S ⊆ {0, 1}n, σ
2[Cnt〈S,m〉]

E[Cnt〈S,m〉] ≤
∑̀
w=0

2 ·
(

8e
√
n·`
w

)w
r(w,m) where

` = dlog |S|e.

A key ingredient of the proof is to relate the dispersion index (and the variance) of Cnt〈S,m〉
to the Hamming distance between nodes of S. This allows us to show that the dispersion index
is in fact maximized for a nicely behaved set (formally, a left compressed down set as formalized
in Section 4). Now we invoke deep results from boolean functional analysis and isoperimetric
inequalities [7, 28, 29], to bound the maximum value of the dispersion index.

We remark that the best known bounds for the dispersion index from prior work so far has been:

for any S ⊆ {0, 1}n , σ
2[Cnt〈S,m〉]

E[Cnt〈S,m〉] ≤
∑̀
w=0

(
n
w

)
q(w,m). Since

(
8e
√
n·`
w

)w
≤ ·
(8e
√
n·`
w

)
, we obtain

an improvement from
(
n
w

)
to 2 ·

(8e
√
n·`
w

)
. This improvement combined with our new analysis of

the bounds leads us to design sparse hash family without incurring large overhead. It is also worth
pointing out that prior work has always upper bounded r(w,m) by q(w,m) but as our analysis in the
next section shows, we obtain stronger bounds on the dispersion index due to careful manipulation of
r(w,m).

3.2 Construction of Sparse Concentrated Hash Family

The upper bound on dispersion index provided by Theorem 8 depends on |S|, and therefore we turn to
the notion of concentrated family for construction of sparse hash functions to capture dependence on
|S|. To bound the dispersion index, we seek to increase the rate of decrease of the values of r(w,m)
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with respect to m. To this end, we propose a hash family with varying density across different rows
of the matrix.

I Definition 9. Let k, n ∈ N and let H−1 : [0, 1]→ [0, 1
2 ] be the inverse binary entropy function

restricting its domain to [0, 1
2 ] so that the inverse is well defined. We then define HkRennes(n, n) ,

{h : {0, 1}n → {0, 1}n} to be the family of functions of the form h(x) = Ax+ b with A ∈ Fn×n2
and b ∈ Fn×1

2 where the entries of A[i] (for 1 ≤ i ≤ n) and b are independently generated according
to Bern(pi) and Bern( 1

2 ) respectively, where pi ≥ min( 1
2 ,

16
H−1(δ) ·

log2 i
i ) for δ = i

i+log2 k
, and for

1 ≤ i ≤ n− 1, pi ≥ pi+1, pi ∈ (0, 1
2 ].

It is worth observing thatHRennes marks a significant departure from prior families in the behavior
of the density dependent on rows of the matrix A. The sparsity of HRennes is discussed in detail
Section 6.3 showing that for even small i, pi can be set to values significantly smaller than 1

2 .

I Theorem 10. For 1 ≤ m ≤ n, let h R←− HkRennes, S ⊆ {0, 1}n, Cell〈S,m〉 = {y ∈ S |
h(m)(y) = α(m)}, |S| ≤ 2mk for some α ∈ {0, 1}m. Then for every value of k > 1 and ρ > 1, there
exists qs ≤ n such that for all m with qs ≤ m ≤ n, we have

E[Cnt〈S,m〉] = |S|2m (6)

σ2[Cnt〈S,m〉]
E[Cnt〈S,m〉]

≤ ρ (7)

I Corollary 11. HkRennes is prefix-(ρ, qs, k)-concentrated.

The proof begins with the expression stated in Theorem 8 and is based on analysis of dispersion
index by considering separate cases for different sets of values of w. The case analysis especially for
large values of w turns out to be rather technical and uses the properties of distribution of binomial
coefficients and Taylor expansion of r(w,m), as detailed in Section 5.

3.3 Approximate Model Counting using Concentrated Hashing

As noted in Section 2, the usage of (ρ, qs, k)-concentrated family does present the challenge of
identification of application domains where such hash functions suffice. Typical usage of hash
functions does not put restrictions on the size of the underlying set S whose elements are being
hashed. For example, the standard proofs of hashing-based counting techniques employ hash functions
in the context where there is no reasonable upper bound on |S|. Therefore, one wonders whether it
is possible to design hashing-based counting techniques which can use concentrated hash functions
without assuming an upper bound on |S|.

We answer the above question positively in the third and final technical contribution of this paper
with the design of approximate model counter with rigorous (ε, δ) guarantees ApproxMC5, which
employs a prefix (ρ, qs,pivot)-concentrated hash family instead of a strongly 2-universal hash family.

I Theorem 12. For input formula F , tolerance parameter ε, confidence parameter δ, and con-
centrated hashing parameters ρ and qs, suppose ApproxMC5(F, ε, δ, ρ) uses a prefix (ρ, qs,pivot)-
concentrated hash family with the value of pivot = 78.72 · ρ(1 + 1

ε )2 and returns an estimate c.

Then, Pr
[
|sol(F )|

1+ε ≤ c ≤ (1 + ε)|sol(F )|] ≥ 1 − δ. Furthermore, ApproxMC5 makes O(2qs+3 +
log(n) log(1/δ)

ε2 ) calls to a SAT-oracle.
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ApproxMC5 builds on the earlier algorithm ApproxMC4 [13, 33], but differs in the crucial use of
a sparse hash family instead of a 2-universal hash family. This essentially requires us to rework the
entire theoretical guarantees, which we do in Section 6.

Finally, in Section 7, we evaluate the performance of ApproxMC5 using the sparse hash functions
belonging to prefix (1.1, 1,pivot)-concentrated hash family and demonstrate that it leads to significant
speedup in runtime over ApproxMC4. To the best of our knowledge, this work is the first study to
demonstrate runtime improvement using sparse hash functions without loss of (ε, δ)−guarantees.

4 Bounding the dispersion index

In this section, we prove Theorem 8. Recall that for 1 ≤ i ≤ n− 1, pi ∈ (0, 1
2 ],H{pi}(n, n) , {h :

{0, 1}n → {0, 1}n} denotes the family of functions of the form h(x) = Ax + b with A ∈ Fn×n2
and b ∈ Fn×1

2 where the entries of A[i] (for 1 ≤ i ≤ n) and b are independently generated according
to Bern(pi) and Bern( 1

2 ) respectively. Our first step is to compute the mean and bound the variance of
Cnt〈S,m〉. We start with a known result and a definition.

I Lemma 13. [26, 5] For all τ ∈ {0, 1}n, we have

Pr(A(m)τ = 0) = q(w,m)

where w = w(τ) is the Hamming weight of τ (note that 00 = 1).

I Proposition 14. The following expressions hold:

1. E[Cnt〈S,m〉] = |S|
2m

2.
∑
y1,y2∈S Pr[h

(m)(y1) = h(m)(y2) = α(m)]
= 2−m

∑
x∈S

∑n
w=0 cS(w, x)q(w,m)

Proof. Since all the entries of b are chosen randomly with Bern( 1
2 ), for y ∈ {0, 1}n, we have

Pr[h(m)(y) = α(m)] = 1
2m , from which the expression for expectation follows. Now, for the variance

we have σ2[Cnt〈S,m〉] =
∑
y1,y2∈S Pr[h

(m)(y1) = α(m), h(m)(y2) = α(m)]−(
∑
y∈S Pr[h(m)(y) =

α(m)])2.

∑
y1,y2∈S

Pr[h(m)(y1) = α(m), h(m)(y2) = α(m)]

=
∑

y1,y2∈S
Pr[h(m)(y1) = α(m)|h(m)(y2) = α(m)]Pr[h(m)(y2) = α(m)]

= 1
2m

∑
y1,y2∈S

Pr[A(m)y1 + b = α(m)|A(m)y2 + v = α(m)]

= 1
2m

∑
y1,y2∈S

Pr[A(m)(y1 − y2) = 0]

where the randomness is over the choice of A(m). Now, Pr[A(m)(y1 − y2) = 0] depends
on the Hamming weight w of y1 − y2 and is exactly the probability that the w columns of A(m)

corresponding to the bits in which y1 and y2 differ sum up to 0 (mod 2). That is,∑
y1,y2∈S

Pr[h(m)(y1) = α(m), h(m)(y2) = α(m)]

= 2−m
∑
x∈S

n∑
w=0

cS(w, x)q(w,m)

where cS(w, x) is the number of vectors in S that are at a Hamming distance of w from x. J



K. S. Meel r© S. Akshay 11

We define cS(w, x) = |{y | y ∈ S, d(x, y) = w}|, i.e., the number of vectors in S that are at a
Hamming distance of w from x. We also define cS(w) = |{(x, y) | x ∈ S, y ∈ S, d(x, y) = w}|,
i.e., the number of pairs of vectors in S that are at Hamming distance w from each other. Then we
immediately obtain the following proposition (see Appendix for details).

Then, we may express the variance in terms of cS(w) and r(w,m).

I Lemma 15. σ2[Cnt〈S,m〉] =
∑n

w=0
cS(w)r(w,m)

2m

Proof. σ2[Cnt〈S,m〉] =
∑
y1,y2∈S Pr[h

(m)(y1) = h(m)(y2) = α(m)] − (
∑
y∈S Pr[h(m)(y) =

α(m)])2

= 2−m
∑
x∈S

n∑
w=0

cS(w, x)q(w,m)−
∑
x∈S

∑
y∈S

1
22m

= 2−m
∑
x∈S

n∑
w=0

cS(w, x)q(w,m)−
∑
x∈S

n∑
w=0

cS(w, x)
22m

= 2−m
∑
x∈S

n∑
w=0

cS(w, x)r(w,m) (8)

Earlier works on bounding σ2 observed that cS(w, x) ≤
(
n
w

)
and focused their efforts to bound the

resulting expression. Interestingly, the following seemingly simple rewriting allows us to explore
interesting bounds for σ2. We rewrite Eq 8 as

σ2[Cnt〈S,m〉] = 2−m
n∑

w=0
cS(w)r(w,m) (9)

where cS(w) is the number of pairs of vectors in S that are at Hamming distance w from each
other. J

Next for all m ∈ {1, . . . , n} and every S ⊆ {0, 1}n we use deep results from boolean functional

analysis to bound the dispersion index, σ
2[Cnt〈S,m〉]

E[Cnt〈S,m〉] , as a function of |S| and r(w,m). We start by
setting up some notation. For x, y ∈ {0, 1}n, we say y ⊆ x whenever for all i ∈ [n], yi = 1 =⇒
xi = 1. We say S ⊆ {0, 1}n is a down-set if for all x, y ∈ {0, 1}n, x ∈ S, y ⊆ x implies y ∈ S.
We say S is left-compressed if, for all x, y ∈ {0, 1}n, x ∈ S implies y ∈ S whenever y satisfies the
two conditions (1) |x| = |y| and (2) x <lex y, i.e., x is lexicographically larger than y. For example,
the set {000, 001, 100} is a downset but it is not left compressed, while {000, 001, 010} is both a
downset and left-compressed.

In [28], it is shown that among all sets S of the same cardinality, for all k ∈ [n],
∑k
w=0 cS(w)

achieves its maximum value for some left-compressed and down set S. We extend this to obtain the
following crucial lemma.

I Lemma 16. Let n be positive integer and and let t : [n]→ R+ be a monotonically non-increasing
function. Among all subsets S of {0, 1}n of same cardinality, the sum

∑n
w=0 cS(w)t(w) achieves its

maximum value for some left-compressed and down set S.

The above lemma allows us to use the expressions obtained for cS(w) by Rashtchian in [28, 29].

I Lemma 17. [28, 29] For a left-compressed and down set S, cS(w) ≤ 2 ·
(

8e
√
n·`
w

)w
· |S| where

` = dlog |S|e.
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Proof. The proof is based on the bounds derived by Rashtchian in [28]. We give a few more details
as we will need them later when we explain our implementation. More specifically, the proof uses
Equations 4.2, 4.5, 4.8, and 4.10 from [28]. It is crucial to note that these equations hold only for a
left-compressed and down set and not for an arbitrary set S. The proof follows by breaking into two
cases based on the parity of w.

For even w, Rashtchian upper bounds the expressions obtained in Eq. 4.2 and 4.5 by Eq 4.8

in [28]. We rewrite Eq 4.8 by substituting 2t by w to obtain cS(w) ≤ 2 ·
(

8e
√
n·`
w

)w
. For odd w,

Rashtchian upper bounds the upper bound for cS(w) obtained in Eq. 4.2 and 4.5 by Eq 4.10. We
rewrite Eq 4.10 by noting that w = 2t+ 1 to obtain cS(w) ≤ 2 ·

( 8e
w

)w (
√
n · `)(w−1)`. Noting that

` ≤
√
n · `, we have cS(w) ≤ 2 ·

(
8e
√
n·`
w

)w
. Thus, combining these cases, we get our lemma. J

Thus, for any S ⊆ {0, 1}n let us fix ` = dlog |S|e. Then,
σ2[Cnt〈S,m〉]
E[Cnt〈S,m〉] ≤

∑̀
w=0

2 ·
(

8e
√
n·`
w

)w
r(w,m), which completes the proof of our first main result,

Theorem 8, i.e.,

I Theorem 8. For 1 ≤ m ≤ n, S ⊆ {0, 1}n, σ
2[Cnt〈S,m〉]

E[Cnt〈S,m〉] ≤
∑̀
w=0

2 ·
(

8e
√
n·`
w

)w
r(w,m) where

` = dlog |S|e.

This theorem gives a closed form expression for upper bound on dispersion index, which is
amenable to numerical computations. In particular, given `, one can compute the value of pi’s such
that dispersion index is upper bounded by a constant. Next, we analyze the behavior of pi’s for a
given upper bound on dispersion index and we construct concentrated hash functions based on their
behavior.

5 A concentrated hash family

In this section, we finally construct a family of concentrated hash functions, which proves our second
main Theorem 10, which we restate below.

I Theorem 10. For 1 ≤ m ≤ n, let h R←− HkRennes, S ⊆ {0, 1}n, Cell〈S,m〉 = {y ∈ S |
h(m)(y) = α(m)}, |S| ≤ 2mk for some α ∈ {0, 1}m. Then for every value of k > 1 and ρ > 1, there
exists qs ≤ n such that for all m with qs ≤ m ≤ n, we have

E[Cnt〈S,m〉] = |S|2m (6)

σ2[Cnt〈S,m〉]
E[Cnt〈S,m〉]

≤ ρ (7)

Proof. The first equation follows from Proposition 14. For the second, from Theorem 8 we have, for
any 1 ≤ m ≤ n,

σ2[Cnt〈S,m〉]
E[Cnt〈S,m〉]

= 1 +
∑̀
w=1

cS(w)r(w,m)

≤ 1 +
∑̀
w=1

2 ·
(

8e
√
n`

w

)w
r(w,m),

where ` = dm+ log2(k)e.
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Note that mδ + 1 ≥ ` ≥ m
δ . Note that

q(w,m) =
m∏
j=1

(
1
2 + 1

2(1− 2pj)w
)

≤
(

1
2 + 1

2(1− 2pm)w
)m

Now let us define f(w) =
(

8e
√
n`

w

)w
r(w,m). Then, we can divide into three cases:

Case 1: 1 ≤ w ≤ (2pm)−1

We have log(r(w,m)) ≤ −mwpm. To see this, following the reasoning from [5], we have when
w ≤ 1

2pm ,

log(r(w,m)) ≤ −m+m log(1 + (1− 2pm)w)
≤ −m+m log(1 + e−2pmw)
≤ −m+m(1− pmw)

where the last inequality follows from the fact that log2(1 + e−x) ≤ 1− 1
2x for 0 ≤ x ≤ 1 and that

0 ≤ 2pmw ≤ 1 in this interval. Thus

log2 f(w) ≤ w log 8e
√
n`− w logw −mpmw (10)

Since H−1(δ) ≤ δ/2, we have pm ≥ 16
H−1(δ)

logm
m ≥ 32

δ
logm
m ≥ 32 logm

m , since δ ≤ 1. Therefore

log2 f(w) ≤ w log 8e
√
n`− w logw −mpmw

≤ w log 8e
√
n`−mpmw ≤ w log 8e

√
n`− 32w logm

≤ w log 8e
√
nl

m32

Now, we pick qs1 > (
√
n 2ρ
ρ−1 (`)3/28e)1/32. Note that this is possible, since ` ≤ n and it suffices

to choose qs1 > 1.12( 2ρ
ρ−1 )1/32n1/16 which is in turn possible for any value of ρ > 1.

Then, we have for any m ≥ qs1, m32 > 8e
√
n( 2ρ

ρ−1 )`3/2 which implies that 8e
√
nl

m32 < ρ−1
2ρ` . Then

we have

log2 f(w) ≤ w log 8e
√
nl

m32 ≤ w log ρ− 1
2ρ` ≤ 1 · log ρ− 1

2ρ` (11)

where the last inequality follows because, ` ≥ 1 (since |S| ≥ 2), which means that log ρ−1
2ρ` < 0.

Therefore,
∑`
w=1 f(w) ≤ `(ρ−1)

2ρ`

=⇒
σ2[Cnt〈S,m〉]
E[Cnt〈S,m〉]

≤ 1 + 2ρ− 1
2ρ < 1 + ρ− 1 = ρ

=⇒ for k > 1, ρ > 1, for qs1 ≤ m ≤ n,
σ2[Cnt〈S,m〉]
E[Cnt〈S,m〉]

< ρ

Case 2: (2p)−1 ≤ w ≤ mH−1(δ)
16

We start by observing that g(w) = log f(w) = w log 8e
√
n`− w logw is increasing in the interval
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w = 0 to w = `. To see this, consider the derivative g′(w) = log( 8e
√
n`

w )− 1. Then w ≤ ` ≤ 8e
√
n`

implies 2 ≤ 8e
√
n`

w , which implies g′(w) > 0.

Now w ≤ mH−1(δ)
16 ≤ mδ

32 ≤
m
32 since δ ≤ 1 and H−1(δ) ≤ δ

2 . Thus we have,

log f(w) ≤ log f(m32) ≤ m

32 log(29e
√
n`

m
)

= 9m
32 +m log

(
e
√
n`

m

) 1
32

Now we pick m > e
√
n`

40 . Then we get log f(w) ≤ 0.282m+ 0.167m ≤ 0.45m.
On the other hand, we have log r(w,m) ≤ −m+m log(1 + exp(−2pmw)) ≤ −m+m log(1 +

exp(−1)) ≤ −0.58m
Thus, we get σ

2[Cnt〈S,m〉]
E[Cnt〈S,m〉] ≤ 1 +

∑`
w=1 2 · f(w)r(w,m) ≤ 1 +

∑`
w=1 21−0.13m ≤ 1 + 2`

20.13m

Thus there exists qs2 = 1
0.13 log2

(
2`
ρ−1

)
such that for qs2 ≤ m ≤ n, clearly this can be made less

than any constant ρ > 1.

Case 3: w ≥ mH−1(δ)
16 . We start with a claim, the proof for which can be found in the Appendix.

B Claim 18. For m ≥ 2, if w ≥ mH−1(δ)
16 , then log2 r(w,m) < −m+ 1− log2 m

From the above claim, we have log2 r(w,m) ≤ −m+ 1− log2 m, i.e., r(w,m) ≤ 2·2−m
m .

Also, recalling that we have Σ`w=1cs(w) ≤ 2` , we obtain σ2

µ ≤ 1+
∑`
w=1 cs(w)maxwr(w,m) ≤

1 + 2` · 2·2−m
m = 1 + 2k

m

Thus for all k, we can pick qs3 = 2k
ρ−1 such that for any qs3 ≤ m ≤ n and ρ > 1, σ

2

µ ≤ ρ.

Combining the three cases and taking qs = max{qs1, qs2, qs3}, we obtain our desired result. It is
worth noting that the smallest value of m (i.e., qs) for which Theorem 10 holds true depends on ρ and
k. Furthermore, it is interesting to observe that the proof of Case 3 crucially depends on usage of
r(w,m) instead of q(w,m) in the expression of σ

2

µ as the current proof techniques would only yield

log2 q(w,m) < −m+ 1, which would be insufficient to prove σ2

µ ≤ ρ. J

6 A New Approximate Model Counting Algorithm: ApproxMC5

In this section, we seek to design algorithms that can use (ρ, qs, k)-concentrated hash functions for
a small k, independent of the problem instance. In particular, we first revisit the state of the art
approximate counting algorithm ApproxMC. We will refer to the algorithmic constructs presented in
ApproxMC2 [13] since the subsequent versions, i.e., ApproxMC3 and ApproxMC4, have proposed
algorithmic improvement to the underlying SAT calls only. We seek to modify ApproxMC2 so as
to employ concentrated hash function; the final implementation of ApproxMC5 builds on top of
ApproxMC4, allowing it to benefit from the improvements proposed in ApproxMC3 and ApproxMC4.
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6.1 The Algorithm

The subroutine ApproxMC5 is presented in Algorithm 1. ApproxMC5 takes in a formula F , tolerance:
ε, and confidence parameter δ, concentrated hashing parameters ρ and qs as input and returns an
estimate of |sol(F )| within tolerance ε and confidence at least 1− δ. Similar to ApproxMC2, the key
idea of ApproxMC5 is to partition the solution space of F into roughly equal small cells of solutions
such that the |sol(F )| can be estimated from the number of solutions in a randomly chosen cell scaled
by the total number of cells. This idea requires two crucial ingredients:

1. hash functions to achieve desired properties of partitioning: As has been emphasized earlier, in
this work, we mark a departure from prior work and employ concentrated hash functions instead
of strongly 2-universal hash functions.

2. subroutine to check whether a cell is small, i.e., the number of solutions in the cell is less than an
appropriately computed thresh. ApproxMC5 assumes access to the subroutine BoundedCount
that takes in a formula F and a threshold thresh and returns an integer Y , such that Y =
min(thresh, |sol(F )|). Note that Y = thresh is used to indicate that the number of solutions
is greater than or equal to thresh, which indicates that the cell is not small. We do not treat
BoundedCount as an oracle in our analysis and instead as a subroutine which uses a NP oracle to
enumerate solutions of F one by one until we have found thresh number of solutions or there are
no more solutions. As such for BoundedCount to make polynomially many calls to NP oracle,
thresh is polynomial in 1

ε .
3. Subroutine, called LogSATSearch, to search for the right number of cells as discussed in detail

below.

ApproxMC5 differs from ApproxMC2 primarily in the computation of thresh and usage of
concentrated hash functions – the two critical components that distinguish several hashing-based
counting techniques. The computation of thresh involves the parameter ρ to account for concentrated
hashing and incurs an overhead proportional to ρ. As discussed later, for our empirical studies,
we set ρ to 1.1. Unlike prior techniques, we introduce another parameter iniThresh that depends
on thresh and qs to account for qs parameter of concentrated hash functions. ApproxMC5 first
checks if the number of solutions of F is less than iniThresh and upon passing the check it simply
returns the number of solutions of F . For interesting instances, the check fails and ApproxMC5
invokes the subroutine ApproxMC5Core t times and computes the median of the returned estimates
by ApproxMC5Core.

The subroutine ApproxMC5Core lies at the core of ApproxMC5 and shares similarity with
ApproxMC2Core employed in [13]. In contrast to ApproxMC2Core, the algorithmic description
does not restrict the hash family to Hxor in line 1. We use Hρ,qs(n, n) as a placeholder for a hash
family, whose properties would be inferred from the analysis of ApproxMC5 and stated formally in
Lemma 20.

ApproxMC5Core takes in a formula F , thresh, and returns nSols as an estimate of |sol(F )|
within tolerance ε corresponding to thresh. To this end, ApproxMC5Core first chooses a hash
function h from a prefix-family Hρ,qs(n, n) and a cell α. As noted above, we use prefix-slices
of h and α. After choosing h and α randomly, ApproxMC5Core checks if Cnt〈F,n〉 < thresh. If
not, ApproxMC5Core fails and returns 2n.(A careful reader would note that we could have chosen
any arbitrary number to return) Otherwise, it invokes sub-routine LogSATSearch to find a value
of m (and hence, of h(m) and α(m)) such that Cnt〈F,m〉 < thresh and Cnt〈F,m−1〉 ≥ thresh. The
reason behind the particular choice of the value of m is that to obtain higher confidence in the
counts returned by ApproxMC5Core, we would ideally like the E[Cnt〈F,m〉] to be high so as to obtain
better bounds through concentration inequalities. Of course, we can only handle the cases when
Cnt〈F,m〉 is polynomial to ensure polynomially many calls to NP oracle (SAT solver in practice). The
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Algorithm 1 ApproxMC5(F, ε, δ, ρ, qs)

1: thresh← 1 + 9.84 · ρ ·
(

1 + ε
1+ε

) (
1 + 1

ε

)2
;

2: iniThresh← thresh ∗ 2qs+3

3: Y ← BoundedCount(F, iniThresh);
4: if (Y < iniThresh) then return |Y |;
5: t← d17 log2(3/δ)e;
6: nCells← 2; C ← emptyList; iter← 0;
7: repeat
8: iter← iter + 1;
9: nSols← ApproxMC5Core(F, ρ, thresh);

10: AddToList(C, nSols);
11: until (iter < t);
12: finalEstimate← FindMedian(C);
13: return finalEstimate

Algorithm 2 ApproxMC5Core(F, ρ, thresh)
1: Choose h at random fromHρ(n, n);
2: Choose α at random from {0, 1}n;
3: Y ← BoundedCount(F ∧ (h(n))−1(α(n)), thresh);
4: if (|Y | ≥ thresh) then return 2n

5: m← LogSATSearch(F, h, α, thresh);
6: Cnt〈F,m〉 ← BoundedCount(F ∧ (h(m))−1(α(m)), thresh);
7: return (2m × Cnt〈F,m〉);

implementation of LogSATSearch is provided in [13] and we use the procedure as-is. The invocation
of BoundedCount in line 6 calculates Cnt〈F,m〉. Finally, ApproxMC5Core returns (2m × Cnt〈F,m〉),
where 2m is the number of cells that sol(F ) is partitioned into by h(m).

6.2 Analysis of ApproxMC5
We now present the analysis of ApproxMC5. The primary purpose of this section is to highlight the
sufficiency of concentrated hashing for the theoretical guarantees of ApproxMC5.

Let Bad denote the event that ApproxMC5Core either returns (⊥,⊥) or returns a pair (2m, nSols)
such that 2m × nSols does not lie in the interval IGood =

[
|sol(F )|

1+ε , |sol(F )|(1 + ε)
]
. We wish

to bound Pr [Bad] from above. Towards this end, for i ∈ {1, . . . , n}, let Ti denote the event(
Cnt〈F,i〉 < thresh

)
, and let Li and Ui denote the events

(
Cnt〈F,i〉 < |sol(F )|

(1+ε)2i

)
and

(
Cnt〈F,i〉 >

|sol(F )|
2i (1 + ε

1+ε )
)

, respectively.

For any event E, let E denote its complement. Now, for Bad to happen, ApproxMC5Core must
return (at some iteration i) with Li or Ui. Further, if it returned at i, then Ti holds and Ti−1 must not
hold (else it would have returned at iteration i− 1 itself). Thus, we obtain

Pr [Bad] ≤ Pr

 ⋃
i∈{1,...n}

(
Ti−1 ∩ Ti ∩ (Li ∪ Ui)

) (12)

Note that we only get an upper bound (and not an equality) above because the interval IGood considered
has upper bound |sol(F )|(1 + ε), while Ui and thresh are defined using the factor (1 + ε

1+ε ) ≤ 1 + ε.
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Our next goal is to simplify this upper bound. Let m∗ be the smallest i such that |sol(F )|
2i (1 + ε) ≤

thresh− 1. This value must exist since |sol(F )| ≥ iniThresh. Note that when |sol(F )| < iniThresh,
the algorithm returns the exact count and hence is guaranteed to be correct. Now, by substituting the
chosen value of thresh and simplifying, we obtain

m∗ =
⌊

log2 |sol(F )| − log2

(
4.92 · ρ ·

(
1 + 1

ε

)2
)⌋

(13)

From the definition of m∗, we have 2m∗+1 ≥ 2∗|sol(F )|
thresh−1 . Since |sol(F )| ≥ iniThresh, we have

2m∗+1 ≥ 2∗thresh∗2qs+3

thresh−1 , i.e., m∗ + 1 ≥ qs + 4, or m∗ − 3 ≥ qs.
Similar to ApproxMC4, we show that for ApproxMC5, one can upper bound Bad by considering

only five events, namely, Tm∗−3Lm∗−2, Lm∗−1, Lm∗ and Um∗ . It is worth noting that the proof only
requires usage of prefix-hash family in the algorithm with no further restrictions on nature of the
prefix-hash family. In fact, the main property that we need from the prefix hash family, which follows
from Proposition 4, is that

∀j ∈ {1, . . . , n}, Tj =⇒ Tj+1 (14)

I Lemma 19. Pr[Bad] ≤ Pr[Tm∗−3] + Pr[Lm∗−2] + Pr[Lm∗−1] + Pr[Lm∗ ∪ Um∗ ]

The following lemma utilizes the key property of concentrated hash families stated in Proposition
7 to bound the probabilities of the concerned events.

I Lemma 20. IfH is prefix-(ρ, qs,pivot)-concentrated family for pivot = 78.72 · ρ(1 + 1
ε )2, then

the following bounds hold:

1. Pr[Lm∗ ∪ Um∗ ] ≤ 1
4.92

2. Pr[Lm∗−1] ≤ 1
10.84

3. Pr[Lm∗−2] ≤ 1
20.68

4. Pr[Tm∗−3] ≤ 1
62.5

Proof. Note that Pr[Ti] = Pr[Cnt〈F,i〉 ≤ thresh] and Pr[Li] = Pr
[
Cnt〈F,i〉 ≤ (1 + ε)−1µi

]
.

Furthermore,
Pr[Li ∪ Ui] = Pr

[
Cnt〈F,i〉 − µi| ≥ ε

1+εµi

]
To obtain bounds, we substitute values of m∗, thresh,

µi, and we seek to apply Proposition 7 with appropriate values of β. We observe that to obtain ( 1),
it is sufficient to employ (ρ,m∗, pivot

8 ) concentrated family; Similarly, to obtain ( 2), ( 3) , ( 4), it
is sufficient to employ (ρ,m∗ − 1,pivot/4), (ρ,m∗ − 2, pivot

2 ), (ρ,m∗ − 3,pivot) concentrated
families respectively. Proposition 6 allows us to conclude that (ρ,m∗ − 3,pivot) concentrated family
suffices to obtain the above bounds. Since m∗− 3 ≥ qs, we conclude that (ρ, qs,pivot)-concentrated
family suffices to obtain the above bounds. J

Combining Lemma 19 with the observation that ApproxMC5Core is invoked O(log 1
δ ) times

and we return median as the estimate, we obtain the following correctness and time complexity for
ApproxMC5 by using the standard Chernoff analysis for the amplification of probability bounds.

I Theorem 12. For input formula F , tolerance parameter ε, confidence parameter δ, and con-
centrated hashing parameters ρ and qs, suppose ApproxMC5(F, ε, δ, ρ) uses a prefix (ρ, qs,pivot)-
concentrated hash family with the value of pivot = 78.72 · ρ(1 + 1

ε )2 and returns an estimate c.

Then, Pr
[
|sol(F )|

1+ε ≤ c ≤ (1 + ε)|sol(F )|] ≥ 1 − δ. Furthermore, ApproxMC5 makes O(2qs+3 +
log(n) log(1/δ)

ε2 ) calls to a SAT-oracle.
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The correctness and time complexity of ApproxMC5 have exactly the same expression as that
of ApproxMC4. Theorem 12 highlights that prefix-(ρ, qs,pivot)−concentrated hash family are
sufficient to provide (ε, δ) estimates. In fact, in our experimental results that we discuss next, we will
use a sparse hash function belonging to this family.

6.3 Further Optimizations

As mentioned earlier, BoundedCount is a subroutine that takes in a formula F and threshold thresh,
and uses a NP oracle to enumerate solutiosn of F one by one until we have found the desired
threshold number of solutions or there are no more solutions. The practical implementation of
BoundedCount replaces NP oracle with SAT solver and and as such for a fixed formula F , the
runtime of BoundedCount depends on thresh. The usage of (ρ, qs,pivot)-concentrated family leads
to invocation of BoundedCount with threshold set to iniThresh in line 3 of ApproxMC4 algorithm.
Therefore, for practical efficiency, it is desirable to construct concentrated families with as small
values of qs as possible. The bound on qs provided by the proof of Theorem 10 is prohibitively
large (qs > 70) even for n = 10. To this end, we turn to analytical techniques aided by scientific
programming in Python.

For given n, k, and ρ, we seek to compute as small values of pi as possible while satisfying
pi ≥ pi+1. As a first step, we observe that the upper bound for cS(w) employed above is a loose
upper bound and accordingly, the bounds on the constants pi (as well as k and the large enough value
of m) obtained from our analysis above are very loose. To this end, we compute cS(w) based on the
Eq 4.2 and Eq 4.5 obtained in [28], as indicated in the proof of Lemma 17. We then compute the
values of pi for qs = 1, k = 512, and ρ = 1.1. The particular values for ρ and k were chosen due
to their usage in experimental evaluation of ApproxMC5. We call the resulting familyHlsaRennes and
employHlsaRennes in our empirical evaluation.

Figure 1 plots the values of computed pi vis-a-vis iWe also plot another curve f(i) = 1.6 log2(i+1)
i .

It is interesting to observe that the two curves fit nicely to each other. To illustrate the gap between
observed and theoretical bound, we plot the bound on p obtained from Theorem 10 as g(i) =
32 log2(i+1)

δ·i noting that H−1(δ) < δ
2 .

The large difference between the two plots clearly illustrates the potential for improvement of
constants in Theorem 8 and we leave this as a natural direction of future work. Furthermore, we
conjecture existence of sparse prefix hash functions with pm = O( logm

m ) belonging to (ρ, 1, κ)-
concentrated family.

7 Experimental Evaluation

In this section, we evaluate the performance of our approximate model counting algorithm ApproxMC5
using the prefix (1.1, 1,pivot)-concentrated hash familyHlsaRennes

5. For all our experiments, we used
ε = 0.8 and δ = 0.1, which is in line with the chosen values for these parameters in previous studies
on counting. The setting of ε = 0.8 yields pivot to be 512. Recall that prior empirical studies had
to sacrifice theoretical guarantees due to their reliance on far fewer invocations of SAT solver than
those dictated by the theoretical analysis [16, 40, 2, 1]. In contrast, we use a faithful implementation
of ApproxMC5 that retains theoretical guarantees of (ε, δ) approximation. ApproxMC5 is publicly
available as an open source software at: https://github.com/meelgroup/approxmc.

5 Our theoretical analysis of ApproxMC5 allows all values of ρ ≥ 1 and qs > 1; we leave further optimization of the
choice of ρ as future work.

https://github.com/meelgroup/approxmc


K. S. Meel r© S. Akshay 19

0 100 200 300 400 500 600 700 800 900 1000

i

0.1

0.2

0.3

0.4

0.5

p
i

min(0.5, 32∗log2(i+1)
δ∗i

1.6∗log2(i+1)
i

H lsa
Rennes

Figure 1 Trend of pi vis-a-vis i

To evaluate the runtime performance and quality of approximations computed by ApproxMC5,
we conducted a comprehensive performance evaluation of counting algorithms involving 1896
benchmarks. Most practical applications of model counting reduce to projected counting and therefore,
keeping in line with the prior work, we experiment with benchmarks arising from wide range of
application areas including probabilistic reasoning, plan recognition, DQMR networks, ISCAS89
combinatorial circuits, quantified information flow, program synthesis, functional synthesis, logistics,
as have been previously employed in studies on model counting [13, 25]. We perform runtime
comparisons with ApproxMC4 as ApproxMC4 was shown to be state of the art approximate counter
with significant performance gain over other approximate counters [32, 33].

The objective of our experimental evaluation was to answer the following questions:

1. How does runtime performance of ApproxMC5 compare with that of ApproxMC4?

2. How far are the counts computed by ApproxMC5 from the exact counts?

The experiments were conducted on a high performance computer cluster, with each node
consisting of an E5-2690 v3 CPU with 24 cores and 96GB of RAM such that each core’s access was
restricted to 4GB. The computational effort for the evaluation consisted of over 20,000 hours. We
used timeout of 5,000 seconds for each experiment, which consisted of running a tool on a particular
benchmark. To further optimize the running time for both ApproxMC4 and ApproxMC5, we used
improved estimates of the iteration count t following an analysis similar to that in [13].
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Benchmark Vars Clauses |P| log2(Count) ApproxMC4 time ApproxMC5 time Speedup
10B-1 15390 68337 174 56.17 4274.56 – –
or-100-20-7-UC-40 200 539 200 56.55 3526.45 – –
03B-4 27966 123568 114 28.55 983.72 1548.96 0.64
blasted_TR_b12_2_linear 2426 8373 107 63.93 32.07 56.75 0.57
blasted_squaring23 710 2268 61 23.11 0.66 1.21 0.55
blasted_case144 765 2340 138 82.07 102.65 202.06 0.51
modexp8-4-6 83953 316814 88 32.13 788.23 920.34 0.86
or-70-5-5-UC-20 140 360 140 43.91 675.1 788.74 0.86
min-28s 3933 13118 464 459.23 48.63 35.83 1.36
90-14-8-q 924 811 924 728.29 242.07 178.93 1.35
s9234a_7_4 6313 14555 247 246.0 4.77 2.45 1.95
min-8 1545 4230 288 284.78 8.86 4.59 1.93
s13207a_7_4 9386 20635 700 699.0 34.94 17.05 2.05
min-16 3065 8526 544 539.88 33.67 16.61 2.03
90-15-4-q 1065 911 1065 839.25 273.1 135.75 2.01
s35932_15_7 17918 44709 1763 1761.0 – 72.32 –
s38417_3_2 25528 57586 1664 1663.02 – 71.04 –
75-10-8-q 460 465 460 360.13 – 4850.28 –
90-15-8-q 1065 951 1065 840.0 – 3717.05 –

Table 2 Runtime performance comparison of ApproxMC5 vis-a-vis ApproxMC4. (Timeout: 5000 seconds)

7.1 Results

Runtime performance

We present the runtime comparison of ApproxMC5 vis-a-vis ApproxMC4 in Table 2 on a subset
of our benchmarks 6. Column 1 specifies the name of the benchmark, while columns 2 and 3
list the number of variables and clauses, respectively. Column 4 Column 4 lists the log2 of the
estimate returned by ApproxMC5. Columns 5 and 6 list the runtime (in seconds) of ApproxMC5 and
ApproxMC4 respectively. Column 7 indicates speedup of ApproxMC5 over ApproxMC4. We observe
the following:

1. ApproxMC5 significantly outperforms ApproxMC4 for a large set of benchmarks. We observe
that ApproxMC5 is able to compute estimates for formulas for which ApproxMC4 timed out. Fur-
thermore, ApproxMC5 is also significantly faster for most of the benchmarks where ApproxMC4
does not timeout.

2. Recall that the density of XORs decreases with increase in log2 |sol(F )| and we observe that the
performance of ApproxMC5 too improves further as the number of solutions of F increases. It is
worth noting that for a subset of benchmarks, ApproxMC5 is slower than ApproxMC4.

Upon further investigation, we observe a strong correlation between the speedup and the log2 of the
number of solutions. It is worth recalling that the number of XORs required to ensure that a randomly
chosen cell is small is close to log2 of the number of solutions. Since for a fixed number of variables,
the sparsity increases with the number of XORs, there is a tradedoff between the gains due to sparse
XORs over the increased overhead of requirement of enumerating higher number of solutions due to
increased thresh. It is worth viewing the runtime improvement in the context of prior work where
significant slowdown was observed.
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Figure 2 Plot showing counts obtained by ApproxMC5 vis-a-vis exact counts from DSharp

Approximation Quality

To measure the quality of approximation, we compared the approximate counts returned by ApproxMC5
with the counts computed by an exact model counter, viz. DSharp. Figure 2 shows the model counts
computed by ApproxMC5, and the bounds obtained by scaling the exact counts with the tolerance
factor (ε = 0.8) for a small subset of benchmarks. The y-axis represents model counts on log-scale
while the x-axis represents benchmarks ordered in ascending order of model counts. We observe that
for all the benchmarks, ApproxMC5 computed counts within the tolerance. Furthermore, for each
instance, the observed tolerance (εobs) was calculated as max( |sol(F )|

AprxCount − 1, AprxCount
|sol(F )| − 1), where

AprxCount is the estimate computed by ApproxMC5. We observe that the arithmetic mean of εobs
across all benchmarks is 0.05 – far better than the theoretical guarantee of 0.8.

8 Conclusion

Our investigations were motivated by the runtime performance of SAT solvers on sparse hash
functions. As a first step, we observed that several applications of universal hashing including
approximate counting are inherently concerned with concentration bounds provided by universal
hash functions. This led us to introduce a relaxation of universal hash functions, christened as
(ρ, qs, k)-concentrated hash functions. The usage of (ρ, qs, k)−concentrated hash functions ensure
that dispersion index for the random variable, Cnt〈F,m〉 is bounded by the constant ρ. We use our
bounds to construct sparse hash functions, namedHkRennes where each entry of A[i] is chosen with
probability pi = O( log2 i

i ). Finally, we replace strong 2-universal hash functions withHlsaRennes (an
analytically computed variant of HkRennes) and implement the resulting algorithm demonstrating
significant speedup compared to the state-of-the-art in approximate model counters.

6 The entire set of benchmarks and the corresponding set of logs generated by ApproxMC4 and ApproxMC5 are
available at https://doi.org/10.5281/zenodo.3766168

https://doi.org/10.5281/zenodo.3766168
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We believe that the concentrated hash functions constructed here could have many potential
applications in other domains such as discrete integration, streaming, and the like. This work suggests
two interesting directions of future research:

Design of explicit constructions of sparse hash functions belonging to (ρ, qs, k)-concentrated
family for all values of qs, ideally for qs = 1.
Design of hashing-based techniques where the usage of sparse hash functions performs as good
as or better than those based on dense XORs for almost all the benchmarks.
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Appendix

A Proofs and details from Preliminaries Section

I Proposition 21. Let H(n,m) be a 2-universal hash family and let h R←− H(n,m), then ∀S ⊆
{0, 1}n, we have

E[|Cell〈S,h,α〉|] = |S|2m
σ2[|Cell〈S,h,α〉|] ≤ E[|Cell〈S,h,α〉|]

Proof. For y ∈ {0, 1}n, define the indicator variable γy,α such that γy,α = 1 if h(y) = α and 0
otherwise. Now,

E[γy,α] = Pr[h(y) = α] = 1
2m ; Thus,

E|Cell〈S,h,α〉| =
∑
y∈S

E[γy,α] = |S|2m

Note that E[γy,α · γz,α] = Pr[h(y) = α ∧ h(z) = α] =
( 1

2m
)2

.
Thus,

∑
y,z∈S|y 6=z E[γy,α · γz,α] ≤ |S|(|S|−1)

2
( 1

2m
)2 ≤ (E[|Cell〈S,h,α〉|])2

Therefore,

σ2
|Cell〈S,h,α〉| = E|Cell〈S,h,α〉|

+
∑

y,z∈S|y 6=z

E[γy,α · γz,α]− (E[|Cell〈S,h,α〉|])2

≤ E[|Cell〈S,h,α〉|]

J

I Proposition 22. IfH(n, n) is prefix-(ρ, qs, k)-concentrated, thenH(n, n) is prefix-(ρ′, qs′, k′)-
concentrated for all ρ′ ≥ ρ, qs′ ≥ qs, and k′ ≤ k.

Proof. The proof follows immediately from the following three simple observations:

1. If a property Ψ(|S|) holds for all S such that |S| ≤ k · 2m, then the property Ψ(|S|) also holds
for all S such that |S| ≤ k′ · 2m for k′ ≤ k and k′, k ∈ N.

2. If a property Ψ(m) holds for each m ≥ qs, then Ψ(m) holds for each m ≥ qs′ for qs′ ≥ qs.

3. σ2[Cnt〈S,m〉]
E[Cnt〈S,m〉] ≤ ρ implies σ2[Cnt〈S,m〉]

E[Cnt〈S,m〉] ≤ ρ
′ for ρ′ ≥ ρ.

J

I Proposition 23. If H is prefix-(ρ, qs, k)-concentrated family, then for every 0 < β < 1, qs ≤
m ≤ n, and for all |S| ≤ 2m · k, we have the following:

1. Pr
[∣∣Cnt〈S,m〉 − E[Cnt〈S,m〉]

∣∣ ≥ βE[Cnt〈S,m〉]
]
≤ ρ

β2E[Cnt〈S,m〉]

2. Pr
[
Cnt〈S,m〉 ≤ βE

[
Cnt〈S,m〉

]]
≤ ρ

ρ+(1−β)2E[Cnt〈S,m〉]
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Proof. For every y ∈ {0, 1}n and for every α ∈ {0, 1}i, define an indicator variable γy,α,i which
is 1 iff h(i)(y) = α. Let Γα,i =

∑
y∈sol(F ) (γy,α,i), µα,i = E [Γα,i] and σ2

α,i = σ2 [Γα,i]. Clearly,
Γα,i = |Cell〈F,h(i),α〉| and µα,i = 2−i|sol(F )|. Note that µα,i is independent of α and equals µi, as

defined in the statement of the Lemma. By definition of concentrated hash functions, we have σ2
i

µi
≤ ρ

for |sol(F )| ≤ pivot · 2i, i.e., for i ≥ log2(|sol(F )|)− log2(pivot). Hence statements 1 and 2 of the
lemma then follow from Chebhyshev inequality and Paley-Zygmund inequality, respectively. J

IDefinition 24. [16] Let Y be random variable with µ = E[Y ]. Then Y is strongly−(ζ, η)−concentrated
if Pr[|Y − µ| ≥

√
ζ] ≤ 1

η .

I Proposition 25. If H is prefix-(ρ, qs, k)-concentrated family, then for every 0 < β < 1, qs ≤
m ≤ n, and for all |S| ≤ 2m·k, then the random variable Cnt〈S,m〉 is strongly-

(
(βE[Cnt〈S,m〉])2,

β2E[Cnt〈S,m〉]
ρ

)
concentrated.

Proof. The proof follows by replacing (βE[Cnt〈S,m〉])2 by ζ and β2E[Cnt〈S,m〉]
ρ by η in Proposition 7

to obtain that Cnt〈S,m〉 is strongly-
(

(βE[Cnt〈S,m〉])2,
β2E[Cnt〈S,m〉]

ρ

)
concentrated. J

A.1 Relationship of Concentrated hashing with other hash families

In this section, we relate other useful notions of hashing to (ρ, k)-concentrated hashing.

I Definition 26. A family of hash functionsH(n,m) is

uniform if ∀x ∈ {0, 1}n, α ∈ {0, 1}m, h R←− H, we have Pr[h(x) = α] = 1
2m .

ε- almost universal (ε-AU) if ∀x, y ∈ {0, 1}n and α ∈ {0, 1}m, we have

Pr[h(x) = h(y)] ≤ ε (15)

Further, it is known that uniform and ε−AU hash functions allow us to obtain the following
concentration bounds.

I Proposition 27. LetH(n,m) be a uniform and ε-almost universal (ε-AU) hash family and let

h
R←− H(n,m), then ∀S ⊆ {0, 1}n, |S| ≥ 1, we have

E[|Cell〈S,h,α,|〉] = |S|2m (16)

σ2[|Cell〈S,h,α,|〉] ≤ E[|Cell〈S,h,α,|〉] + (ε− 1)|S||(|S| − 1)
2m (17)

Proof. Similar to the above proof, we work with indicator variables γy,α such that γy,α = 1 if
h(y) = α and 0 otherwise. Since H(n,m) be a uniform, we have E[γy,α] = Pr[h(y) = α] = 1

2m .
Furthermore,H(n,m) is also (ε-AU) , we have E[γy,α · γz,α] ≤ ε. Now, substituting the E[γy,α] and
E[γy,α · γz,α], we derive the bounds for E[|Cell〈S,h,α〉|] and σ2[|Cell〈S,h,α〉|] J

Several classical results such as Valiant-Vazirani lemma [38] are typically concerned with up-
per bounding G(|Cell〈S,h,α,|〉) defined as: G(|Cell〈S,h,α,|〉) = σ2[|Cell〈S,h,α,|〉] − E[|Cell〈S,h,α,|〉] +
(E[|Cell〈S,h,α,|〉])2. This can indeed be achieved by upper bounding variance using Proposition 27.

It turns out that we can get similar properties with concentrated hash families. Formally,

I Proposition 28. If H(n, n) is prefix-(ρ, qs, k)-concentrated hash family, then for each qs ≤
m ≤ n, ∀S ⊆ {0, 1}n where |S| ≤ 2m · k, h R←− H, α ∈ {0, 1}n, we have

G(Cnt〈S,m〉) ≤ (ρ− 1)E[Cnt〈S,m〉] + (E[Cnt〈S,m〉])2 (18)
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Proof. The proof follows from substituting σ2[Cnt〈S,m〉] ≤ ρ · E[Cnt〈S,m〉] in the expression for
G(Cnt〈S,m〉) J

Just as we replaced 2-universal hash functions with concentrated hash functions for model counting,
the above bounds lead us to believe that we can exploit them to replace uniform and ε-AU functions
by concentrated hash functions in other applications domains such as databases, cryptography and the
like. We leave further exploration of this exciting idea for future work.

B Proofs from Section 4

I Lemma 29. Let n be positive integer and and let t : [n]→ R+ be a monotonically non-increasing
function. Among all subsets S of {0, 1}n of same cardinality, the sum

∑n
w=0 cS(w)t(w) achieves its

maximum value for some left-compressed and down set S.

Proof. Similar to [28], the proof strategy is to employ well-known operators whose fixed points reach
down-sets and left-compressed sets and prove monotonicity of

∑n
w=0 cS(w)t(w) with application of

these operators. In what follows, we say that two vectors x, y ∈ {0, 1}n are ith-neighbors, denoted
(x, y) ∈ nbri, if they differ in coordinate i and are the same elsewhere.

We first begin with down-set and define, for every i ∈ [n], an operator Di on sets S ⊆ {0, 1}n.
The set Di(S) is obtained from S as follows: Every z ∈ S is mapped to ẑ where

1. ẑ is i-th neighbor of z if both zi = 1 and i-th neighbor of z is not in S.
2. ẑ = z if i-th neighbor of z is in S or zi = 0

For example, let S = {100, 011, 101}. Then we have D3(S) = {100, 010, 101} and D2(D3(S)) =
{100, 000, 101}. Finally, we get
D1(D2(D3(S))) = {100, 000, 001}, which is a down-set. In fact, it is well-known that for any set S,
we always have D(S) := D1(D2(· · ·Dn(S))) is a down-set. Further, applying the down-operator
cannot decrease the expression of interest. An example illustrating this is presented in [3]. Formally
we have,

B Claim 30. ∀i ∈ [n],
∑n
w=0 cDi(S)(w)t(w) ≥

∑n
w=0 cS(w)t(w).

Proof. Let us fix i ∈ [n] and for any x ∈ {0, 1}n−1, let xa for a ∈ {0, 1} denote the n-dimensional
vector obtained by inserting a at ith position in x. Also, 1S(xa) denotes the indicator function, which
is 1 if xa ∈ S and 0 otherwise. Then,

n∑
w=0

cS(w)t(w) =
∑

u,v∈{0,1}n
1S(u)1S(v)t(d(u, v))

=
∑

x,y∈{0,1}n−1

JS(x, y)

where JS(x, y) =
∑

a,b∈{0,1}

1S(xa)1S(yb)t(d(xa, yb))

Our goal is to compare
∑n
w=0 cS(w)t(w) and

∑n
w=0 cDi(S)(w)t(w) by comparing JS(x, y) with

JDi(S)(x, y). Towards this, consider T = {x0, x1, y0, y1}. If S ∩ {x1, y1} = ∅, then S ∩ T =
Di(S) ∩ T , and JS(x, y) = JDi(S)(x, y). Therefore, the remaining cases are when there exist
a, b ∈ {0, 1} such that 1S(xa)1S(yb) = 1 and S ∩ {x1, y1} 6= ∅. We then have the following
subcases:

1. x0 ∈ S, y0 ∈ S. In this case x̂a = xa and ŷa = ya for a ∈ {0, 1}, which implies JS(x, y) =
JDi(S)(x, y).
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2. x0 ∈ S, y0 /∈ S, x1 ∈ S, y1 ∈ S. Now x̂1 = x1, x̂0 = x0 and ŷ1 = y0. Since d(x0, y1) =
d(x1, y0), we again have JS(x, y) = JDi(S)(x, y) (intuitively, the count d(x0, y1) lost because of
removing y1 from S in Di(S) is exactly compensated by d(x1, y0) due to adding y0 in Di(S).)

3. x0 ∈ S, y0 /∈ S, x1 /∈ S, y1 ∈ S. Now ŷ1 = y0 and we have d(x0, y1) > d(x0, y0). Therefore,
JS(x, y) ≤ JDi(S)(x, y), since t(w) is monotonically non-increasing.

4. x0 /∈ S, y0 ∈ S. The two possibilities arising from this case are symmetric to the above two
cases.

5. x0 /∈ S, y0 /∈ S. In this case we must have x1 ∈ S and y1 ∈ S since we know that there exists
a, b ∈ {0, 1}, 1S(xa)1S(yb) = 1. Thus, we have x̂1 = x0 and ŷ1 = y0. Since d(x1, y1) =
d(x̂1, ŷ1), we have JS(x, y) = JDi(S)(x, y).

Therefore, JS(x, y) ≤ JDi(S)(x, y). As this is true for all x, y ∈ {0, 1}n−1, we conclude that∑n
w=0 cDi(S)(w)t(w) ≥

∑n
w=0 cS(w)t(w) holds for all i. J

Now moving to the left-compressed set, and we use the operator Li,j on sets S ⊆ {0, 1}n for
coordinates i < j ∈ [n]. For z ∈ {0, 1}n, let swapi,j(z) represents the vector that is same as z except
with the coordinates i and j swapped. The set Li,j(S) is obtained from S as follows: Every z ∈ S is
mapped to z̃ where

1. z̃ = swapi,j(z), if zi = 0, zj = 1 and swapi,j(z) /∈ S
2. z̃ = z, otherwise.

As an example, if we again considering S = {100, 011, 101}, then we have L1,2(S) = S, L2,3(S) =
{100, 011, 110} and L1,2(L2,3(S)) = {100, 101, 110} which is a left-compressed set.

We will be interested in the set

L(S) := L1,2(L1,3(· · ·Ln−1,n(S))) (19)

and it is easy to see that it is left-compressed.
We prove two claims regarding application of Li,j for any i < j ∈ [n]. We fix i < j ∈ [n] for

what follows. For x ∈ {0, 1}n−2, we let xab denote the word w ∈ {0, 1}n such that (i) the ith letter
of w, wi = a, (ii) the jth letter wj = b and (iii) removing these two letters in w gives x. The first
property we show is that applying Li,j retains the property of being a down-set. For instance, for the
down-set D(S) = {100, 000, 001}, L(D(S)) = L2,3(D(S)) = {100, 000, 010} is also a downset.
Formally,

B Claim 31. For down-set S, Li,j(S) is also a down-set.

Proof. Fix any i < j ∈ [n] and consider x ∈ Li,j(S) and any y ⊆ x. If x ∈ S and x̃ = x, then the
down-set property of S implies Li,j(y) = y. Assume x /∈ S, so that x = w10 ∈ Li,j(S) for some
w ∈ {0, 1}n−2 and x = w01 ∈ S. There are two possibilities for y to have y ⊆ x: either y = v00

or y = v10 for some v. When y = v00, then by the down-set property of S, we have that v00 ∈ S,
and thus v00 ∈ L1,2(S). When y = v10, then we know v01 ∈ S since w01 ∈ S. Therefore, either
v10 ∈ S already, or we have v10 /∈ S, which implies v10 ∈ L1,2(S) as desired. J

We now show the second property, which states that applying the left-compression operator can
only increase the sum of interest.

B Claim 32.
∑n
w=0 cL1,2(S)(w)t(w) ≥

∑n
w=0 cS(w)t(w).
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Proof. As before, we start by rewriting,

n∑
w=0

cS(w)t(w) =
∑

x,y∈{0,1}n−2

J ′S(x, y)

where J ′S(x, y) =
∑

a,b,c,d∈{0,1}

1S(xab)1S(ycd)t
(
d(xab, ycd)

)
Let x, y ∈ {0, 1}n−2. If xaa ∈ S (resp. yaa ∈ S), then x̃aa = xaa (resp. ỹaa = yaa). Therefore,
we need to only consider the expressions and cases depending only on whether xab, ycd ∈ S or not
for a 6= b and c 6= d. Again when S ∩ {x10, x01, y10, y01} = ∅, we have J ′S(x, y) = J ′Li,j(S)(x, y).
Therefore, for rest of the analysis, we handle the case when S ∩ {x10, x01, y10, y01} 6= ∅. Let
T ′ = {x00, x01, x10, x11, y00, y01, y10, y11}. There are 4 cases:

1. x01, y01 ∈ S, then T ′ ∩ S = T ′ ∩ Li,j(S). Therefore, J ′S(x, y) = J ′Li,j(S)(x, y).

2. x01 /∈ S, y01 /∈ S. This can be further subdivided in 4 subcases:

x10 ∈ S, y10 ∈ S. Then x̃10 = x01 and ỹ10 = y01. Since d(x10, y10) = d(x01, y01), we
conclude that
J ′S(x, y) = J ′Li,j(S)(x, y).

x10 ∈ S, y10 /∈ S. Then, x̃10 = x01. Now notice that for a, c, d ∈ {0, 1} we have
d(zaa, xcd) = d(zaa, xdc). Therefore, J ′S(x, y) = J ′Li,j(S)(x, y).

x10 /∈ S, y10 ∈ S. This is symmetric to the above case.

x10 /∈ S, y10 /∈ S. In this case S ∩ {x10, x01, y10, y01} = ∅, which is handled above.

3. x01 /∈ S, y01 ∈ S. Again this is subdivided into cases.

x10 ∈ S, y10 ∈ S. Then x̃10 = x01 and ỹ10 = y10. Since d(x10, y10) = d(x01, y01) and
d(x10, y01) = d(x01, y10). Therefore, J ′S(x, y) = J ′Li,j(S)(x, y).

x10 ∈ S, y10 /∈ S. Then x̃10 = x01. Since d(x10, y01) > d(x01, y01), we have J ′S(x, y) ≤
J ′Li,j(S)(x, y) since t(w) is monotonically non-increasing.

x10 /∈ S, y10 ∈ S. Then ỹ10 = y10. Then, T ′ ∩ S = T ′ ∩ Li,j(S). Therefore, J ′S(x, y) =
J ′Li,j(S)(x, y).

x10 /∈ S, y10 /∈ S. Again, T ′ ∩ S = T ′ ∩ Li,j(S). Therefore, J ′S(x, y) = J ′Li,j(S)(x, y).

4. x01 /∈ S, y01 ∈ S. This case is symmetric to the above case.

Therefore, for all the cases, it holds J ′S(x, y) ≤ J ′Li,j(S)(x, y) for all x, y ∈ {0, 1}n−2. J

The proofs of both these claims are given in [3]. Now, combining the above three claims, we
obtain the proof of Lemma 16, since each application of the down-set and left-compression operators
can only increase the sum

∑n
w=0 cS(w)t(w). So when we reach a fixed-point wrt both these operators,

we are sure that the resulting left-compressed down-set maximizes this sum. J

C Proof from Section 4

B Claim 33. For m ≥ 2, if w ≥ mH−1(δ)
16 , then log2 r(w,m) < −m+ 1− log2 m
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Proof. Observe that

for m > 2, ln(2m) < log2(2m) < 2 log2(m)

then, w ≥ mH−1(δ)
16 ,m > 2 =⇒ w ≥ H−1(δ) ·m · log2(2m)

16 · 2 · log2 m

=⇒ 2pmw ≥ log2(2m) ≥ ln(2m)
=⇒ m · exp(−2pmw) < 0.5

Now, since (1+x) ≤ ex for all x, we have r(w,m) ≤ ((1+exp(−2pmw))m−1
2m . Then,m·exp(−2pmw) <

0.5 and exp(−2pmw) < 1 implies that (1 + exp(−2pmw))m ≤ 1 + 2m · exp(−2pmw). Thus, we
have

r(w,m) ≤ 2−m2m · exp(−2pmw)
=⇒ log2 r(w,m) ≤ −m+ 1 + log2(m)− 2pmw

But, we have 2pmw ≥ 2
(

16
H−1(δ)

log2 m

m

)(
mH−1(δ)

16

)
= 2 log2 m

=⇒ log2 r(w,m) ≤ −m+ 1 + log2(m)− 2 log2(m)
=⇒ log2 r(w,m) ≤ −m+ 1− log2(m)

J

D Proofs from Section 6

I Lemma 34. Pr[Bad] ≤ Pr[Tm∗−3] + Pr[Lm∗−2] + Pr[Lm∗−1] + Pr[Lm∗ ∪ Um∗ ]
Proof. We now wish to simplify the upper bound of Pr [Bad] obtained in Equation 12, i.e.,

Pr [Bad] ≤ Pr

 ⋃
i∈{1,...n}

(
Ti−1 ∩ Ti ∩ (Li ∪ Ui)

) (20)

We make three observations, labeled O1, O2 and O3 below, which follow from the definitions of
m∗, thresh and µi, and from the monotonicity of Cnt〈F,i〉.

O1: ∀i ≤ m∗ − 3, it is guaranteed that |sol(F )|
2i(1+ε) ≥ thresh. From this it follows that (a) Ti ∩ Ui = ∅

and (b) Ti ∩ Li = Ti. Therefore,⋃
i∈{1,...m∗−3}

(
Ti−1 ∩ Ti ∩ (Li ∪ Ui)

)
⊆

⋃
i∈{1,...m∗−3}

(
Ti−1 ∩ Ti

)
⊆

⋃
i∈{1,...m∗−3}

Ti ⊆ Tm∗−3

where the last containment follows from Equation 14 . Hence, Pr
[⋃

i∈{1,...m∗−3}
(
Ti−1 ∩ Ti ∩ (Li ∪ Ui)

)]
≤

Pr[Tm∗−3].
O2: For i ∈ {m∗ − 2,m∗ − 1}, it similarly follows that thresh ≤ |sol(F )|

2i (1 + ε
1+ε ) , we have

Ti ∩ Ui = ∅. Since, Ti ∩ Li ⊆ Li, we have Pr
[⋃

i∈{m∗−2,m∗−1}
(
Ti−1 ∩ Ti ∩ (Li ∪ Ui)

)]
≤

Pr[Lm∗−2] + Pr[Lm∗−1].
O3: For i ≥ m∗, it can be shown in the same vein that thresh ≥ |sol(F )|

2i (1 + ε
1+ε ), which implies

that Ti ⊆ Ui. Now, from Equation 14, it follows that for all j, Tj ⊆ Tj−1. This implies
that Pr[

⋃
i∈{m∗,...|S|} Ti−1 ∩ Ti ∩ (Li ∪ Ui)] ≤ Pr[Tm∗ ∪ (Tm∗−1 ∩ Tm∗ ∩ (Lm∗ ∪ Um∗))] ≤

Pr[Tm∗ ∪ Lm∗ ∪ Um∗ ] ≤ Pr[Lm∗ ∪ Um∗ ]
Using O1, O2 and O3, we get Pr[Bad] ≤ Pr[Tm∗−3]+Pr[Lm∗−2]+Pr[Lm∗−1]+Pr[Lm∗∪Um∗ ]. J
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E An illustrative example for Claim 30

Let n = 3, S = {001, 010, 100, 101} and let i = 3 . Then
∑n
w=0 cs(w)t(w) can be expressed as

sum of the following 16 non-zero terms as follows (after removing the terms where 1S(u, v) = 0 )

n=3∑
w=0

cs(w)t(w) = t(d(001, 001)) + t(d(001, 010)) + t(d(001, 100))

+ t(d(001, 101)) + t(d(010, 001)) + t(d(010, 010))
+ t(d(010, 100)) + t(d(010, 101)) + t(d(100, 001))
+ t(d(100, 010)) + t(d(100, 100)) + t(d(100, 101))
+ t(d(101, 001)) + t(d(101, 010)) + t(d(101, 100))
+ t(d(101, 101))

Note for x, y ∈ {0, 1}2, Observe that, for x = 00 and y = 10, we have JS(x, y) = JS(00, 10) =
t(d(001, 100)) + t(d(000, 101))

Overall, below are all the non-zero terms for JS(x, y) for x, y ∈ {0, 1}2.

JS(00, 00) = t(d(001, 001))
JS(00, 01) = t(d(001, 010))
JS(00, 10) = t(d(001, 100)) + t(d(001, 101))

JS(01, 00) = t(d(010, 001))
JS(01, 01) = t(d(010, 010))
JS(01, 10) = t(d(010, 100)) + t(d(010, 101))

JS(10, 00) = t(d(100, 001)) + t(d(101, 001))
JS(10, 01) = t(d(100, 010)) + t(d(101, 010))
JS(10, 10) = t(d(100, 100)) + t(d(101, 101)) + t(d(100, 101)) + t(d(101, 100))

We can now verify that
∑3
w=0 cs(w)t(w) =

∑
x,y∈{0,1}2 JS(x, y)



K. S. Meel r© S. Akshay 31

Continuing the example: applying D3 operator

Observe that D3(S) = {000, 010, 100, 101}. Then, we have

JD3(S)(00, 00) = t(d(000, 000)) = t(0) = JS(000, 000)
JD3(S)(00, 01) = t(d(000, 010)) = t(1) ≥ t(2) = JS(000, 010)
JD3(S)(00, 10) = t(d(000, 100)) + t(d(000, 101)) = t(1) + t(2) = JS(000, 100)

JD3(S)(01, 00) = t(d(010, 000)) = t(1) ≥ t(2) = JS(010, 000)
JD3(S)(01, 01) = t(d(010, 010)) = t(0) = JS(010, 010)
JD3(S)(01, 10) = t(d(010, 100)) + t(d(010, 101)) = t(2) + t(3) = JS(010, 100)

JD3(S)(10, 00) = t(d(100, 001)) + t(d(101, 001)) = t(2) + t(1) = JS(100, 000)
JD3(S)(10, 01) = t(d(100, 010)) + t(d(101, 010)) = t(2) + t(3) = JS(100, 010)
JD3(S)(10, 10) = t(d(100, 100)) + t(d(101, 101)) + t(d(100, 101)) + t(d(101, 100))

= JS(100, 100)

Therefore, summing up the above equations), we have
∑3
w=0 cS(w)t(w) ≤

∑3
w=0 cD3(S)(w)t(w)
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