
Model Counting meets F0 Estimation∗

A. Pavan r○
pavan@cs.iastate.edu

Iowa State University

N. V. Vinodchandran r○
vinod@cse.unl.edu

University of Nebraska, Lincoln

Arnab Bhattacharyya r○
arnabb@nus.edu.sg

National University of Singapore

Kuldeep S. Meel

meel@comp.nus.edu.sg

National University of Singapore

ABSTRACT
Constraint satisfaction problems (CSP’s) and data stream models

are two powerful abstractions to capture a wide variety of problems

arising in different domains of computer science. Developments in

the two communities have mostly occurred independently and with

little interaction between them. In this work, we seek to investigate

whether bridging the seeming communication gap between the two

communities may pave the way to richer fundamental insights. To

this end, we focus on two foundational problems: model counting

for CSP’s and computation of zeroth frequency moments (F0) for
data streams.

Our investigations lead us to observe striking similarity in the

core techniques employed in the algorithmic frameworks that have

evolved separately for model counting and F0 computation. We

design a recipe for translation of algorithms developed for F0 esti-
mation to that of model counting, resulting in new algorithms for

model counting. We then observe that algorithms in the context of

distributed streaming can be transformed to distributed algorithms

for model counting. We next turn our attention to viewing stream-

ing from the lens of counting and show that framing F0 estimation

as a special case of #DNF counting allows us to obtain a general

recipe for a rich class of streaming problems, which had been sub-

jected to case-specific analysis in prior works. In particular, our

view yields a state-of-the art algorithm for multidimensional range

efficient F0 estimation with a simpler analysis.

CCS CONCEPTS
• Theory of computation → Streaming models; Sketching
and sampling.

∗
The authors decided to forgo the convention of alphabetical ordering of names in

favor of a randomized ordering, denoted by r○. The publicly verifiable record of

the randomization is available at https://www.aeaweb.org/journals/policies/random-

author-order/search with confirmation code: XiQE7V3pKq_A. For citation of the work,

authors request that the citation guidelines by AEA (available at https://www.aeaweb.

org/journals/policies/random-author-order) for random author ordering be followed.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

PODS ’21, June 20–25, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8381-3/21/06. . . $15.00

https://doi.org/10.1145/3452021.3458311

KEYWORDS
Model Counting, StreamingAlgorithms, F0-computation, DNFCount-

ing

ACM Reference Format:
A. Pavan r○, N. V. Vinodchandran r○, Arnab Bhattacharyya r○, and Kuldeep

S. Meel. 2021. Model Counting meets F0 Estimation. In Proceedings of the
40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems (PODS ’21), June 20–25, 2021, Virtual Event, China. ACM, New York,

NY, USA, 13 pages. https://doi.org/10.1145/3452021.3458311

1 INTRODUCTION
Constraint Satisfaction Problems (CSP’s) and the data stream model
are two core themes in computer science with a diverse set of appli-

cations, ranging from probabilistic reasoning, networks, databases,

verification, and the like.Model counting and computation of zeroth
frequency moment (F0) are fundamental problems for CSP’s and

the data stream model respectively. This paper is motivated by our

observation that despite the usage of similar algorithmic techniques

for the two problems, the developments in the two communities

have, surprisingly, evolved separately, and rarely has a paper from

one community been cited by the other.

Given a set of constraints φ over a set of variables in a finite

domainD, the problem of model counting is to estimate the number

of solutions of φ. We are often interested when φ is restricted to a

special class of representations such as Conjunctive Normal Form

(CNF) and Disjunctive Normal Form (DNF). A data stream over a

domain [N] is represented by a = a1,a2, · · ·am wherein each item

ai ⊆ [N]. The zeroth frequency moment, denoted as F0, of a is the
number of distinct elements appearing in a, i.e., |∪iai | (traditionally,
ai s are singletons; we will also be interested in the case when

ai s are sets). The fundamental nature of model counting and F0
computation over data streams has led to intense interest from

theoreticians and practitioners alike in the respective communities

for the past few decades.

The starting point of this work is the confluence of two view-

points. The first viewpoint contends that some of the algorithms

for model counting can conceptually be thought of as operating

on the stream of the solutions of the constraints. The second view-

point contends that a stream can be viewed as a DNF formula, and

the problem of F0 estimation is similar to model counting. These

viewpoints make it natural to believe that algorithms developed

in the streaming setting can be directly applied to model counting,

and vice versa. We explore this connection and indeed, design new

algorithms for model counting inspired by algorithms for estimat-

ing F0 in data streams. By exploring this connection further, we

https://www.aeaweb.org/journals/policies/random-author-order/search
https://www.aeaweb.org/journals/policies/random-author-order/search
https://www.aeaweb.org/journals/policies/random-author-order
https://www.aeaweb.org/journals/policies/random-author-order
https://doi.org/10.1145/3452021.3458311
https://doi.org/10.1145/3452021.3458311

design new algorithms to estimate F0 for streaming sets that are

succinctly represented by constraints. To put our contributions in

context, we briefly survey the historical development of algorithmic

frameworks in both model counting and F0 estimation and point

out the similarities.

Model Counting
The complexity-theoretic study of model counting was initiated by

Valiantwho showed that this problem, in general, is #P-complete [59].

This motivated researchers to investigate approximate model count-

ing and in particular achieving (ε,δ)-approximation schemes. The

complexity of approximate model counting depends on its represen-

tation. When the modelφ is represented as a CNF formulaφ, design-
ing an efficient (ε,δ)-approximation is NP-hard [55]. In contrast,

when it is represented as a DNF formula, model counting admits

FPRAS (fully polynomial-time approximation scheme) [38, 39]. We

will use #CNF to refer to the case when φ is a CNF formula while

#DNF to refer to the case when φ is a DNF formula.

For #CNF, Stockmeyer [55] provided a hashing-based random-

ized procedure that can compute (ε,δ)-approximation within time

polynomial in |φ |, ε,δ , given access to an NP oracle. Building on

Stockmeyer’s approach and motivated by the unprecedented break-

throughs in the design of SAT solvers, researchers have proposed a

series of algorithmic improvements that have allowed the hashing-

based techniques for approximate model counting to scale to for-

mulas involving hundreds of thousands of variables [2, 13, 14, 16,

23, 31, 35, 52, 53]. The practical implementations substitute NP or-

acle with SAT solvers. In the context of model counting, we are

primarily interested in time complexity and therefore, the number

of NP queries is of key importance. The emphasis on the number of

NP calls also stems from practice as the practical implementation

of model counting algorithms have shown to spend over 99% of

their time in the underlying SAT calls [53].

Karp and Luby [38] proposed the first FPRAS scheme for #DNF,

which was subsequently improved in the follow-up works [22, 39].

Chakraborty, Meel, and Vardi [14] demonstrated that the hashing-

based framework can be extended to #DNF, hereby providing a

unified framework for both #CNF and #DNF. Meel, Shrotri, and

Vardi [44–46] subsequently improved the complexity of the hashing-

based approach for #DNF and observed that hashing-based tech-

niques achieve better scalability than that of Monte Carlo tech-

niques.

Zeroth Frequency Moment Estimation
Estimating (ε,δ)-approximation of the kth frequency moments (Fk)
is a central problem in the data streaming model [3]. In particular,

considerable work has been done in designing algorithms for es-

timating the 0
th

frequency moment (F0), the number of distinct

elements in the stream. While designing streaming algorithms,

the primary resource concerns are two-fold: space complexity and

processing time per element. For an algorithm to be considered

efficient, these should be poly(logN , 1/ϵ) where N is the size of

the universe
1
.

The first algorithm for computing F0 with a constant factor ap-

proximation was proposed by Flajolet and Martin, who assumed

1
We ignore O (log 1

δ) factor in this discussion

the existence of hash functions with ideal properties resulting in

an algorithm with undesirable space complexity [29]. In their semi-

nal work, Alon, Matias, and Szegedy designed an O(logN) space
algorithm for F0 with a constant approximation ratio that em-

ploys 2-universal hash functions [3]. Subsequent investigations into

hashing-based schemes by Gibbons and Tirthapura [30] and Bar-

Yossef, Kumar, and Sivakumar [8] provided (ε,δ)-approximation

algorithms with space and time complexity logN · poly(1ε). Subse-
quently, Bar-Yossef et al. proposed three algorithms with improved

space and time complexity [7]. While the three algorithms employ

hash functions, they differ conceptually in the usage of relevant

random variables for the estimation of F0. This line of work resulted
in the development of an algorithm with optimal space complexity

O(logN + 1

ε2) and O(logN) update time [37].

The above-mentioned works are in the setting where each data

item ai is an element of the universe. Subsequently, there has been a

series of results of estimating F0 in rich scenarios with particular fo-

cus to handle the cases ai ⊆ [N] such as a list or a multidimensional

range [8, 47, 56, 58].

The Road to a Unifying Framework
Asmentioned above, the algorithmic developments for model count-

ing and F0 estimation have largely relied on the usage of hashing-

based techniques and yet these developments have, surprisingly,

been separate, and rarely has a work from one community been

cited by the other. In this context, we wonder whether it is possible

to bridge this gap and if such an exercise would contribute to new

algorithms for model counting as well as for F0 estimation? The

main conceptual contribution of this work is an affirmative answer

to the above question. First, we point out that the two well-known

algorithms; Stockmeyer’s #CNF algorithm [55] that is further re-

fined by Chakraborty et. al. [14] and Gibbons and Tirthapura’s F0
estimation algorithm [30], are essentially the same.

The core idea of the hashing-based technique of Stockmeyer’s

and Chakraborty et al’s scheme is to use pairwise independent hash

functions to partition the solution space (satisfying assignments

of a CNF formula) into roughly equal and small cells, wherein a

cell is small if the number of solutions is less than a pre-computed

threshold, denoted by Thresh. Then a good estimate for the number

of solutions is the number of solutions in an arbitrary cell × number
of cells. To partition the solution space, pairwise independent hash

functions are used. To determine the appropriate number of cells,

the solution space is iteratively partitioned as follows. At themth

iteration, a hash function with range {0, 1}m is considered resulting

in cells h−1(y) for each y ∈ {0, 1}m . An NP oracle can be employed

to check whether a particular cell (for example h−1(0m)) is small

by enumerating solutions one by one until we have either obtained

Thresh+1 number of solutions or we have exhaustively enumerated

all the solutions. If the the cell h−1(0m) is small, then the algorithm

outputs t × 2m as an estimate where t is the number of solutions in

the cell h−1(0m). If the cell h−1(0m) is not small, then the algorithm

moves on to the next iteration where a hash function with range

{0, 1}m+1 is considered.

We now describe Gibbons and Tirthapura’s algorithm for F0
estimation which we call the Bucketing algorithm. We will assume

the universe [N] = {0, 1}n . The algorithmmaintains a bucket of size

Thresh and starts by picking a hash function h : {0, 1}n → {0, 1}n .

It iterates over sampling levels. At level m, when a data item x
comes, if h(x) starts with 0

m
, then x is added to the bucket. If the

bucket overflows, then the sampling level is increased tom + 1 and
all elements x in the bucket other than the ones with h(x) = 0

m+1

are deleted. At the end of the stream, the value t × 2m is output as

the estimate where t is the number of elements in the bucket and

m is the sampling level.

These two algorithms are conceptually the same. In theBucketing
algorithm, at the sampling levelm, it looks at only the firstm bits of

the hashed value; this is equivalent to considering a hash function

with range {0, 1}m . Thus the bucket is nothing but all the elements

in the stream that belong to the cell h−1(0m). The final estimate is

the number of elements in the bucket times the number of cells,

identical to Chakraborty et. al’s algorithm. In both algorithms, to

obtain an (ε,δ) approximation, the Thresh value is chosen asO(1ε2)

and the median of O(log 1

δ) independent estimations is output.

Our Contributions
Motivated by the conceptual identity between the two algorithms,

we further explore the connections between algorithms for model

counting and F0 estimation.

(1) We formalize a recipe to transform streaming algorithms for

F0 estimation to those for model counting. Such a transfor-

mation yields new (ε,δ)-approximate algorithms for model

counting, which are different from currently known algo-

rithms. Recent studies in the fields of automated reasoning

have highlighted the need for diverse approaches [63], and

similar studies in the context of #DNF provided strong evi-

dence to the power of diversity of approaches [45]. In this

context, these newly obtained algorithms open up several

new interesting directions of research ranging from the de-

velopment of MaxSAT solvers with native XOR support to

open problems in designing FPRAS schemes.

(2) Given the central importance of #DNF (and its weighted vari-

ant) due to a recent surge of interest in scalable techniques

for provenance in probabilistic databases [49, 50], a natural

question is whether one can design efficient techniques in

the distributed setting. In this work, we initiate the study

of distributed #DNF. We then show that the transformation

recipe from F0 estimation to model counting allows us to

view the problem of the design of distributed #DNF algo-

rithms through the lens of distributed functional monitoring
that is well studied in the data streaming literature.

(3) Building upon the connection between model counting and

F0 estimation, we design new algorithms to estimate F0 over
structured set streams where each element of the stream is a

(succinct representation of a) subset of the universe. Thus,

the stream is S1, S2, · · · where each Si ⊆ [N] and the goal

is to estimate the F0 of the stream, i.e. size of ∪iSi . In this

scenario, a traditional F0 streaming algorithm that processes

each element of the set incurs high per-item processing time-

complexity and is inefficient. Thus the goal is to design algo-

rithms whose per-item time (time to process each Si) is poly-
logarithmic in the size of the universe. Structured set streams

that are considered in the literature include 1-dimensional

and multidimensional ranges [47, 58]. Several interesting

problems such as max-dominance norm [19], counting tri-

angles in graphs [8], and distinct summation problem [17]

can be reduced to computing F0 over such ranges.

We observe that several structured sets can be represented as

small DNF formulae and thus F0 counting over these struc-
tured set data streams can be viewed as a special case of

#DNF. Using the hashing-based techniques for #DNF, we

obtain a general recipe for a rich class of structured sets that

include multidimensional ranges, multidimensional arith-

metic progressions, and affine spaces. Prior work on single

and multidimensional ranges
2
had to rely on involved analy-

sis for each of the specific instances, while our work provides

a general recipe for both analysis and implementation.

Organization
We present notations and preliminaries in Section 2. We then

present the transformation of F0 estimation to model counting

in Section 3. We then focus on distributed #DNF in Section 4. We

then present the transformation of model counting algorithms to

structured set streaming algorithms in Section 5. We conclude in

Section 6 with a discussion of future research directions.

We would like to emphasize that the primary objective of this

work is to provide a unifying framework for F0 estimation and

model counting. Therefore, when designing new algorithms based

on the transformation recipes, we intentionally focus on conceptu-

ally cleaner algorithms and leave potential improvements in time

and space complexity for future work.

2 NOTATION
Wewill use assume the universe [N] = {0, 1}n . We write Pr [Z : Ω]
to denote the probability of outcome Z when sampling from a

probability space Ω. For brevity, we omit Ω when it is clear from

the context.

F0 Estimation. A data stream a over domain [N] can be represented

as a = a1,a2, . . . am wherein each item ai ∈ [N]. Let au = ∪i {ai }.
F0 of the stream a is |au |. We are often interested in a a probably
approximately correct scheme that returns an (ε,δ)-estimate c , i.e.,

Pr

[
|au |
1 + ε

≤ c ≤ (1 + ε)|au |
]
≥ 1 − δ

Model Counting. Let {x1,x2, . . . xn } be a set of Boolean variables.

For a Boolean formula φ, let Vars(φ) denote the set of variables

appearing in φ. Throughout the paper, unless otherwise stated, we
will assume that the relationship n = |Vars(φ)| holds. We denote

the set of all satisfying assignments of φ by Sol(φ).
The propositional model counting problem is to compute |Sol(φ)|

for a given formula φ. A probably approximately correct (or PAC)
counter is a probabilistic algorithm ApproxCount(·, ·, ·) that takes
as inputs a formula φ, a tolerance ε > 0, and a confidence δ ∈ (0, 1],
and returns a (ε,δ)-estimate c , i.e.,

Pr

[|Sol(φ)|
1 + ε

≤ c ≤ (1 + ε)|Sol(φ)|
]
≥ 1 − δ .

2
Please refer to Remark 1 in Section 5 for a discussion on the earlier work on multidi-

mensional ranges [58].

PAC guarantees are also sometimes referred to as (ε,δ)-guarantees.
We use #CNF (resp. #DNF) to refer to the model counting problem

when φ is represented as CNF (resp. DNF).

k-wise Independent hash functions. Let n,m ∈ N and H(n,m) ≜
{h : {0, 1}n → {0, 1}m } be a family of hash functions mapping

{0, 1}n to {0, 1}m . We use h
R
←− H(n,m) to denote the probability

space obtained by choosing a function h uniformly at random from

H(n,m).

Definition 1. A family of hash functionsH(n,m) is k−wise in-
dependent if ∀α1,α2, . . . αk ∈ {0, 1}m , distinct x1,x2, . . . xk ∈

{0, 1}n ,h
R
←− H(n,m),

Pr[(h(x1) = α1) ∧ (h(x2) = α2) . . . (h(xk) = αk)] =
1

2
km

(1)

We will use Hk−wise(n,m) to refer to a k−wise independent

family of hash functions mapping {0, 1}n to {0, 1}m .

Explicit families. In this work, one hash family of particular interest

is HToeplitz(n,m), which is known to be 2-wise independent [10].

The family is defined as follows:HToeplitz(n,m) ≜ {h : {0, 1}n →

{0, 1}m } is the family of functions of the form h(x) = Ax + b
with A ∈ Fm×n

2
and b ∈ Fm×1

2
where A is a uniformly randomly

chosen Toeplitz matrix of sizem ×n while b is uniformly randomly

matrix of size m × 1. Another related hash family of interest is

Hxor(n,m) wherein h(X) is again of the form Ax + b where A and

b are uniformly randomly chosen matrices of sizesm ×n andm × 1
respectively. BothHToeplitz andHxor are 2-wise independent but it

is worth noticing thatHToeplitz can be represented with Θ(n)-bits

whileHxor requires Θ(n
2) bits of representation.

For everym ∈ {1, . . .n}, themth
prefix-slice of h, denoted hm ,

is a map from {0, 1}n to {0, 1}m , where hm (y) is the firstm bits of

h(y). Observe that when h(x) = Ax +b, hm (x) = Amx +bm , where

Am denotes the submatrix formed by the firstm rows of A and bm
is the firstm entries of the vector b.

3 FROM STREAMING TO COUNTING
As a first step, we present a unified view of the three hashing-based

algorithms proposed in Bar-Yossef et al [7]. The first algorithm

is the Bucketing algorithm discussed above with the observation

that instead of keeping the elements in the bucket, it suffices to

keep their hashed values. Since in the context of model counting,

our primary concern is with time complexity, we will focus on

Gibbons and Tirthapura’s Bucketing algorithm in [30] rather than

Bar-Yossef et al.’s modification. The second algorithm, which we

call Minimum, is based on the idea that if we hash all the items of

the stream, then O(1/ε2)-th minimum of the hash valued can be

used compute a good estimate of F0. The third algorithm, which

we call Estimation, chooses a set of k functions, {h1,h2, . . .}, such
that each hj is picked randomly from an O(log(1/ε))-independent
hash family. For each hash function hj , we say that hj is not lonely
if there exists ai ∈ a such that hj (ai) = 0. One can then estimate F0
of a by estimating the number of hash functions that are not lonely.

Algorithm 1, called ComputeF0, presents the overarching archi-

tecture of the three proposed algorithms. Each of these algorithms

first picks an appropriate set of hash functions H and initializes the

sketchS. The architecture ofComputeF0 is fairly simple: it chooses

a collection of hash functions using ChooseHashFunctions, calls
the subroutine ProcessUpdate for every incoming element of the

stream, and invokes ComputeEst at the end of the stream to return

the F0 approximation.

ChooseHashFunctions. As shown in Algorithm 2, the hash func-

tions depend on the strategy being implemented. The subroutine

PickHashFunctions(H , t) returns a collection of t independent hash
functions from the familyH . We use H to denote the collection of

hash functions returned, this collection viewed as either 1-dimensional

array or as a 2-dimensional array. When H is 1-dimensional array,

H [i] to denote the ith hash function of the collection and when H
is a 2-dimensional array H [i][]j is the [i, j]th hash functions.

Sketch Properties. For each of the three algorithms, their corre-

sponding sketches can be viewed as arrays of size of 35 log(1/δ).
The parameter Thresh is set to 96/ε2.

Bucketing The element S[i] is a tuple ⟨ℓi ,mi ⟩ where ℓi is a list of

size at most Thresh, where ℓi = {x ∈ a | H [i]mi (x) = 0
mi }.

We use S[i](0) to denote ℓi and S[i](1) to denotemi .

Minimum The element S[i] holds the lexicographically distinct

Thresh many smallest elements of {H [i](x) | x ∈ a}.
Estimation The element S[i] holds a tuple of size Thresh. The j’th

entry of this tuple is the largest number of trailing zeros in

any element of H [i, j](a).

ProcessUpdate. For a new item x , the update of S, as shown in

Algorithm 3 is as follows:

Bucketing For a new item x , if H [i]mi (x) = 0
mi

, then we add it

to S[i] if x is not already present in S[i]. If the size of S[i]
is greater than Thresh (which is set to be O(1/ε2)), then we

increment themi as in line 8.

Minimum For a new item x , ifH [i](x) is smaller than themaxS[i],
then we replace maxS[i] with H [i](x).

Estimation For a new item x , compute z = TrailZero(H [i, j](x)),
i.e, the number of trailing zeros in H [i, j](x), and replace

S[i, j] with z if z is larger than S[i, j].

ComputeEst. Finally, for each of the algorithms, we estimate F0
based on the sketch S as described in the subroutine ComputeEst
presented as Algorithm 4. It is crucial to note that the estimation

of F0 is performed solely using the sketch S for the Bucketing

and Minimum algorithms. The Estimation algorithm requires an

additional parameter r that depends on a loose estimate of F0; we
defer details to Section 3.4.

Algorithm 1 ComputeF0(n, ε,δ)

1: Thresh← 96/ε2

2: t ← 35 log(1/δ)
3: H ← ChooseHashFunctions(n, Thresh, t)
4: S ← {}

5: while true do
6: if EndStream then exit;

7: x ← input()
8: ProcessUpdate(S,H ,x , Thresh)

9: Est ← ComputeEst(S, Thresh)
10: return Est

Algorithm 2 ChooseHashFunctions(n, Thresh, t)

1: switch AlgorithmType do
2: case AlgorithmType==Bucketing
3: H ← PickHashFunctions(HToeplitz(n,n), t)

4: case AlgorithmType==Minimum
5: H ← PickHashFunctions(HToeplitz(n, 3n), t)

6: case AlgorithmType==Estimation
7: s ← 10 log(1/ε)
8: H ← PickHashFunctions(Hs−wise(n,n), t × Thresh)

return H

Algorithm 3 ProcessUpdate(S,H ,x , Thresh)

1: for i ∈ [1, |H |] do
2: switch AlgorithmType do
3: case Bucketing
4: mi = S[i](0)
5: if H [i]mi (x) == 0

mi then
6: S[i](0) ← S[i](0) ∪ {x}
7: if size(S[i](0)) > Thresh then
8: S[i](1) ← S[i](1) + 1
9: for y ∈ S do
10: if H [i]mi+1(y) , 0

mi+1 then
11: Remove(S[i](0),y)

12: case Minimum

13: if size(S[i]) < Thresh then
14: S[i].Append(H [i](x))
15: else
16: j ← argmax(S[i])
17: if S[i](j) > H [i](x) then
18: S[i](j) ← H [i](x)

19: case Estimation

20: for j ∈ [1, Thresh] do
21: S[i, j] ← max(S[i, j], TrailZero(H [i, j](x)))
22: return S

Algorithm 4 ComputeEst(S, Thresh)

1: switch AlgorithmType do
2: case Bucketing
3: return Median

({
size(S[i](0)) × 2S[i](1)

}
i

)
4: caseMinimum

5: return Median

({
Thresh×2m
max{S[i]}

}
i

)
6: case Estimation(r)

7: return Median

({
ln

(
1− 1

Thresh
∑Thresh
j=1 1{S[i, j]≥r }

)
ln(1−2−r)

}
i

)

3.1 A Recipe For Transformation
Observe that for each of the algorithms, the final computation of

F0 estimation depends on the sketch S. Therefore, as long as for

two streams a and â, if their corresponding sketches, say S and

ˆS respectively, are equivalent, the three schemes presented above

would return the same estimates. The recipe for a transformation

of streaming algorithms to model counting algorithms is based on

the following insight:

(1) Capture the relationship P(S,H , au) between the sketch S,

set of hash functions H , and set au at the end of stream.

Recall that au is the set of all distinct elements of the stream

a.
(2) The formula φ is viewed as symbolic representation of the

unique set au represented by the stream a such that Sol(φ) =
au .

(3) Given a formula φ and set of hash functions H , design an

algorithm to construct sketch S such that P(S,H , Sol(φ))
holds. And now, we can estimate |Sol(φ)| from S.

In the rest of this section, we will apply the above recipe to the

three types of F0 estimation algorithms, and derive correspond-

ing model counting algorithms. In particular, we show how ap-

plying the above recipe to the Bucketing algorithm leads us to

reproduce the state of the art hashing-based model counting algo-

rithm, ApproxMC, proposed by Chakraborty et al [14]. Applying

the above recipe toMinimum and Estimation allows us to obtain

fundamentally different schemes. In particular, we observe while

model counting algorithms based on Bucketing andMinimum pro-

vide FPRAS’s when φ is DNF, such is not the case for the algorithm

derived based on Estimation.

3.2 Bucketing-based Algorithm
The Bucketing algorithm chooses a set H of pairwise independent

hash functions and maintains a sketch S that we will describe.

Here we useHToeplitz as our choice of pairwise independent hash

functions. The sketch S is an array where, each S[i] of the form
⟨ci ,mi ⟩. We say that the relation P1(S,H , au) holds if

(1) |au ∩ {x | H [i]mi−1(x) = 0
mi−1}| ≥ 96

ε2

(2) ci = |au ∩ {x | H [i]mi (x) = 0
mi }| < 96

ε2

The following lemma due to Bar-Yossef et al. [7] and Gibbons

and Tirthapura [30] captures the relationship among the sketch S,

the relation P1 and the number of distinct elements of a multiset.

Lemma1. [7, 30] Let a ⊆ {0, 1}n be amultiset andH ⊆ HToeplitz(n,n)
where and each H [i]s are independently drawn and |H | = O(log 1/δ)
and let S be such that the P1(S,H ,au) holds. Let c = Median {ci ×
2
mi }i . Then

Pr

[
|au |
(1 + ε)

≤ c ≤ (1 + ε)|au |
]
≥ 1 − δ .

To design an algorithm for model counting, based on the bucket-

ing strategy, we turn to the subroutine introduced by Chakraborty,

Meel, and Vardi: BoundedSAT, whose properties are formalized as

follows:

Proposition 1. [13, 14] There is an algorithm BoundedSAT that
gets φ over n variables, a hash function h ∈ HToeplitz(n,m), and a
number p as inputs, returns min(p, |Sol(φ ∧ h(x) = 0

m)|). If φ is a
CNF formula, then BoundedSATmakes O(p) calls to a NP oracle. If φ
is a DNF formula with k terms, then BoundedSAT takes O(n3 · k · p)
time.

Algorithm 5 ApproxMC(φ, ε,δ)

1: t ← 35 log(1δ)

2: H ← PickHashFunctions(HToeplitz(n,n), t)
3: S ← {};

4: Thresh← 96

ε2
5: for i ∈ [1, t] do
6: mi ← 0

7: ci ← BoundedSAT(φ,H [i]|mi , Thresh)
8: while ci ≥ Thresh do
9: mi ←mi + 1

10: ci ← BoundedSAT(φ,H [i]|mi (x), Thresh)

11: S[i] ← (ci ,mi)

12: Est ← Median({S[i](0) × 2S[i](1)}i)
13: return Est

Equipped with Proposition 1, we now turn to designing an algo-

rithm for model counting based on the Bucketing strategy. The algo-

rithm follows in similar fashion to its streaming counterpart where

mi is iteratively incremented until the number of solutions of the

formula (φ∧H [i]mi (x) = 0
mi) is less than Thresh. Interestingly, an

approximatemodel counting algorithm, calledApproxMC, based on
bucketing strategy was discovered independently by Chakraborty

et. al. [13] in 2013. We reproduce an adaptation ApproxMC in Al-

gorithm 5 to showcase how ApproxMC can be viewed as trans-

formation of the Bucketing algorithm. In the spirit of Bucketing,
ApproxMC seeks to construct a sketch S of size t ∈ O(log(1/δ)).
To this end, for every iteration of the loop, we continue to incre-

ment the value of the loop until the conditions specified by the

relation P1(S,H , Sol(φ)) are met. For every iteration i , the estimate

of the model count is ci × 2
mi

. Finally, the estimate of the model

count is simply the median of the estimation of all the iterations.

Since in the context of model counting, we are concerned with

time complexity, wherein both HToeplitz and Hxor lead to same

time complexity. Furthermore, Chakraborty et al. [12] observed no

difference in empirical runtime behavior due toHToeplitz andHxor.

The following theorem establishes the correctness of ApproxMC,
and the proof follows from Lemma 1 and Proposition 1.

Theorem 2. Given a formula φ, ε , and δ , ApproxMC returns Est
such that Pr[|Sol(φ) |

1+ε ≤ Est ≤ (1 + ε)|Sol(φ)|] ≥ 1 − δ . If φ is a CNF
formula, then this algorithm makes O(n · 1

ε2 log(1/δ)) calls to NP
oracle. If φ is a DNF formula then ApproxMC is FPRAS. In particular
for a DNF formula with k terms, ApproxMC takes O(n4 · k · 1

ε2 ·

log(1/δ)) time.

Further Optimizations. We now discuss how the setting of model

counting allows for further optimizations. Observe that for all i ,
Sol(φ ∧ (H [i]mi−1)(x) = 0

mi−1) ⊆ Sol(φ ∧ (H [i]mi)(x) = 0
mi).

Note that we are interested in finding the value of mi such that

|Sol(φ ∧ (H [i]mi−1)(x) = 0
mi−1)| ≥ 96

ε2 and |Sol(φ ∧ (H [i]mi)(x) =

0
mi)| < 96

ε2 , therefore, we can perform a binary search formi instead

of a linear search performed in the loop 8– 10. Indeed, this obser-

vation was at the core of Chakraborty et al’s followup work [14],

which proposed the ApproxMC2, thereby reducing the number of

calls to NP oracle from O(n · 1

ε2 log(1/δ)) to O(logn ·
1

ε2 log(1/δ)).

Furthermore, the reduction in NP oracle calls led to significant

runtime improvement in practice. It is worth commenting that

the usage of ApproxMC2 as FPRAS for DNF is shown to achieve

runtime efficiency over the alternatives based onMonte Carlo meth-

ods [44–46].

3.3 Minimum-based Algorithm
For a given multiset a (eg: a data stream or solutions to a model),

we now specify the property P2(S,H , au). The sketch S is an ar-

ray of sets indexed by members of H that holds lexicographically

p minimum elements of H [i](au) where p is min(96ε2 , |au |). P2 is

the property that specifies this relationship. More formally, the

relationship P2 holds, if the following conditions are met.

(1) ∀i, |S[i]| = min(96ε2 , |au |)
(2) ∀i,∀y < S[i],∀y′ ∈ S[i] it holds that H [i](y′) ⪯ H [i](y)

The following lemma due to Bar-Yossef et al. [7] establishes the
relationship between the property P2 and the number of distinct

elements of a multiset. Let max(Si) denote the largest element of

the set Si .

Lemma 2. [7] Let a ⊆ {0, 1}n be a multiset andH ⊆ HToeplitz(n,m)
wherem = 3n and each H [i]s are independently drawn and |H | =
O(log 1/δ) and let S be such that the P2(S,H ,au) holds. Let c =
Median {

p ·2m

max(S [i]) }i . Then

Pr

[
|au |
(1 + ε)

≤ c ≤ (1 + ε)|au |
]
≥ 1 − δ .

Therefore, we can transform theMinimum algorithm for F0 esti-
mation to that of model counting given access to a subroutine that

can compute S such that P2(S,H , Sol(φ)) holds true. The follow-
ing proposition establishes the existence and complexity of such a

subroutine, called FindMin:

Proposition 2. There is an algorithm FindMin that, given φ over
n variables, h ∈ HToeplitz(n,m), and p as input, returns a set, B ⊆
h(Sol(φ)) so that if |h(Sol(φ))| ≤ p, then B = h(Sol(φ)), otherwise B
is the p lexicographically minimum elements of h(Sol(φ)). Moreover,
if φ is a CNF formula, then FindMin makes O(p ·m) calls to an NP
oracle, and if φ is a DNF formula with k terms, then FindMin takes
O(m3 · n · k · p) time.

Equipped with Proposition 2, we are now ready to present the al-

gorithm, called ApproxModelCountMin, for model counting. Since

the complexity of FindMin is PTIME when φ is in DNF, we have

ApproxModelCountMin as a FPRAS for DNF formulas.

Theorem 3. Given φ, ε ,δ , ApproxModelCountMin returns c such
that

Pr

(
|Sol(φ)
1 + ε

≤ Est ≤ (1 + ε)|Sol(φ)|
)
≥ 1 − δ .

If φ is a CNF formula, then ApproxModelCountMin is a polynomial-
time algorithm that makes O(1ε2n log(

1

δ)) calls to NP oracle. If φ is a
DNF formula, then ApproxModelCountMin is an FPRAS.

Implementing the Min-based Algorithm. We now give a proof of

Proposition 2 by giving an implementation of FindMin subroutine.

Algorithm 6 ApproxModelCountMin(φ, ε,δ)

1: t ← 35 log(1/δ)
2: H ← PickHashFunctions(HToeplitz(n, 3n), t)
3: S ← {}
4: Thresh← 96

ε2
5: for i ∈ [1, t] do
6: S[i] ← FindMin(φ,H [i], Thresh)

7: Est ← Median

({
Thresh×23n
max{S [i]}

}
i

)
8: return Est

Proof. We first present the algorithm when the formula φ is a

DNF formula. Adapting the algorithm for the case of CNF can be

done by suing similar ideas.

Let ϕ = T1 ∨T2 ∨ · · · ∨Tk be a DNF formula over n variables

where Ti is a term. Let h : {0, 1}n → {0, 1}m be a linear hash

function in Hxor (n,m) defined by a m × n binary matrix A. Let
C be the set of hashed values of the satisfying assignments for φ:
C = {h(x) | x |= φ} ⊆ {0, 1}m . Let Cp be the first p elements of C

in the lexicographic order. Our goal is to compute Cp .

We will give an algorithm with running time O(m3np) to com-

pute Cp when the formula is just a termT . Using this algorithm we

can compute Cp for a formula with k terms by iteratively merging

Cp for each term. The time complexity increases by a factor of k ,

resulting in an O(m3nkp) time algorithm.

LetT be a term with widthw (number of literals) and C = {Ax |
x |= T }. By fixing the variables in T we get a vector bT and an

N × (n −w) matrix AT so that C = {AT x + bT | x ∈ {0, 1}
(n−w)}.

Both AT and bT can be computed from A and T in linear time. Let

hT (x) be the transformation AT x + bT .
We will compute Cp (p lexicographically minimum elements in

C) iteratively as follows: assuming we have computed (q − 1)th

minimum of C, we will compute qth minimum using a prefix-

searching strategy. We will use a subroutine to solve the following

basic prefix-searching primitive: Given any l bit string y1 . . .yl , is
there an x ∈ {0, 1}n−w so that y1 . . .yl is a prefix for some string

in {hT (x)}? This task can be performed using Gaussian elimination

over an (l + 1) × (n −w) binary matrix and can be implemented in

time O(l2(n −w)).
Let y = y1 . . .ym be the (q − 1)th minimum in C. Let r1 be the

rightmost 0 of y. Then using the above mentioned procedure we

can find the lexicographically smallest string in the range of hT
that extends y1 . . .y(r−1)1 if it exists. If no such string exists in C,

find the index of the next 0 in y and repeat the procedure. In this

manner the qth minimum can be computed usingO(m) calls to the

prefix-searching primitive resulting in an O(m3n) time algorithm.

Invoking the above procedure p times results in an algorithm to

compute Cp in O(m3np) time.

If φ is a CNF formula, we can employ the same prefix searching

strategy. Consider the following NP oracle: O = {⟨φ,h,y,y′⟩ |
∃x ,∃y′′, so that x |= φ,y′y′′ > y,h(x) = y′y′′}. Withm calls toO ,

we can compute string in C that is lexicographically greater than y.
So with p ·m, calls to O , we can compute Cp .

□

Further Optimizations. As mentioned in Section 1, the problem of

model counting has witnessed a significant interest from practi-

tioners owing to its practical usages and the recent developments

have been fueled by the breakthrough progress in the SAT solving

wherein calls to NP oracles are replaced by invocations of SAT

solver in practice. Motivated by the progress in SAT solving, there

has been significant interest in design of efficient algorithmic frame-

works for related problems such as MaxSAT and its variants. The

state of the art MaxSAT based on sophisticated strategies such as

implicit hitting sets and are shown to significant outperform algo-

rithms based on merely invoking a SAT solver iteratively. Of partic-

ular interest to us is the recent progress in the design of MaxSAT

solvers to handle lexicographic objective functions. In this context,

it is worth remarking that we expect practical implementation of

FindMin would invoke a MaxSAT solver O(p) times.

3.4 Estimation-based Algorithm
We now adapt the Estimation algorithm to model counting. For a

given stream a and chosen hash functions H , the sketch S corre-

sponding to the estimation-based algorithm satisfies the following

relation P3(S,H , au):

P3(S,H , au) :=
(
S[i, j] = max

x ∈au
TrailZero(H [i, j])(x)

)
(2)

where the procedure TrailZero(z) is the length of the longest all-

zero suffix of z. Bar-Yossef et al. [7] show the following relationship

between the property P3 and F0.

Lemma 3. [7] Let a ⊆ {0, 1}n be a multiset. For i ∈ [T] and j ∈ [M],
suppose H [i, j] is drawn independently from Hs−wise(n,n) where
s = O(log(1/ε)), T = O(log(1/δ)), and M = O(1/ε2). Let H denote
the collection of these hash functions. SupposeS satisfiesP3(S,H , au).
For any integer r , define:

cr = Median


ln

(
1 − 1

M
∑M
j=1 1{S[i, j] ≥ r }

)
ln(1 − 2−r)

i
Then, if 2F0 ≤ 2

r ≤ 50F0:

Pr [(1 − ε)F0 ≤ cr ≤ (1 + ε)F0] ≥ 1 − δ

Following the recipe outlined above, we can transform a F0
streaming algorithm to a model counting algorithm by designing a

subroutine that can compute the sketch for the set of all solutions

described by φ and a subroutine to find r . The following proposition
achieves the first objective for CNF formulas using a small number

of calls to an NP oracle:

Proposition 3. There is an algorithm FindMaxRange that given φ
over n variables and hash function h ∈ Hs−wise(n,n), returns t such
that

(1) ∃z, z |= φ and h(z) has t least significant bits equal to zero.
(2) ∀(z |= φ) =⇒ h(z) has ≤ t least significant bits equal to zero.

If φ is a CNF formula, then FindMaxRange makes O(logn) calls to
an NP oracle.

Proof. Consider an NP oracle O = {⟨φ,h, t⟩ | ∃x ,∃y,x |=
φ,h(x) = y0t ⟩}. Note that h can be implemented as a degree-s

Algorithm 7 ApproxModelCountEst(φ, ε,δ , r)

1: Thresh← 96/ε2

2: t ← 35 log(1/δ)
3: H ← PickHashFunctions(Hs−wise(n,n), t × Thresh)
4: S ← {}
5: for i ∈ [1, t] do
6: for j ∈ [1, Thresh] do
7: S[i, j] ← FindMaxRange(φ, TrailZero(H [i, j]))

8: Est ← Median

{
ln

(
1− 1

Thresh
∑Thresh
j=1 1{S[i, j]≥r }

)
ln(1−2−r)

}
i

9: return Est

polynomial h : F2
n → F2

n , so that h(x) can be evaluated in poly-

nomial time. A binary search, requiring O(logn) calls to O , suffices

to find the largest value of t for which ⟨φ,h, t⟩ belongs to O . □

We note that unlike Propositions 1 and 2, we do not know

whether FindMaxRange can be implemented efficiently when φ is

a DNF formula. For a degree-s polynomial h : F2
n → F2

n , we can

efficiently test whetherh has a root by computing gcd(h(x),x2
n
−x),

but it is not clear how to simultaneously constrain some variables

according to a DNF term.

Equipped with Proposition 3, we obtain ApproxModelCountEst
that takes in a formula φ and a suitable value of r and returns

|Sol(φ)|. The key idea of ApproxModelCountEst is to repeatedly

invoke FindMaxRange for each of the chosen hash functions and

compute the estimate based on the sketch S and the value of r . The
following lemma summarizes the time complexity and guarantees

of ApproxModelCountEst for CNF formulas.

Theorem 4. Given a CNF formula φ, parameters ε and δ , and r
such that 2F0 ≤ 2

r ≤ 50F0, the algorithm ApproxModelCountEst
returns c satisfying

Pr

[
|Sol(φ)
1 + ε

≤ c ≤ (1 + ε)|Sol(φ)|
]
≥ 1 − δ .

ApproxModelCountEst makes O(1ε2 logn log(
1

δ)) calls to an NP or-
acle.

In order to obtain r , we run in parallel another counting algo-

rithm based on the simple F0-estimation algorithm [3, 29] which

we call FlajoletMartin. Given a stream a, the FlajoletMartin al-

gorithm chooses a random pairwise-independent hash function

h ∈ Hxor (n,n), computes the largest r so that for some x ∈ au ,
the r least significant bits of h(x) are zero, and outputs r . Alon,
Matias and Szegedy [3] showed that 2

r
is a 5-factor approxima-

tion of F0 with probability 3/5. Using our recipe, we can convert

FlajoletMartin into an algorithm that approximates the number of

solutions to a CNF formula φ within a factor of 5 with probability

3/5. It is easy to check that using the same idea as in Proposition 3,

this algorithm requires O(logn) calls to an NP oracle.

3.5 The Opportunities Ahead
As noted in Section 3.2, the algorithms based on Bucketing was

already known and have witnessed a detailed technical develop-

ment from both applied and algorithmic perspectives. The model

counting algorithms based on Minimum and Estimation are new.

We discuss some potential implications of these new algorithms to

SAT solvers and other aspects.

MaxSAT solvers with native support for XOR constraints. When

the input formula φ is represented as CNF, then ApproxMC, the
model counting algorithm based on Bucketing strategy, invokes

NP oracle over CNF-XOR formulas, i.e., formulas expressed as con-

junction of CNF and XOR constraints. The significant improvement

in runtime performance of ApproxMC owes to the design of SAT

solvers with native support for CNF-XOR formulas [52–54]. Such

solvers have now found applications in other domains such as

cryptanalysis. It is perhaps worth emphasizing that the proposal

of ApproxMC was crucial to renewed interest in the design of SAT

solvers with native support for CNF-XOR formulas. As observed

in Section 3.3, the algorithm based on Minimum strategy would

ideally invoke a MaxSAT solver that can handle XOR constraints

natively. We believe that Minimum-based algorithm will ignite in-

terest in the design of MaxSAT solver with native support for XOR

constraints.

FPRAS for DNF based on Estimation. In Section 3.4, we were un-

able to show that the model counting algorithm obtained based on

Estimation is FPRAS when φ is represented as DNF. The algorithms

based on Estimation have been shown to achieve optimal space

efficiency in the context of F0 estimation. In this context, an open

problem is to investigate whether Estimation-based strategy lends

itself to FPRAS for DNF counting.

Empirical Study of FPRAS for DNF Based on Minimum. Meel et

al. [45, 46] observed that FPRAS for DNF based on Bucketing has

superior performance, in terms of the number of instances solved,

to that of FPRAS schemes based on Monte Carlo framework. In this

context, a natural direction of future work would be to conduct an

empirical study to understand behavior of FPRAS scheme based on

Minimum strategy.

4 DISTRIBUTED DNF COUNTING
Consider the problem of distributed DNF counting. In this setting,

there are k sites that can each communicate with a central coordina-

tor. The input DNF formula φ is partitioned into k DNF subformulas

φ1, . . . ,φk , where each φi is a subset of the terms of the original

φ, with the j’th site receiving only φ j . The goal is for the coordi-
nator to obtain an (ϵ,δ)-approximation of the number of solutions

to φ, while minimizing the total number of bits communicated

between the sites and the coordinator. Distributed algorithms for

sampling and counting solutions to CSP’s have been studied re-

cently in other models of distributed computation [25–28]. From a

practical perspective, given the centrality of #DNF in the context of

probabilistic databases [48, 49], a distributed DNF counting would

entail applications in distributed probabilistic databases.

From our perspective, distributed DNF counting falls within the

distributed functional monitoring framework formalized by Cor-

mode et al. [20]. Here, the input is a stream a which is partitioned

arbitrarily into sub-streams a1, . . . , ak that arrive at each of k sites.

Each site can communicate with the central coordinator, and the

goal is for the coordinator to compute a function of the joint stream

a while minimizing the total communication. This general frame-

work has several direct applications and has been studied exten-

sively [4, 6, 18, 21, 33, 40–42, 51, 61, 62, 64]. In distributed DNF

counting, each sub-stream ai corresponds to the set of satisfying
assignments to each subformula φi , while the function to be com-

puted is F0.
The model counting algorithms discussed in Section 3 can be ex-

tended to the distributed setting. We briefly indicate the distributed

implementations for each of the three algorithms. As above, we

set the parameters Thresh to O(1/ε2). Correctness follows from
Bar-Yossef et al. [7] and the earlier discussion.

We consider an adaptation of BoundedSAT that takes in φ over

n variables, a hash function h ∈ HToeplitz(n,m), and a threshold t as
inputs, returns a setU of solutions such that |U | = min(t , |Sol(φ ∧
h(x) = 0

m)|).

Bucketing. Settingm = O(log(k/δε2)), the coordinator chooses
H [1], . . . ,H [T] from HToeplitz(n,n) and G from Hxor(n,m).
It then sends them to the k sites. Letmi, j be the smallestm
such that the size of the set BoundedSAT(φ j ,H [i]m , thresh)
is smaller than thresh. The j’th site sends the coordinator the
following tuples: ⟨G(x), TrailZero(H [i](x))⟩ for each i ∈ [t]
and for each x in BoundedSAT(φ j ,H [i]mi, j , thresh). Note
that each site only sends tuples for at mostO(1/δε2) choices
of x , so that G hashes these x to distinct values with prob-

ability 1 − δ/2. It is easy to verify that the coordinator can

then execute the rest of the algorithm ApproxMC. The com-

munication cost is Õ(k(n + 1/ε2) · log(1/δ)), and the time

complexity for each site is polynomial in n, ε−1, and log(δ−1).
Minimum. The coordinator chooses hash functionsH [1], . . . ,H [t]

fromHToeplitz(n, 3n) and sends it to the k sites. Each site runs

the FindMin algorithm for each hash function and sends the

outputs to the coordinator. So, the coordinator receives sets

S[i, j], consisting of the Thresh lexicographically smallest

hash values of the solutions to φ j . The coordinator then ex-

tracts S[i], the Thresh lexicographically smallest elements

of S[i, 1] ∪ · · · ∪ S[i,k] and proceeds with the rest of algo-

rithm ApproxModelCountMin. The communication cost is

O(kn/ε2 · log(1/δ)) to account for the k sites sending the

outputs of their FindMin invocations. The time complexity

for each site is polynomial in n, ε−1, and log(δ−1).
Estimation. For each i ∈ [t], the coordinator chooses Thresh hash

functions H [i, 1], . . . ,H [i, Thresh], drawn pairwise indepen-

dently fromHs−wise(n,n) (for s = O(log(1/ε))) and sends it

to the k sites. Each site runs the FindMaxRange algorithm
for each hash function and sends the output to the coor-

dinator. Suppose the coordinator receives S[i, j, ℓ] ∈ [n]
for each i ∈ [t], j ∈ [Thresh] and ℓ ∈ [k]. It computes

S[i, j] = maxℓ S[i, j, ℓ]. The rest of ApproxModelCountEst
is then executed by the coordinator. The communication

cost is Õ(k(n + 1/ε2) log(1/δ)). However, as earlier, we do
not know a polynomial time algorithm to implement the

FindMaxRange algorithm for DNF terms.

Lower Bound
The communication cost for the Bucketing- and Estimation-based al-

gorithms is nearly optimal in their dependence onk and ε . Woodruff

and Zhang [61] showed that the randomized communication com-

plexity of estimating F0 up to a 1 + ε factor in the distributed

functional monitoring setting is Ω(k/ε2). We can reduce F0 estima-

tion problem to distributed DNF counting. Namely, if for the F0
estimation problem, the j’th site receives items a1, . . . ,am ∈ [N],
then for the distributed DNF counting problem, φ j is a DNF for-

mula on ⌈log
2
N ⌉ variables whose solutions are exactly a1, . . . ,am

in their binary encoding. Thus, we immediately get an Ω(k/ε2)
lower bound for the distributed DNF counting problem. Finding the

optimal dependence on N for k > 1 remains an interesting open

question
3
.

5 FROM COUNTING TO STREAMING:
STRUCTURED SET STREAMING

In this section we consider structured set streaming model where
each item Si of the stream is a succinct representation of a set over

the universeU = {0, 1}n . Our goal is to design efficient algorithms

(both in terms of memory and processing time per item) for com-

puting | ∪i Si | - number of distinct elements in the union of all

the sets in the stream. We call this problem F0 computation over

structured set streams.

DNF Sets
A particular representation we are interested in is where each set

is presented as the set of satisfying assignments to a DNF formula.

Let φ is a DNF formula over n variables. Then the DNF Set corre-
sponding to φ is the set of satisfying assignments of φ. The size of
this representation is the number of terms in the formula φ.

A stream over DNF sets is a stream of DNF formulas φ1,φ2,
Given such a DNF stream, the goal is to estimate |

⋃
i Si | where

Si the DNF set represented by φi . This quantity is same as the

number of satisfying assignments of the formula ∨iφi . We show

that the algorithms described in the previous section carry over

to obtain (ϵ,δ) estimation algorithms for this problem with space

and per-item time poly(1/ϵ,n,k, log(1/δ))where k is the size of the

formula.

Notice that this model generalizes the traditional streaming

model where each item of the stream is an element x ∈ U as

it can be represented as single term DNF formula ϕx whose only

satisfying assignment is x . This model also subsumes certain other

models considered in the streaming literature that we discuss later.

Theorem 5. There is a streaming algorithm to compute an (ϵ,δ)
approximation of F0 over DNF sets. This algorithm takes spaceO(nε2 ·
log

1

δ) and processing time O(n4 · k · 1

ε2 · log
1

δ) per item where k is
the size (number of terms) of the corresponding DNF formula.

Proof. We show how to adapt Minimum-value based algorithm

from Section 3.3 to this setting. The algorithm picks a hash function

h ∈ HToeplitz(n, 3n)maintains the set B consisting of t lexicograph-
ically minimum elements of the set {h(Sol(φ1,∨ . . .∨,φi−1))} after
processing i − 1 items. When φi arrives, it computes the set B′

consisting of the t lexicographically minimum values of the set

{h(Sol(φi))} and subsequently updates B by computing the t lex-
icographically smallest elements from B ∪ B′. By Proposition 2,

3
Note that if k = 1, then log(n/ε) bits suffices, as the site can solve the problem on its

own and send to the coordinator the binary encoding of a (1+ ε)-approximation of F0 .

computation of B′ can be done in time O(n4 · k · t) where k is the

number of terms in φi . Updating B can be done in O(t · n) time.

Thus update time for the item φi is O(n
4 · k · t). For obtaining an

(ε,δ) approximations we set t = O(1ε2) and repeat the procedure

O(log 1

δ) times and take the median value. Thus the update time

for item φ is O(n4 · k · 1

ε2 · log
1

δ). For analyzing sapce, each hash

function uses O(n) bits and to store O(1ϵ 2) minimums, we require

O(nϵ 2) space resulting in overall space usage of O(nε2 · log
1

δ). The

proof of correctness follows from Lemma 2. □

Instead of usingMinimum-value based algorithm, we could adapt

Bucketing-based algorithm to obtain an algorithm with similar

space and time complexities. As noted earlier, some of the set stream-

ing models considered in the literature can be reduced the DNF set

streaming. We discuss them next.

Multidimensional Ranges
A d dimensional range over an universeU is defined as [a1,b1] ×
[a2,b2] × . . . × [ad ,bd]. Such a range represents the set of tu-

ples {(x1, . . . ,xd) where ai ≤ xi ≤ bi and xi is an integer. Note

that every d-dimensional range can be succinctly by the tuple

⟨a1,b1, · · ·ad ,bd ⟩. A multi-dimensional stream is a stream where

each item is a d-dimensional range. The goal is to compute F0 of
the union of the d-dimensional ranges effeiciently. We will show

that F0 computation over multi-dimensional ranges can reduced to

F0 computation over DNF sets. Using this reduction we arrive at a

simple algorithm to compute F0 over multi-dimensional ranges.

Lemma 4. Any d-dimensional range R over U can be represented
as a DNF formula φR over nd variables whose size is at most (2n)d .
There is algorithm that takes R as input and outputs the ith term of
φR using O(nd) space, for 1 ≤ i ≤ (2n)d .

Proof. LetR = [a1,b1]×[a2,b2]×. . .×[ad ,bd] be ad-dimensional

range over U d
. We will first describe the formula to represent

the multi-dimensional range as a conjunction of d DNF formulae

ϕ1, · · · ,ϕd each with at most 2n terms, where ϕi represents [ai ,bi],

the range in the ith dimension. Converting this into a DNF formula

will result in the formula ϕR with (2n)d terms.

For any ℓ bit number c , 1 ≤ c ≤ 2
n
, it is straightforward to write

a DNF formulaφ≤c , of size at most ℓ, that represents the range [0, c]
(or equivalently the set {x | 0 ≤ x ≤ c}). Similarly we can write a

DNF formula φ≥c , of size at most ℓ for the range [c, 2ℓ−1]. Now we

construct a formula to represent the range [a,b] overU as follows.

Leta1a2 · · ·an andb1b2 · · ·bn be the binary representations ofa and
b respectively. Let ℓ be the largest integer such that a1a2 · · ·al =
b1b2 · · ·bl . Hence aℓ+1 = 0 and bℓ+1 = 1. Let a′ and b ′ denote
the integers represented by al+2 · · ·an and bl+2 · · ·bn . Also, let
ψ denote the formula (a single term) that represents the string

a1 · · ·aℓ . Then the formula representing [a,b] isψ ∧ (xℓ+1φ≥a′ ∨
xℓ+1φ≤b′). This can be written as a DNF formula by distributing

ψ and the number of terms in the resulting formula is at most 2n,
and has n variables. Note that each φi can be constructed using

O(n) space. To obtain the final DNF representing the range R, we
need to convert φ1 ∧ · · ·φd into a DNF formula. It is easy to see

that for any i , then ith term of this DNF can be computed using

space O(nd). Note that this formula has nd variables, n variables

per each dimension.

□

Using the above reduction and Theorem 5, we obtain an an

algorithm for estimating F0 over multidimensional ranges in a

range-efficient manner.

Theorem 6. There is a streaming algorithm to compute an (ϵ,δ)
approximation of F0 over d-dimensional ranges that takes space
O(ndε2 · log(1/δ)) and processing time O((nd)4 · nd · 1

ε2) log(1/δ))
per item.

Remark 1. Tirthapura and Woodruff [58] studied the problem of
range efficient estimation of Fk (kth frequency moments) over d-
dimensional ranges. They claimed an algorithm to estimate F0 with
space and per-item time complexity poly(n,d, 1/ϵ, log 1/δ). How-
ever they have retracted their claim [60]. Their method only yields
poly(nd , 1/ϵ, log 1/δ) time per item. Their proof appears to be in-
volved that require a range efficient implementations of count sketch
algorithm [15] and recursive sketches [9, 34]. We obtain the same com-
plexity bounds with much simpler analysis and a practically efficient
algorithm that can use off the shelf available implementations [45].

Remark 2. Subsequent to the present work, an improved algorithm
for F0 over structured sets is presented in [57] (to appear in PODS 2021).
In particular, the paper presents an F0 estimation algorithm, called
APS-Estimator, for streams over Delphic sets. A set S ⊆ {0, 1}n

belongs to Delphic family if the following queries can be done in
O(n) time: (1) know the size of the set S , (2) draw a uniform random
sample from S , and (3) given any x check if x ∈ S . The authors de-
sign a streaming algorithm that given a stream S = ⟨S1, S2 · · · , SM ⟩
wherein each Si ⊆ {0, 1}

n belongs to Delphic family, computes an
(ε,δ)-approximation of |

⋃M
i=1 Si | with worst case space complex-

ity O(n · log(M/δ) · ε−2) and per-item time is Õ(n · log(M/δ) ·
ε−2). The algorithm APS-Estimator, when applied to d-dimensional
ranges, gives per-item time and space complexity bounds that are
poly(n,d, logM, 1/ε, log 1/δ). WhileAPS-Estimator brings down the
dependency on d from exponential to polynomial, it works under the
assumption that the length of the stream M is known. The general
setup presented in [57], however, can be applied to other structured
sets considered in this paper including multidimensional arithmetic
progressions.

RepresentingMultidimensional Ranges as CNF Formulas. Since the
algorithm, APS-Estimator, presented in [57], employs a sampling-

based technique, a natural question is whether there exists a hashing-

based technique that achieves per-item time polynomial in n and d .
We note that the above approach of representing amulti-dimensional

range as DNF formula does not yield such an algorithm. This is be-

cause there exist d-dimensional ranges whose DNF representation

requires Ω(nd) size.

Observation 1. There exist d-dimensional ranges whose DNF repre-
sentation has size ≥ nd .

Proof. The observation follows by considering the range R =

[1, 2n − 1]d (only 0 is missing from the interval in each dimension).

We will argue that any DNF formula φ for this range has size (num-

ber of terms) ≥ nd . For any 1 ≤ j ≤ d , we use the set of variables

X j = {x
j
1
,x

j
2
, . . . ,x

j
n } for representing the j

th
coordinate ofR. Then

R can be represented as the formula φR = ∨(i1,i2, ...,id)x
1

i1x
2

i2 . . . x
d
id
,

where 1 ≤ i j ≤ n. This formula has nd terms. Let φ be any other

DNF formula representing R. The main observation is that any term

T of φ is completely contained (in terms of the set of solutions) in

one of the terms of φR . This implies that φ should have nd terms.

Now we argue that T is contained in one of the terms of φR . T
should have at least one variable as positive literal from each of X j

.

Suppose T does not have any variable from X j
for some j. Then T

contains a solution with all the variable in X j
set to 0 and hence

not in R. Now let x
j
i j
be a variable from X j

that is inT . Then clearly

T is in the term x1i1x
2

i2 . . . x
d
id

of R. □

This leads to the question of whether we can obtain a super-

polynomial lower bound on the time per item. We observe that

such a lower bound would imply P , NP. For this, we note the

following.

Observation 2. Any d-dimensional range R can be represented as a
CNF formula of size O(nd) over nd variables.

This is because a single dimensional range [a,b] can also be

represented as a CNF formula of size O(n) [11] and thus the CNF
formula for R is a conjunction of formulas along each dimension.

Thus the problem of computing F0 over d-dimensional ranges re-

duces to computing F0 over a stream where each item of the stream

is a CNF formula. As in the proof of Theorem 5, we can adapt

Minimum-value based algorithm for CNF streams. When a CNF for-

mula φi arrive, we need to compute the t lexicographically smallest

elements of h(Sol(φi)) where h ∈ HToeplitz(n, 3n). By Proposition 2,

this can be done in polynomial-time by making O(tnd) calls to an

NP oracle since ϕi is a CNF formula over nd variables. Thus if P

equals NP, then the time taken per range is polynomial in n, d , and
1/ε2. Thus a super polynomial time lower bound on time per item

implies that P differs from NP.

From Weighted #DNF to d-Dimensional Ranges. Designing a stream-

ing algorithm with a per item of polynomial in n and d is a very

interesting open problemwith implications onweighted DNF count-

ing. Consider a formula φ defined on the set of variables x =
{x1,x2, . . . xn }. Let a weight function ρ : x 7→ (0, 1) be such that

weight of an assignment σ can be defined as follows:

W (σ) =
∏

xi :σ (xi)=1

ρ(xi)
∏

xi :σ (xi)=0

(1 − ρ(xi))

Furthermore, we define the weight of a formula φ as

W (φ) =
∑
σ |=φ

W (σ)

Given φ and ρ, the problem of weighted counting is to com-

puteW (φ). We consider the case where for each xi , ρ(xi) is rep-

resented usingmi bits in binary representation, i.e., ρ(xi) =
ki
2
mi .

Inspired by the key idea of weighted to unweighted reduction due

to Chakraborty et al. [11], we show how the problem of weighted

DNF counting can be reduced to that of estimation of F0 estimation

of n-dimensional ranges. The reduction is as follows: we transform

every term of φ into a product of multi-dimension ranges where ev-

ery variable xi is replaced with interval [1,ki]while ¬xi is replaced

with [ki+1, 2
mi] and every∧ is replacedwith×. For example, a term

(x1∧¬x2∧¬x3) is replaced with [1,k1]×[k2+1, 2
m2]×[k3+1, 2

m3].

Given F0 of the resulting stream, we can compute the weight of

φ simply asW (φ) = F0
2

∑
i mi

. Thus a hashing based streaming al-

gorithm that has poly(n,d) time per item, yields a hashing based

FPRAS for weighted DNF counting, and open problem from [1].

Multidimensional Arithmetic Progressions. We will now generalize

Theorem 6 to handle arithmetic progressions instead of ranges. Let

[a,b, c] represent the arithmetic progression with common differ-

ence c in the range [a,b], i.e., a,a + c,a + 2c,a + id , where i is the
largest integer such thata+id ≤ b. Here, we considerd-dimensional

arithmetic progressions R = [a1,b1, c1] × · · · × [ad ,bd , cd] where
each ci is a power two. We first observe that the set represented by

[a,b, 2ℓ] can be expressed as a DNF formula as follows: Let ϕ be

the DNF formula representing the range [a,b] and let a1, · · · ,aℓ
are the least significant bits of a, Letψ be the term that represents

the bit sequence a1 · · ·aℓ . Now the formula to represent the arith-

metic progression [a,b, 2ℓ] is ϕ ∧ψ which can be converted to a

DNF formula of size O(2n). Thus the multi-dimensional arithmetic

progression R can be represented as a DNF formula of size (2n)d .
Note that time and space required to convert R into a DNF formula

are as before, i.e, O(nd) time and O(nd) space. This leads us to the

following corollary.

Corollary 1. There is a streaming algorithm to compute an (ϵ,δ) ap-
proximation of F0 over d-dimensional arithmetic progressions, whose
common differences are powers of two, that takes space O(nd/ε2 ·
log 1/δ) and processing time O((nd)4 · nd · 1

ε2) log(1/δ)) per item.

Affine Spaces
Another example of structured stream is where each item of the

stream is an affine space represented byAx = BwhereA is a boolean

matrix and B is a zero-one vector. Without loss of generality, we

may assume that where A is a n × n matrix. Thus an affine stream

consists of ⟨A1,B⟩ , ⟨A2,B2⟩ · · · , where each ⟨Ai ,Bi ⟩ is succinctly
represents a set {x ∈ {0, 1}n | Aix = Bi }.

For an×n BooleanmatrixA and a zero-one vectorB, let Sol(⟨A,B⟩)
denote the set of all x that satisfy Ax = B.

Proposition 4. Given (A,B), h ∈ HToeplitz(n, 3n), and t as in-
put, there is an algorithm, AffineFindMin, that returns a set, B ⊆
h(Sol(⟨A,B⟩)) so that if |h(Sol(⟨A,B⟩))| ≤ t , thenB = h(Sol(⟨A,B⟩)),
otherwiseB is the t lexicographicallyminimum elements ofh(Sol(⟨A,B⟩)).
Time taken by this algorithm is O(n4t) and the space taken the algo-
rithm is O(tn).

Proof. Let D be the matrix that specifies the hash function h.
Let C = {Dx | Ax = B}, and the goal is to compute the t smallest

element of C. Note that if y ∈ C, then it must be the case that

D |Ax = y |B where D |A is the matrix obtained by appending rows

of A to the rows of D (at the end), and y |B is the vector obtained

by appending B to y. Note that D |A is a matrix with 4n rows. Now

the proof is very similar to the proof of Proposition 2. We can do a

prefix search as before and this involves doing Gaussian elimination

using sub matrices of D |A. □

Theorem 7. There is a streaming algorithms computes (ϵ,δ) ap-
proximation of F0 over affine spaces. This algorithm takes space
O(nϵ 2 · log(1/δ)) and processing time of O(n4 1

ϵ 2 log(1/δ)) per item.

6 CONCLUSION AND FUTURE OUTLOOK
To summarize, our investigation led to a diverse set of results that

unify over two decades of work inmodel counting and F0 estimation.

We believe that the viewpoint presented in this work has potential

to spur several new interesting research directions. We sketch some

of these directions below:

Sampling The problem of counting and sampling are closely re-

lated. In particular, the seminal work of Jerrum, Valiant,

and Vazirani [36] showed that the problem of approximate

counting and almost-uniform sampling are inter-reducible

for self-reducible NP problems. Concurrent to developments

in approximate model counting, there has been a significant

interest in the design of efficient sampling algorithms. A

natural direction would be to launch a similar investigation.

Higher Moments There has been a long line of work on esti-

mation of higher moments, i.e. Fk in streaming context. A

natural direction of future research is to adapt the notion

of Fk in the context of CSP. For example, in the context of

DNF, one can view F1 be simply a sum of the size of clauses

but it remains to be seen to understand the relevance and

potential applications of higher moments such as F2 in the

context of CSP. Given the similarity of the core algorithmic

frameworks for higher moments, we expect extension of

the framework and recipe presented in the paper to derive

algorithms for higher moments in the context of CSP.

Sparse XORs In the context of model counting, the performance

of underlying SAT solvers strongly depends on the size of

XORs. The standard construction ofHToeplitz andHxor lead

to XORs of size Θ(n/2) and interesting line of research has

focused on the design of sparse XOR-based hash functions [2,

5, 24, 32, 35] culminating in showing that one can use hash

functions of form where h(x) = Ax + b wherein each entry

of m-th row of A is 1 with probability O(
logm
m) [43]. Such

XORs were shown to improve the runtime efficiency. In this

context, a natural direction would be to explore the usage of

sparse XORs in the context of F0 estimation.

ACKNOWLEDGMENTS
We thank the anonymous reviewers of PODS 21 for valuable com-

ments. Bhattacharyya was supported in part by National Research

Foundation Singapore under its NRF Fellowship Programme [NRF-

NRFFAI1-2019-0002] and an Amazon Research Award. Meel was

supported in part by National Research Foundation Singapore un-

der its NRF Fellowship Programme[NRF-NRFFAI1-2019-0004] and

AI Singapore Programme [AISG-RP-2018-005], and NUS ODPRT

Grant [R-252-000-685-13]. Vinod was supported in part by NSF

CCF-184908 and NSF HDR:TRIPODS-1934884 awards. Pavan was

supported in part by NSF CCF-1849053 and NSF HDR:TRIPODS-

1934884 awards.

REFERENCES
[1] Ralph Abboud, Ismail Ilkan Ceylan, and Thomas Lukasiewicz. 2019. Learning

to Reason: Leveraging Neural Networks for Approximate DNF Counting. arXiv

preprint arXiv:1904.02688 (2019).
[2] Dimitris Achlioptas and Panos Theodoropoulos. 2017. Probabilistic model count-

ing with short XORs. In Proc. of SAT. Springer, 3–19.
[3] Noga Alon, Yossi Matias, and Mario Szegedy. 1999. The Space Complexity of

Approximating the Frequency Moments. J. Comput. Syst. Sci. 58, 1 (1999), 137–
147.

[4] Chrisil Arackaparambil, Joshua Brody, and Amit Chakrabarti. 2009. Functional

monitoring without monotonicity. In International Colloquium on Automata,
Languages, and Programming. Springer, 95–106.

[5] Megasthenis Asteris and Alexandros G Dimakis. 2016. LDPC codes for discrete
integration. Technical Report. Technical report, UT Austin.

[6] Brian Babcock and Chris Olston. 2003. Distributed top-k monitoring. In Proceed-
ings of the 2003 ACM SIGMOD international conference on Management of data.
28–39.

[7] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. [n.

d.]. Counting Distinct Elements in a Data Stream. In Proc. of RANDOM, Vol. 2483.

1–10.

[8] Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. 2002. Reductions in streaming

algorithms, with an application to counting triangles in graphs. In Proc. of SODA.
ACM/SIAM, 623–632.

[9] Vladimir Braverman and Rafail Ostrovsky. 2010. Recursive Sketching For Fre-

quency Moments. CoRR abs/1011.2571 (2010).

[10] J Lawrence Carter andMark NWegman. 1977. Universal classes of hash functions.

In Proceedings of the ninth annual ACM symposium on Theory of computing. ACM,

106–112.

[11] Supratik Chakraborty, Dror Fried, Kuldeep S Meel, and Moshe Y Vardi. 2015.

From weighted to unweighted model counting. In Proceedings of AAAI. 689–695.
[12] S. Chakraborty, K. S. Meel, and M. Y. Vardi. 2013. A Scalable and Nearly Uniform

Generator of SAT Witnesses. In Proc. of CAV. 608–623.
[13] S. Chakraborty, K. S. Meel, and M. Y. Vardi. 2013. A Scalable Approximate Model

Counter. In Proc. of CP. 200–216.
[14] S. Chakraborty, K. S. Meel, and M. Y. Vardi. 2016. Algorithmic Improvements in

Approximate Counting for Probabilistic Inference: From Linear to Logarithmic

SAT Calls. In Proc. of IJCAI.
[15] Moses Charikar, Kevin C. Chen, andMartin Farach-Colton. 2004. Finding frequent

items in data streams. Theor. Comput. Sci. 312, 1 (2004), 3–15.
[16] Dmitry Chistikov, Rayna Dimitrova, and Rupak Majumdar. 2015. Approximate

counting in SMT and value estimation for probabilistic programs. In Proc. of
TACAS. Springer, 320–334.

[17] Jeffrey Considine, Feifei Li, George Kollios, and John W. Byers. 2004. Approxi-

mate Aggregation Techniques for Sensor Databases. In Proc. of ICDE, Z. Meral

Özsoyoglu and Stanley B. Zdonik (Eds.). IEEE Computer Society, 449–460.

[18] Graham Cormode, Minos Garofalakis, Shanmugavelayutham Muthukrishnan,

and Rajeev Rastogi. 2005. Holistic aggregates in a networked world: Distributed

tracking of approximate quantiles. In Proc. of SIGMOD. 25–36.
[19] Graham Cormode and S. Muthukrishnan. 2003. Estimating Dominance Norms

of Multiple Data Streams. In Proc. of ESA (Lecture Notes in Computer Science),
Giuseppe Di Battista and Uri Zwick (Eds.), Vol. 2832. Springer, 148–160.

[20] Graham Cormode, Shanmugavelayutham Muthukrishnan, and Ke Yi. 2011. Algo-

rithms for distributed functional monitoring. ACM Transactions on Algorithms
(TALG) 7, 2 (2011), 1–20.

[21] Graham Cormode, Shanmugavelayutham Muthukrishnan, Ke Yi, and Qin Zhang.

2012. Continuous sampling from distributed streams. Journal of the ACM (JACM)
59, 2 (2012), 1–25.

[22] P. Dagum, R. Karp, M. Luby, and S. Ross. 2000. An optimal algorithm for Monte

Carlo estimation. SIAM Journal on computing 29, 5 (2000), 1484–1496.

[23] Stefano Ermon, Carla P. Gomes, Ashish Sabharwal, and Bart Selman. 2013. Taming

the Curse of Dimensionality: Discrete Integration by Hashing and Optimization.

In Proc. of ICML. 334–342.
[24] S. Ermon, C. P. Gomes, A. Sabharwal, and B. Selman. 2014. Low-density Parity

Constraints for Hashing-Based Discrete Integration. In Proc. of ICML. 271–279.
[25] Weiming Feng, Thomas P Hayes, and Yitong Yin. 2018. Distributed symmetry

breaking in sampling (optimal distributed randomly coloring with fewer colors).

arXiv preprint arXiv:1802.06953 (2018).
[26] Weiming Feng, Yuxin Sun, and Yitong Yin. 2018. What can be sampled locally?

Distributed Computing (2018), 1–27.

[27] Weiming Feng and Yitong Yin. 2018. On local distributed sampling and counting.

In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing.
189–198.

[28] Manuela Fischer and Mohsen Ghaffari. 2018. A Simple Parallel and Distributed

Sampling Technique: Local Glauber Dynamics. In 32nd International Symposium
on Distributed Computing.

[29] Philippe Flajolet and G. Nigel Martin. 1985. Probabilistic Counting Algorithms

for Data Base Applications. J. Comput. Syst. Sci. 31, 2 (1985), 182–209.
[30] Phillip B. Gibbons and Srikanta Tirthapura. 2001. Estimating simple functions

on the union of data streams. In Proc. of SPAA, Arnold L. Rosenberg (Ed.). ACM,

281–291.

[31] C.P. Gomes, A. Sabharwal, and B. Selman. 2007. Near-Uniform sampling of

combinatorial spaces using XOR constraints. In Proc. of NIPS. 670–676.
[32] Carla P Gomes, Joerg Hoffmann, Ashish Sabharwal, and Bart Selman. 2007. From

Sampling to Model Counting.. In Proc. of IJCAI. 2293–2299.
[33] Zengfeng Huang, Ke Yi, and Qin Zhang. 2012. Randomized algorithms for

tracking distributed count, frequencies, and ranks. In Proc. of PODS. 295–306.
[34] Piotr Indyk and David P. Woodruff. 2005. Optimal approximations of the fre-

quency moments of data streams. In Proc. of STOC. ACM, 202–208.

[35] Alexander Ivrii, Sharad Malik, Kuldeep S. Meel, and Moshe Y. Vardi. 2015. On

computing minimal independent support and its applications to sampling and

counting. Constraints (2015), 1–18. https://doi.org/10.1007/s10601-015-9204-z

[36] M.R. Jerrum, L.G. Valiant, and V.V. Vazirani. 1986. Random generation of combi-

natorial structures from a uniform distribution. Theoretical Computer Science 43,
2-3 (1986), 169–188.

[37] Daniel M. Kane, Jelani Nelson, and David P.Woodruff. 2010. An optimal algorithm

for the distinct elements problem. In Proc. of PODS. ACM, 41–52.

[38] R.M. Karp and M. Luby. 1983. Monte-Carlo algorithms for enumeration and

reliability problems. Proc. of FOCS (1983).
[39] Richard M Karp, Michael Luby, and Neal Madras. 1989. Monte-Carlo approxima-

tion algorithms for enumeration problems. Journal of Algorithms 10, 3 (1989),
429 – 448. https://doi.org/10.1016/0196-6774(89)90038-2

[40] Ram Keralapura, Graham Cormode, and Jeyashankher Ramamirtham. 2006.

Communication-efficient distributed monitoring of thresholded counts. In Proc.
of SIGMOD. 289–300.

[41] Daniel Keren, Izchak Sharfman, Assaf Schuster, and Avishay Livne. 2011. Shape

sensitive geometric monitoring. IEEE Transactions on Knowledge and Data Engi-
neering 24, 8 (2011), 1520–1535.

[42] Amit Manjhi, Vladislav Shkapenyuk, Kedar Dhamdhere, and Christopher Olston.

2005. Finding (recently) frequent items in distributed data streams. In Proc. of
ICDE. IEEE, 767–778.

[43] Kuldeep S. Meel r○ S. Akshay. 2020. Sparse Hashing for Scalable Approximate

Model Counting: Theory and Practice. In Proc. of LICS.
[44] Kuldeep S Meel, Aditya A Shrotri, and Moshe Y Vardi. 2017. On Hashing-Based

Approaches to Approximate DNF-Counting. In In Proc. of FSTTCS.
[45] Kuldeep S. Meel, Aditya A. Shrotri, and Moshe Y. Vardi. 2018. Not All FPRASs

are Equal: Demystifying FPRASs for DNF-Counting. (12 2018).

[46] Kuldeep S. Meel, Aditya A. Shrotri, and Moshe Y. Vardi. 2019. Not All FPRASs

are Equal: Demystifying FPRASs for DNF-Counting (Extended Abstract). In Proc.
of IJCAI.

[47] A. Pavan and Srikanta Tirthapura. 2007. Range-Efficient Counting of Distinct

Elements in a Massive Data Stream. SIAM J. Comput. 37, 2 (2007), 359–379.
[48] Christopher Ré and Dan Suciu. 2008. Approximate lineage for probabilistic

databases. Proceedings of the VLDB Endowment 1, 1 (2008), 797–808.
[49] Pierre Senellart. 2018. Provenance and probabilities in relational databases. ACM

SIGMOD Record 46, 4 (2018), 5–15.

[50] Pierre Senellart. 2019. Provenance in Databases: Principles and Applications. In

Reasoning Web. Explainable Artificial Intelligence. Springer, 104–109.
[51] Izchak Sharfman, Assaf Schuster, and Daniel Keren. 2010. A geometric approach

to monitoring threshold functions over distributed data streams. In Ubiquitous
knowledge discovery. Springer, 163–186.

[52] Mate Soos, Stephan Gocht, and Kuldeep S. Meel. 2020. Tinted, Detached, and Lazy

CNF-XOR solving and its Applications to Counting and Sampling. In Proceedings
of International Conference on Computer-Aided Verification (CAV).

[53] Mate Soos and Kuldeep S Meel. 2019. BIRD: Engineering an Efficient CNF-XOR

SAT Solver and its Applications to Approximate Model Counting. In Proceedings
of AAAI Conference on Artificial Intelligence (AAAI)(1 2019).

[54] Mate Soos, Karsten Nohl, and Claude Castelluccia. 2009. Extending SAT Solvers

to Cryptographic Problems. In Proc. of SAT. 244–257.
[55] L. Stockmeyer. 1983. The complexity of approximate counting. In Proc. of STOC.

118–126.

[56] He Sun and Chung Keung Poon. 2009. Two improved range-efficient algorithms

for F
0
estimation. Theor. Comput. Sci. 410, 11 (2009), 1073–1080.

[57] Kuldeep S. Meel r○ N. V. Vinodchandran r○ Sourav Chakraborty. 2021. Estimat-

ing Size of Union of Sets in Streaming Model. In Proc. of PODS 2021.
[58] Srikanta Tirthapura and David P. Woodruff. 2012. Rectangle-efficient aggregation

in spatial data streams. In Proc. of PODS. ACM, 283–294.

[59] L.G. Valiant. 1979. The complexity of enumeration and reliability problems. SIAM
J. Comput. 8, 3 (1979), 410–421.

[60] David Woodruff. [n. d.]. personal communication.

[61] David P Woodruff and Qin Zhang. 2012. Tight bounds for distributed functional

monitoring. In Proceedings of the forty-fourth annual ACM symposium on Theory
of computing. 941–960.

[62] David P Woodruff and Qin Zhang. 2017. When distributed computation is

communication expensive. Distributed Computing 30, 5 (2017), 309–323.

[63] Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2008. SATzilla:

portfolio-based algorithm selection for SAT. Journal of artificial intelligence
research 32 (2008), 565–606.

[64] Ke Yi and Qin Zhang. 2013. Optimal tracking of distributed heavy hitters and

quantiles. Algorithmica 65, 1 (2013), 206–223.

https://doi.org/10.1007/s10601-015-9204-z
https://doi.org/10.1016/0196-6774(89)90038-2

	Abstract
	1 Introduction
	2 Notation
	3 From Streaming to Counting
	3.1 A Recipe For Transformation
	3.2 Bucketing-based Algorithm
	3.3 Minimum-based Algorithm
	3.4 Estimation-based Algorithm
	3.5 The Opportunities Ahead

	4 Distributed DNF Counting
	5 From Counting to Streaming: Structured Set Streaming
	6 Conclusion and Future Outlook
	Acknowledgments
	References

