
Estimation of the Size of Union of Delphic Sets: Achieving
Independence from Stream Size∗

Kuldeep S. Meel r○
National University of Singapore

Sourav Chakraborty r○
Indian Statistical Institute, Kolkata

N. V. Vinodchandran

University of Nebraska, Lincoln

ABSTRACT
Given a family of sets {𝑆1, 𝑆2, . . . 𝑆𝑀 } over a universe Ω, estimating

the size of their union in the data streaming model is a fundamental

computational problem with a wide variety of applications. The

holy grail in the field of streaming is to seek design of algorithms

that achieve (𝜀, 𝛿)-approximation with poly(log |Ω |, 𝜀−1, log𝛿−1)
space and update time complexity.

Earlier investigations achieve algorithms with desired space and

update time complexity for restricted cases such as singletons (Dis-

tinct Elements problem), one-dimensional ranges, arithmetic pro-

gressions, and sub-cubes. However, techniques used in these works

fail for many other simple structured sets. A prominent example is

that of Klee’s Measure Problem (KMP), wherein every set 𝑆𝑖 is rep-

resented by an axis-parallel rectangle in 𝑑-dimensional spaces. De-

spite extensive prior work, the best-known streaming algorithms for

many of these cases depend on the size of the stream, and therefore

the problem of whether there exists a streaming algorithm for esti-

mations of size of the union of sets with poly(log |Ω |, 𝜀−1, log𝛿−1)
space and update time complexity has remained open.

In this work, we focus on certain general families of sets called

Delphic families (which allows efficient membership, sampling, and

cardinality queries). Such families of sets capture several well-

known problems, including KMP, test coverage, and hypervolume

estimation.

The primary contribution of our work is to resolve the above-

mentioned open problem for streams over Delphic families. In

particular, we design the first streaming algorithm for estimat-

ing

��⋃𝑀
𝑖=1 𝑆𝑖

��
with poly(log |Ω |, 𝜀−1, log𝛿−1) space and update time

complexity (independent of𝑀 , the length of the stream) when each

𝑆𝑖 is a member from a Delphic family of sets. We further generalize

our results to larger families of sets, called approximate-Delphic
families, for which the size of a set can be known approximately

but not exactly. Our results resolve two of the open problems listed

in Meel, Vinodchandran, Chakraborty (PODS-21).

CCS CONCEPTS
• Theory of computation → Streaming models; Sketching
and sampling.
∗
The authors decided to forgo the old convention of alphabetical ordering of authors

in favor of a randomized ordering, denoted by r○. The publicly verifiable record of

the randomization is available at https://www.aeaweb.org/journals/policies/random-

author-order/search

This work is licensed under a Creative Commons

Attribution International 4.0 License.

PODS ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9260-0/22/06.

https://doi.org/10.1145/3517804.3526222

KEYWORDS
probabilistic computations, streaming algorithms, approximation

algorithms

ACM Reference Format:
Kuldeep S. Meel r○, Sourav Chakraborty r○, and N. V. Vinodchandran. 2022.

Estimation of the Size of Union of Delphic Sets: Achieving Independence

from Stream Size. In Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems (PODS ’22), June 12–17, 2022,
Philadelphia, PA, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/

10.1145/3517804.3526222

1 INTRODUCTION
The widespread adoption of computing has led to an explosion of

data that modern computing systems need to process efficiently.

The design of data analysis techniques with computational and

storage efficiency is of utmost importance. Consequently, the past

two decades have witnessed a sustained interest in the design of

efficient streaming algorithms.

In this paper, we focus on one of the fundamental problems in the

context of streaming: Given a stream of sets 𝑆1, 𝑆2, . . . 𝑆𝑀 , estimate

their union

��⋃𝑀
𝑖=1 𝑆𝑖

��
, which is often referred to as zeroth frequency

moment and denoted by 𝐹0 of the stream. The goal, usually, is to

design an efficient randomized algorithm that can output an (𝜀, 𝛿)-
approximation of the |⋃𝑀

𝑖=1 𝑆𝑖 |. We say that a random variable 𝑍 is

an (𝜀, 𝛿)-approximation of 𝑌 if Pr[|𝑍 − 𝑌 | ≤ 𝜀 |𝑌 |] ≥ 1 − 𝛿 .
We will focus on general families of sets, called Delphic families

1
,

defined below:

Definition 1.1. Let Ω be a discrete universe. A set 𝑆 ⊆ Ω belongs to
a Delphic family if the following queries can be done in 𝑂 (log |Ω |)
time.
Membership Given any 𝑥 ∈ Ω check if 𝑥 ∈ 𝑆 .
Cardinality Determine the size of 𝑆 , i.e. |𝑆 |.
Sampling Draw a uniform random sample from 𝑆 .

The goal is to design a streaming algorithm that, given a stream

of sets 𝑆1, 𝑆2, . . . 𝑆𝑀 from a Delphic family, computes an (𝜀, 𝛿)-
approximation of

��⋃𝑀
𝑖=1 𝑆𝑖

��
while minimising the worst case space

complexity and the worst case update time complexity. The (worst

case) update time complexity is the (worst case) time spent process-

ing a single item in the stream. In the setting of streams over Delphic

sets, it is proportional to the (worst case) number of queries made

to a set in the stream. This abstract computational problem over

Delphic families captures several well-known problems, including

the discrete version of Klee’s Measure Problem (KMP), test cover-

age estimation, hyper-volume estimation, and the DNF counting

problem.

1
While the name Delphic sets was introduced in our prior work [33], the notion of

Delphic sets has been implicit in several works over the past three decades [5, 10, 23, 24];

to the best of our knowledge, the first work that explicitly mentions the three properties

of Delphic sets is the seminal work of Karp and Luby [23].

https://www.aeaweb.org/journals/policies/random-author-order/search
https://www.aeaweb.org/journals/policies/random-author-order/search
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3517804.3526222
https://doi.org/10.1145/3517804.3526222
https://doi.org/10.1145/3517804.3526222

The Distinct Elements problem, one of the most widely studied

problems in the streaming literature, when cast in terms of set

streams, is to estimate the size of the union of sets wherein every

set 𝑆𝑖 of the stream is a singleton element of the universe. A long

line of work culminated in the development of algorithms for Dis-

tinct Elements with optimal space complexity 𝑂 (log |Ω | + 1

𝜀2
) and

𝑂 (1) update time complexity [21] (for a constant 𝛿). The design

of algorithms with poly(log |Ω |, 1𝜀 , log
1

𝛿
) space and update time

complexity for the Distinct Elements problem spurred interest in

investigations of streaming algorithms for more broader classes

of sets. One such example is that of single-dimensional ranges,

wherein every 𝑆𝑖 is encoded as [𝑎𝑖 , 𝑏𝑖] for 𝑎𝑖 ≤ 𝑏𝑖 and represents

the set of all integers 𝑥𝑖 such that 𝑎𝑖 ≤ 𝑥𝑖 ≤ 𝑏𝑖 . For this case,

the algorithms for distinct elements problem can be used by pro-

cessing every element of 𝑆𝑖 one by one. While such algorithms

would provide optimal space complexity 𝑂 (log |Ω | + 1

𝜀2
), the re-

sulting update time complexity of 𝑂 (|Ω |) is highly undesirable.

Bar-Yossef, Kumar, Sivakumar [3] introduced the notion of range-
efficient streaming algorithms to capture the desiderata of space

and update time complexity to be logarithmic in the size of the

range. Subsequently, Pavan and Tirthapura [29], Sun and Poon [31]

achieved range-efficient algorithms for single-dimensional ranges.

A natural question is to investigate the design of range-efficient

algorithms for multi-dimensional ranges, which can also be viewed

as a discrete version of the well-known Klee’s Measure Problem

(KMP) [32, 34]. KMP is a natural and fundamental problem stud-

ied in computational geometry resulting in a substantial body of

research. [4–8, 14, 17, 25, 28]
2
. KMP also arises naturally in spatial

databases [33, 34]. Furthermore, a restricted variant of KMP, known

as the Hyper Volume Estimation problem, is an important compu-

tational problem studied in evolutionary algorithms [5]. Initial at-

tempts to design range-efficient algorithms for KMP in the stream-

ing setting, however, failed to achieve poly(log |Ω |, 𝜀−1, log𝛿−1)
space and update time complexity. In particular, such attempts

yielded techniques with update time complexity of 𝑂 (|Ω |) [32, 34].
Recently, Meel, Vinodchandran, and Chakraborty [33] took a

promising step and achieved poly(log |Ω |, 𝜀−1, log𝛿−1, log𝑀) space
and update time complexity for KMP and more generally for com-

puting 𝐹0 of a stream of Delphic sets of stream-size𝑀 . However, the

scheme due to MVC
3
still falls short of desiderata (of obtaining a

space and update time complexity of poly(log |Ω |, 𝜀−1, log𝛿−1) and
independent of the stream size) in streaming literature given its de-

pendence on the size of the stream. To summarize, despite extensive

prior work, design of algorithms with poly(log |Ω |, 𝜀−1, log𝛿−1)
space and update time complexity for set streams over Delphic

families remains open and is of significant interest from theoretical

and practical perspectives.

1.1 Our Results
The primary contribution of this work is to resolve the above-

mentioned open problem. In particular, we design the first stream-

ing algorithm for estimation of

��⋃𝑀
𝑖=1 𝑆𝑖

��
with poly(log |Ω |, 1𝜀 , log

1

𝛿
)

space and update time complexity (independent of𝑀 , the length of

the stream). Formally, we prove the following theorem:

2
The formal definition on KMP is given in Definition 2.2.

3
Named after the initials of authors.

Theorem 1.2. There is a streaming algorithm, which we callVatic,
that given real numbers 𝜀, 𝛿 < 1, and a stream S = ⟨𝑆1, 𝑆2, · · · , 𝑆𝑀 ⟩
of unknown length𝑀 where each 𝑆𝑖 ⊆ Ω belongs to a Delphic family,
computes an (𝜀, 𝛿)-approximation of

��⋃𝑀
𝑖=1 𝑆𝑖

��.
The algorithm has the worst case space complexity 𝑂 (log3 (|Ω |) ·

log(1/𝛿)
𝜀2
) and the update time complexity 𝑂 (log4 (|Ω |) · log(1/𝛿)

𝜀2
).

As a corollary to Theorem 1.2, we get an algorithm with space

and update time complexity poly(log |Ω |, 1𝜀 , log
1

𝛿
) for Klee’s Mea-

sure Problem, which is formally defined in Definition 2.2.

Corollary 1.3. There is a streaming algorithm that given real num-
bers 𝜀, 𝛿 < 1, and a stream R = ⟨r1, r2, · · · r𝑀 ⟩ where each r𝑖 is a d-
dimensional rectangle overΩ = Δ𝑑 , computes an (𝜀, 𝛿)-approximation
of Volume(R). The worst case space complexity of the algorithm
is 𝑂 (𝑑3 log3 (|Δ|) · log(1/𝛿)

𝜀2
), while its update time complexity is

𝑂 (𝑑4 log4 (|Δ|) · log(1/𝛿)
𝜀2
).

While the framework of the Delphic set is general enough to

capture many important scenarios, there are settings where it is

impossible to obtain the size of a set exactly. Similarly, getting a

sample uniformly at random from a set can also be challenging.

To handle the problem of estimating the size of the union of such

sets, we consider a natural generalization of the notion of Delphic

Families called Approximate-Delphic Families.

Definition 1.4. Let Ω be a discrete universe. A set 𝑆 ⊆ Ω belongs
to an Approximate-Delphic family if for some constants 0 ≤ 𝛼,𝛾, 𝜂
there is an oracle that allows the following set of queries.
Membership Given any 𝑥 check if 𝑥 ∈ 𝑆 .
Approximate Cardinality Get an approximation of the size of 𝑆

which with probability ≥ (1 − 𝛾) is between |𝑆 |/(1 + 𝛼) and
(1+𝛼) |𝑆 |. We call such an approximation (𝛼,𝛾)-approximation
of |𝑆 |.

Approximate Sampling Draw a random sample from 𝑆 where the
probability that any element 𝑥 ∈ 𝑆 is sampled is between

1

(1+𝜂) |𝑆 | and
(1+𝜂)
|𝑆 | . We call such as oracle 𝜂-random sampling

oracle.
We will refer to such an oracle as an (𝛼,𝛾, 𝜂)-Approximate-Delphic
oracle 4.

Several families of sets such as convex sets, star-shaped sets,

and Schlicht Domains (see Section 6.2) fall under the category

of Approximate-Delphic families. Thus a streaming algorithm for

estimating the union of sets when given access to an (𝛼,𝛾, 𝜂)-
Approximate-Delphic oracle gives a streaming algorithm for es-

timating the union of sets for the aforementioned families of sets.

Our next result is an algorithm that can approximate the size of

the union of sets given access to an (𝛼,𝛾, 𝜂)-Approximate-Delphic

Oracle.

Theorem 1.5. There is a streaming algorithm, which we call
Ext-Vatic that, given real numbers 𝜀, 𝛿 < 1, and a stream S =

⟨𝑆1, 𝑆2, · · · , 𝑆𝑀 ⟩ of unknown length𝑀 where each 𝑆𝑖 ⊆ Ω belongs to
anApproximate-Delphic family, and access to an (𝛼,𝛾, 𝜂)-Approximate-
Delphic oracle for some 𝛼,𝛾, 𝛿 for members of the family, outputs
a number in the range [(1−𝜀)

2(1+𝜂) (1+𝛼) |
⋃𝑀

𝑖=1 𝑆𝑖 |, (1 + 𝜀) (1 + 𝜂) (1 +
4
The reason for using the above notions of approximation is discussed in Section 2.

𝛼) |⋃𝑀
𝑖=1 𝑆𝑖 |] The worst case space complexity of the algorithm is

𝑂 ((log3 |Ω |) log(1/𝛿) · (1+𝜂)
𝜖2
). The algorithm, while processing any

item of the stream, makes

�̃� ((log3 |Ω |) log(1/𝛿) log(1

1 − 𝛾)
(1 + 𝜂)
𝜖2
)

calls to the (𝛼,𝛾, 𝜂)-Approximate-Delphic Oracle in the worst case.

The techniques that we use to extend Vatic to Ext-Vatic can

also be used to extend the streaming algorithm for Delphic sets in

[33] to handle Approximate-Delphic sets. This addresses a problem

that was left open in [33]. The extension of their algorithm to

Approximate-Delphic sets is presented in Appendix D.

Remark 1.6. In the definition of the Delphic family, we do not make
any restrictions about the representations of sets. Instead, we assume
that the streaming algorithm gets a set 𝑆 in some representation on the
input memory. The resource requirements are not explicitly parame-
terized by this representation but rather by the size of the universe
of the set 𝑆 . This allows us to state the resource requirements of our
algorithm in line with those in the literature. Moreover, the applica-
tions we state fit this model naturally. However, in the definition of
the Approximate-Delphic family, we use the oracle formulation where
each operation takes a unit time step. This is because for applications
we present in this paper, these operations can be non-trivial and known
algorithms take polynomial time in the standard representations.

We also note here that for a family of sets for which there is an
efficient algorithm for membership testing given some representation,
there is also a succinct representation for every element in the family
in the form of Boolean circuits. To state this succinct representation
theorem, we consider the universe of Boolean strings. This is without
loss of generality, as any universe Ω can be encoded in {0, 1} ⌈log |Ω | ⌉ .
Let {F𝑛}𝑛 be a series indexed by integers 𝑛 ≥ 1 where each F𝑛 is
a family of sets in {0, 1}𝑛 with a set of representations R: that is
for any 𝑛, any 𝑆𝑛 ∈ F𝑛 is represented by some 𝑅𝑆𝑛 ∈ R. For a set
𝑆 ⊆ {0, 1}𝑛 , we say that a Boolean circuit 𝐶 on 𝑛 inputs represents 𝑆
if for all 𝑥 ∈ {0, 1}𝑛 , 𝑥 ∈ 𝑆 if an only if 𝐶 (𝑥) evaluates to True. The
following is a well-known theorem from Computational Complexity.
The Boolean circuits we consider are the ones with fan-in 2 AND and
OR gates and fan-in 1 NOT gates. The size of a circuit is the number
of gates in it.

Theorem 1.7 ([9, 19]). If there is a membership testing algorithm
that on input ⟨𝑅𝑆𝑛 , 𝑥⟩, outputs ‘Yes’ if 𝑥 ∈ 𝑆𝑛 and ‘No’ if 𝑥 ∉ 𝑆𝑛 in
time 𝑇 (𝑛) where 𝑛 = |𝑥 |, then for all 𝑛, there is a Boolean circuit 𝐶𝑛
of size 𝑂 (𝑇 (𝑛) log𝑇 (𝑛)) that represents 𝑆𝑛 . In particular if there is
a membership testing algorithm that runs in time 𝑂 (𝑛), then there
is a Boolean circuit of size �̃� (𝑛) that represents the set 𝑆𝑛 for every
member of the family.

1.2 Our Techniques
Our algorithm is based on a simple but general sampling-based

strategy. Let

⋃
𝑖 𝑆𝑖 = {𝑠1, 𝑠2, . . . , 𝑠𝑘 } ⊆ Ω, where 𝑘 = |⋃𝑖 𝑆𝑖 |. The

main idea is to sample each 𝑠 𝑗 independently with appropriately

chosen probability 𝑝 𝑗 and store the tuple (𝑠 𝑗 , 𝑝 𝑗): the element along

with the probability with which it was sampled, in a bucket X. At

the end of the stream, we can compute our estimate

∑
𝑗
𝑁 (𝑝 𝑗)
𝑝 𝑗

5

where 𝑁 (𝑝 𝑗) represents the number of elements in X that were

sampled with probability 𝑝 𝑗 . Our objective is to obtain an algorithm

with poly(log |Ω |, 𝜀−1, log𝛿−1) space and update time complexity;

therefore, the size of X is expected to be of the same order of mag-

nitude; in particular, we will maintain |X| ∈ 𝑂 (log2 |Ω | · log𝛿
−1

𝜀2
).

There are two key challenges we need to overcome: (C1) there

may be many sets 𝑆𝑖 such that 𝑠 𝑗 ∈ 𝑆𝑖 and (C2) how do we choose

value 𝑝 𝑗 .

To address the challenge C1, we borrow the simple but powerful

technique first introduced in [33]: when processing 𝑆𝑖 , remove all

elements from X that lie in 𝑆𝑖 . Therefore, whether 𝑠 𝑗 ∈ X depends

only on the last occurrence of 𝑠 𝑗 , i.e., the last set 𝑆𝑖 for which 𝑠 𝑗 ∈ 𝑆𝑖
We now turn to the most critical challenge, C2. To this end,

we first note that the estimate

∑
𝑗
𝑁 (𝑝 𝑗)
𝑝 𝑗

is an unbiased estimator

of

��⋃𝑀
𝑖=1 𝑆𝑖

��
. Since we sample each 𝑠𝑖 independently, the standard

concentration bounds would yield (𝜀, 𝛿)-guarantees as long as every
element is sampled with sufficiently high probability. Observe that

when the elements are sampled with a very small probability, then

central moments of the estimator are too high in comparison to the

expectation. Technically, it suffices to have 𝑝 𝑗 ≥ 1

𝑘
. However, there

is, no apriori good estimate of 𝑘 ; our problem is, after all, to estimate

𝑘 . One possible strategy, explored in [33], would be to start with

setting 𝑝 = 1 and decrease 𝑝 every time the bucket X reaches its

capacity. To ensure that every element 𝑠 𝑗 is picked with 𝑝 𝑗 ≥ 1

𝑘
(with high probability), we would have to ensure that at every point

of the stream of length𝑀 , the value 𝑝 does not fall below
1

𝑘
, which

leads to a log𝑀 factor in the performance. Our key insight is that

an element 𝑠 𝑗 need not be picked with probability 𝑝 ≥ 1

𝑘
whenever

𝑠 𝑗 occurs in the stream, as whether 𝑠 𝑗 ∈ X depends only on the last

occurrence of 𝑠 𝑗 . Therefore, we only need to ensure that the last time

𝑠 𝑗 appears, it should be picked with probability 𝑝 𝑗 ≥ 1

𝑘
. A potential

obstacle is that it is not possible to determine if 𝑠 𝑗 will occur in the

future or not. We resolve the issue by observing that if we decide

on the probability 𝑝 with which elements of 𝑆𝑖 should be picked

based on the size of X, then we can lower bound the probability

𝑝 𝑗 for each 𝑠 𝑗 without any assumptions on the stream. We give

some details. Let I ⊆ [𝑀] be the set of indices corresponding to

the last occurrences for 𝑠 𝑗 ’s. Formally, 𝑖 ∈ I if for some 𝑠 𝑗 , we

have 𝑠 𝑗 ∈ 𝑆𝑖 and there is no 𝑖 ′ > 𝑖 such that 𝑠 𝑗 ∈ 𝑆𝑖′ . Observe that
regardless of the value of 𝑀 , since |⋃𝑖 𝑆𝑖 | ≤ |Ω | and there is a

surjection between

⋃
𝑖 𝑆𝑖 and I, we have |I | ≤ |Ω |. Therefore, to

bound the probability that for all 𝑠 𝑗 , we have 𝑝 𝑗 ≥ 1

𝑘
, we need to

perform union bound over at most |Ω | events, thereby, leading to
a log |Ω | factor in the expression for |X|. It is worth emphasizing

that we do not seek to process every occurrence of 𝑠 𝑗 with 𝑝 ≥ 1

𝑘
and therefore, we allow for the possibility that except for the last

occurrence, 𝑠 𝑗 was sampled with probability less than
1

𝑘
.

Organization: The rest of the paper is organized as follows. We

discuss notations and preliminaries in Section 2. In Section 3 we

describe related works. In Section 4, we present our main algorithm

Vatic and prove its correctness and establish complexity bounds,

thus proving Theorem 1.2. In Section 5, we present Ext-Vatic (an

5
For technical reasons, the estimator in our algorithm involves further resampling

step.

extension of Vatic) that works for set streams over Approximate-

Delphic families. Finally, in Section 6 we present a number of appli-

cations of our algorithms.

2 NOTATIONS AND PRELIMINARIES
We will denote by [𝑛] the set of natural numbers {1, 2, . . . , 𝑛} and
by

([𝑛]
𝑡

)
the set of all subsets of [𝑛] of size 𝑡 . For any 𝑡 ∈ N and

any 𝑝 ∈ [0, 1] we will also use Bin(𝑡, 𝑝) to denote the binomial

distribution over the set [𝑡] where probability of a number 0 ≤
𝑚 ≤ 𝑡 is

(𝑡
𝑚

)
𝑝𝑚 (1 − 𝑝)𝑡−𝑚 .

The main computational problem is the following.

Definition 2.1 (Estimating the union of (Approximate) Delphic

Sets). Given a stream of sets 𝑆1, 𝑆2, . . . 𝑆𝑀 where each 𝑆𝑖 is from an
(Approximate) Delphic family, give an (𝜀, 𝛿)-approximation of the
union

��⋃𝑀
𝑖=1 𝑆𝑖

��.
An important and well studied instantiation of the above generic

problem is the streaming version of the Klee’s Measure Problem

(KMP). In the following definition Δ could be any totally ordered

set, but without loss of generality we assume Δ = [𝑛] for some 𝑛.

Definition 2.2. A 𝑑-dimensional axis aligned rectangle r over the
universe Ω = Δ𝑑 is defined as a set [𝑎1, 𝑏1] × [𝑎2, 𝑏2] × . . .× [𝑎𝑑 , 𝑏𝑑],
where ∀𝑖 , 𝑎𝑖 , 𝑏𝑖 ∈ Δ and 𝑎𝑖 ≤ 𝑏𝑖 . Given a rectangle r, let Range(r)
denote the set of tuples {(𝑥1, . . . , 𝑥𝑑)} where 𝑎𝑖 ≤ 𝑥𝑖 ≤ 𝑏𝑖 and 𝑥𝑖 ∈ Δ.
For a set of rectangles R = {r1, · · · r𝑀 }, the volume of R is defined as

Volume(R) = | ∪1≤𝑖≤𝑀 Range(r𝑖) |

Definition 2.3 (Streaming KMP). Given 𝜀, 𝛿 , and a stream R =

⟨r1, r2, · · · r𝑀 ⟩, where each item r𝑖 is a d-dimensional rectangle over
Δ𝑑 , compute a (𝜀, 𝛿)-approximation Volume(R).

Note that every 𝑑-dimensional rectangle can be naturally and

succinctly represented by the tuple (𝑎1, 𝑏1, · · ·𝑎𝑑 , 𝑏𝑑). KMP is an

instantiation of the general framework since every rectangle r𝑖 ,
defines a set 𝑆𝑖 = Range(r𝑖), that satisfies the desired properties of

Delphic sets (see [33] for a proof) and Volume(R) =
��⋃𝑀

𝑖=1 𝑆𝑖
��
.

As done in the case of traditional space bounded computations,

for counting space, we will not include the space required to repre-

sent the input item. We will consider that input is available on a

read-only input tape (with random access) and do not contribute

to the space used by the algorithm. We consider unit-cost model

and assume all basic operations including arithmetic operations on

words can be performed in unit time. When the sets are Delphic

then, from the definition of Delphic sets, we know that the time

complexity for one query is 𝑂 (log |Ω |). So for the Delphic sets the

update time complexity (or the time complexity for processing an

item in the stream) will turn out to be𝑂 (log |Ω |) times the number

of oracle queries made while processing an item in the stream.

Notions of Approximations:We use two notions of (multiplicative)

approximation of a number. When we are concerned with approx-

imation algorithms for the size of the union of sets in a stream

(as in Theorem 1.2) our goal is to design an randomized algo-

rithm that is a (𝜀, 𝛿)-approximation of the size of the union of

the sets, where a random variable 𝑍 (output of the algorithm) is

an (𝜀, 𝛿)-approximation of 𝑌 if Pr[|𝑍 − 𝑌 | ≤ 𝜀 |𝑌 |] ≥ 1 − 𝛿. In
particular, we assume 𝜀 < 1. A weaker notion of approximation

is used in the definition of Approximate-Delphic oracles. A call to

an Approximate-Delphic oracle (Definition 1.4) for cardinality of

the set is required to return an (𝛼, 𝛿)-approximation of the size of

a set 𝑆 , where a random variable 𝑍 is an (𝛼, 𝛿)-approximation of

|𝑆 | if Pr[|𝑆 |(1+𝛼) ≤ 𝑍 ≤ (1 + 𝛼) |𝑆 |] ≥ 1 − 𝛿. Note that the second
notion of approximation is weaker (less demanding) than the first

notion of approximation. In particular, we allow the approxima-

tion parameter 𝛼 to be greater than 1. Thus we design algorithms

that approximates the size of the union of sets using the stronger

notion of approximation, while when designing algorithms for set

streams over Approximate-Delphic families the algorithm can work

with queries that gives a weaker guarantee in the approximation

of the size of a set. It will be clear from the context which notion of

approximation is being referred to.

Theorem 2.4 (Coupon Collector Problem). Given access to
uniform random samples from a set𝑇 and a number 𝑟 ≤ |𝑇 |, let 𝑍𝑟 be
a random variable that stands for the number of independent uniform
random samples from 𝑇 needed before we get 𝑟 distinct samples from
𝑇 . Then for any 𝛽 ≥ 1,

Pr [𝑍𝑟 > 𝛽𝑟 log 𝑟] ≤ 𝑟−(𝛽/2)+1 .

The proof of Theorem 2.4 for the case when |𝑇 | = 𝑟 is presented
in [27]. For completeness we present the proof of Theorem 2.4 in

the Appendix. We note that the upper bound can be improved to

𝑟−𝛽+1 with a more involved proof. However, for our purposes the

weaker bound suffices.

Independently picking elements from a set with a fixed probabil-
ity. A crucial operation that was used in [33] for their streaming

algorithm for Delphic sets is to sample a subset L of a set 𝑆 so that

each element of 𝑆 is in L independently with probability 𝑝 for a

given probability value 𝑝 . This operation is implemented by the

following sampling process P: first draw a number 𝐾 according to
the Binomial distribution 𝐵(|𝑆 |, 𝑝) and then draw 𝐾 distinct elements
at random from 𝑆 . We will also use this operation in our algorithm.

For completeness we give the proof of correctness of this process

below.

Claim 2.5. The sampling process P samples each element of 𝑆 inde-
pendently with probability 𝑝 .

The proof of Claim 2.5 is presented in the Appendix.

3 RELATEDWORK
Karp and Luby [23] considered the problem of determining the

cardinality of union of Delphic sets. Their setting assumed stor-

age of the entire stream, and the resulting algorithms are quite

unfriendly to streaming setting. In particular, a straightforward

adaption of Karp and Luby [23] (and the subsequent work of Karp,

Luby, and Madras [24]) would yield an algorithm with space and

time complexity𝑂 (𝑀 log |Ω |
𝜖2

log𝑀 log𝑛); the linear dependence on
𝑀 is highly undesirable from a streaming perspective.

A significant breakthrough for union of sets in streaming set-

ting is due to Flajolet–Martin [13], who focused on the restricted

case of singleton sets, also known as Distinct Elements problem.

Flajolet–Martin’s proposed scheme had, however, assumed access

to hash functions with strong independence. This independence

requirement was relaxed in the seminal work of Alon, Matias, and

Szegedy [1], who demonstrated that pairwise independent hash

functions suffice in the context of Distinct Elements. Alon, Matias,

and Szegedy kick started a long line of work on streaming algo-

rithms and Distinct Elements in particular, which culminated in the

design of algorithms with optimal space complexity𝑂 (log |Ω | + 1

𝜀2
)

and 𝑂 (1) update time [2, 15, 21].

Spurred by the success of design of algorithms with space com-

plexity independent of 𝑀 and with logarithmic dependence on

log |Ω | in the context of Distinct Elements problem, subsequent

work sought to handle broader classes of sets; of which a large body

of work can be categorized under the category of range-efficient
algorithms owing to the initial focus on the cases wherein every

𝑆𝑖 represents a range [𝑎𝑖 , 𝑏𝑖] i.e., all 𝑥 such that 𝑎𝑖 ≤ 𝑥 ≤ 𝑏𝑖 .

As noted earlier, Pavan and Tirthapura [29], Sun and Poon [31]

achieved range-efficient algorithms for single-dimensional ranges,

which is special of KMP for one dimension. The success in attempts

to achieve range-efficient algorithms for general version of the

problem was limited in the following years. In particular, Thirtha-

pura and Woodruff [34] achieved an algorithm with optimal space

complexity but the update time of the algorithm was 𝑂 (|Ω |). Sub-
sequently, Pavan, Vinodchandran, Bhattacharyya, and Meel [32]

also proposed another hashing-based technique with worst case

time complexity of 𝑂 (|Ω |).
The state of affairs was recently improved by Meel, Vinodchan-

dran, and Chakraborty [33]who designed a sampling-based strategy

that yielded the first algorithmwith poly(log |Ω |, 𝜀−1, log𝛿−1, log𝑀)
space and update time complexity. In this context, it is worth re-

marking that while the scheme due to Meel, Vinodchandran, and

Chakraborty shares high-level similarities with our algorithm; there

are crucial technical differences. In particular, their focus is to en-

sure that every item of the stream is sampled with 𝑝 ≥ 1

𝑘
, where

𝑘 = | ∪𝑖 𝑆𝑖 |, which yields a dependence of 𝑀 ; while we do take

a different route, as described in Section 1.2, to achieve bounds

independent of the stream size.

4 VATIC: AN ALGORITHM FOR UNKNOWN
STREAM SIZE

In this section we prove the following theorem.

Theorem 1.2. There is a streaming algorithm, which we callVatic,
that given real numbers 𝜀, 𝛿 < 1, and a stream S = ⟨𝑆1, 𝑆2, · · · , 𝑆𝑀 ⟩
of unknown length𝑀 where each 𝑆𝑖 ⊆ Ω belongs to a Delphic family,
computes an (𝜀, 𝛿)-approximation of

��⋃𝑀
𝑖=1 𝑆𝑖

��.
The algorithm has the worst case space complexity 𝑂 (log3 (|Ω |) ·

log(1/𝛿)
𝜀2
) and the update time complexity 𝑂 (log4 (|Ω |) · log(1/𝛿)

𝜀2
).

The algorithm, which we call Vatic, maintains a set X of tuples

(𝑠, 𝑝) where 𝑠 ∈ Ω and 0 < 𝑝 ≤ 1 is a probability value, which

is initialized to the empty set in the beginning. Each set of the

stream is processed by the outer for loop (lines 3 - 17). At the 𝑖𝑡ℎ

iteration when the set 𝑆𝑖 arrives, the algorithm first removes all

elements from X that are in 𝑆𝑖 (lines 4-6). Then it sets the ‘correct’

sampling rate 𝑝 for the set 𝑆𝑖 (lines 7- 10). During this computation,

it also generates a number𝑁𝑖 according to the Binomial distribution

Bin(|𝑆𝑖 |, 𝑝). The algorithm proceeds if 𝑝 ≥ log(4/𝛿)
𝜀2 |Ω | and indepen-

dently samples 𝑁𝑖 distinct elements from 𝑆𝑖 and adds to X (lines 12

- 17). Since the Delphic sets framework only allows sampling with

replacement, in order to sample 𝑁𝑖 distinct elements, the algorithm

generates up to 𝐾𝑖 samples for an appropriate value 𝐾𝑖 (set so that

by Coupon Collector bound we can guarantee 𝑁𝑖 distinct elements

are drawn with high probability). Finally, after all the elements in

the stream are processed, the algorithm updates X so that every

element is present in X with the lowest probability 𝑝0 among all

sampling probabilities (lines 18 - 20).

Algorithm 1 Vatic

1: Initialize 𝐵 ← 6 ·
(
log(4/𝛿)

𝜀2
log

(
4 |Ω |
𝛿

))
2: Initialize X ← ∅
3: for 𝑖 = 1 to𝑀 do
4: for all (𝑠, ∗) ∈ X do
5: if 𝑠 ∈ 𝑆𝑖 then
6: remove (𝑠, ∗) from X
7: Set 𝑝 ← 1/2 ⌈ |X |/𝐵⌉
8: 𝑁𝑖 ← Bin(|𝑆𝑖 |, 𝑝)
9: while 𝑝 > 1/2 ⌈(|X |+𝑁𝑖)/𝐵⌉

and 𝑝 ≥ log(4/𝛿)
𝜀2 |Ω | do

10: 𝑁𝑖 ← Bin(𝑁𝑖 , 1/2) and 𝑝 ← 𝑝/2
11: if 𝑝 ≥ log(4/𝛿)

𝜀2 |Ω | then

12: Set 𝐾𝑖 ← 4𝑁𝑖 · log(4Ω𝛿); L ← ∅
13: for k = 1 to 𝐾𝑖 do
14: 𝑦 ← Sample(𝑆𝑖)
15: if |L| < 𝑁𝑖 then
16: L ← L ∪ {(𝑦, 𝑝)}
17: X ← X ∪ L;
18: Let 𝑝0 = min{𝑝𝑠 | ∃𝑠, (𝑠, 𝑝𝑠) ∈ X}
19: for (𝑠, 𝑝𝑠) ∈ X do
20: With probability (1 − 𝑝0/𝑝𝑠) remove (𝑠, 𝑝𝑠) from X
21: Estimator: return |X |𝑝0

Proof. We will now prove the correctness guarantee of Vatic.

To this end, we first prove that with high probability every element

𝑦 in

⋃𝑚
𝑖=1 𝑆𝑖 is sampled with probability at least

log(4/𝛿)
𝜀2 · |Ω | . A crucial

observation is that, since before processing any set 𝑆 , we remove

all the elements of 𝑆 ∩ X from X, the event ‘𝑦 ∈ X′ only depends

on the outcome of sampling from the last set in which 𝑦 is present.

We fix an arbitrary 𝑦 ∈ ⋃𝑚
𝑖=1 𝑆𝑖 . We first define an event Good

as follows. For a element 𝑦, let 𝑆 𝑗 be the last set in the stream

where 𝑦 ∈ 𝑆 𝑗 and let 𝑝𝑦 be the random variable that dictates the

probability with which the elements of 𝑆 𝑗 are sampled and added

to X. Let 𝐷 = 2

⌈
log

(
log(4/𝛿)

𝜀2 ·|∪𝑗
𝑖=1

𝑆𝑖 |

)⌉
. Note that since the range of values

taken by 𝑝𝑦 is a (negative) power of 2, the event ‘𝑝𝑦 < 𝐷’ and

the event ‘𝑝𝑦 <
log(4/𝛿)
𝜀2 · |∪𝑗

𝑖=1
𝑆𝑖 |

’ are identical. Let 𝐹𝑦 be the event that

‘𝑝𝑦 < 𝐷 .’ Then the event Good is defined as: Good =
⋃

𝑦∈∪𝑀
𝑖=1

𝑆𝑖
𝐹𝑦

(the complement of

⋃
𝑦∈∪𝑀

𝑖=1
𝑆𝑖
𝐹𝑦).

We first prove the following claim.

Claim 4.1. Pr[Good] ≥ 1 − 𝛿
2

Proof. Let X𝑗 represent the set X at line 3 when 𝑖 = 𝑗 . First,

observe that for the event 𝐹𝑦 to happen, one of the following events

should happen: (C1) at the end of the while loop 7– 10, we have

𝑝 < 𝐷 ; we will denote this event as 𝐹 1𝑦 , or (C2) we fail to sample

at least 𝑁 𝑗 distinct elements in the for loop 13– 16; we will denote

this event as 𝐹 2𝑦 . This is because if we sample 𝑁 𝑗 distinct elements

from 𝑆 𝑗 where 𝑁 𝑗 ∼ Bin(|𝑆 𝑗 |, 𝑝), then by Claim 2.5, every element

of 𝑆 𝑗 will be independently sampled with probability 𝑝 . Therefore

the event that elements of 𝑆 𝑗 are sampled with probability < 𝑝

implies the event < 𝑁 𝑗 samples are chosen.

Therefore, Pr[𝐹𝑦] ≤ Pr[𝐹 1𝑦 ∪ 𝐹 2𝑦]. We will now upper bound

both 𝐹 1𝑦 and 𝐹 2𝑦 .

Bounding the probability of 𝐹 1𝑦 : Let 𝑁 𝑗 (𝐷) denote the value of 𝑁 𝑗

when 𝑝 = 𝐷 in line 9. For 𝐹 1𝑦 to happen, it must be the case that

⌈(|X𝑗 | + 𝑁 𝑗 (𝐷))/𝐵⌉ > log(1/𝐷), which implies that

X𝑗 + 𝑁 𝑗 (𝐷) ≥ 𝐵 · log
(
1

2𝐷

)
(1)

Now observe that for every iteration𝑘 of the outer for loop 3– 17,
for all (𝑠, 𝑝𝑠) tuples added toX, it holds true that 𝑝𝑠 < 1/2 ⌈(|X𝑘+1 |)/𝐵⌉
(recall, X𝑘+1 denotes the set X at line 3 when 𝑖 = 𝑘 + 1; i.e., after
the end of the iteration 𝑘). In other words, during the entire run

of the algorithm, a tuple (𝑠, 𝑝𝑠) will not be added to X whenever

|X| > 𝐵 · ⌊log(1/𝑝𝑠)⌋. Therefore, the following invariant holds true
in the entire run of the algorithm:

|{(𝑠, 𝑝𝑠) ∈ X | 𝑝𝑠 ≥ ℓ}| ≤ 𝐵 · ⌊log 1/ℓ⌋ (2)

Substituting ℓ = 4𝐷 and observing ⌊log
(

1

4𝐷

)
⌋ = log

(
1

4𝐷

)
, in

Eq 2, we have��{(𝑠, 𝑝𝑠) ∈ X𝑗 | 𝑝𝑠 ≥ 4𝐷
}�� ≤ 𝐵 · log (1

4𝐷

)
. (3)

Combining Eq 1 and Eq 3, we have��{(𝑠, 𝑝𝑠) ∈ X𝑗 | 𝑝𝑠 ≤ 2𝐷
}�� + 𝑁 𝑗 (𝐷) ≥ 𝐵 log

(
1

2𝐷

)
− 𝐵 log

(
1

4𝐷

)
= 𝐵

Let us define a random variable 𝑍 𝑗 (𝑝) to denote the size of set

obtained by picking every element of | ∪𝑗
𝑖=1

𝑆𝑖 | independently with

probability 𝑝 . Based on Chernoff Bound, we have Pr[𝑍 𝑗 (2𝐷) ≥
𝐵] ≤ 𝛿

4 |Ω | . Therefore,

Pr[𝐹 1𝑦] ≤ Pr[
��{(𝑠, 𝑝𝑠) ∈ X𝑗 | 𝑝𝑠 < 2𝐷

}�� + 𝑁 𝑗 (𝐷) ≥ 𝐵]

≤ Pr[𝑍 𝑗 (2𝐷) ≥ 𝐵] ≤
𝛿

4|Ω |

Bounding the probability of 𝐹 2𝑦 : To this end, observe that from the

Coupon Collector Theorem 2.4, we can bound Pr[|L| < 𝑁𝑖] ≤ 𝛿
4 |Ω | .

Therefore, we have Pr[𝐹𝑦] ≤ Pr[𝐹 1𝑦] + Pr[𝐹 2𝑦] ≤ 𝛿
2 |Ω | . Finally, by

observing that
log(4/𝛿)

𝜀2 ·
��⋃𝑀

𝑖=1 𝑆𝑖
�� ≥ log(4/𝛿)

𝜀2 · |∪𝑗
𝑖=1

𝑆𝑖 |
for all 𝑗 and taking union

bound over all 𝐹𝑦 , we obtain our desired probability. □

Now, we are ready to prove the correctness guarantee of Vatic.

To this end, we first observe that the expected value of the output

of the algorithm, E
(
|X |
𝑝0
| Good

)
=
��⋃𝑀

𝑖=1 𝑆𝑖
��
.

Let us denote the event that ‘the output of Vatic is outside

the interval [(1 − 𝜀)
��⋃𝑀

𝑖=1 𝑆𝑖
��, (1 + 𝜀)��⋃𝑀

𝑖=1 𝑆𝑖
��]’ by Error. Then, we

can bound Pr[Error | Good] by a straightforward application of

Chernoff bound.

Pr[Error | Good] = Pr

[���� |X|𝑝0 − ��⋃𝑀
𝑖=1 𝑆𝑖

������ ≥ 𝜀��⋃𝑀
𝑖=1 𝑆𝑖

�� | Good]
≤ 𝛿/2

Hence, Pr[Error] ≤ Pr[Good] + Pr[Error | Good] ≤ 𝛿
2
+ 𝛿

2
= 𝛿 .

Correctness of the space complexity bound: From the invariant as

stated in Eq 2 and the bound that 𝑝0 ≥ log(4/𝛿)
𝜀2 ·
��⋃𝑀

𝑖=1 𝑆𝑖
�� ≥ 1/|Ω |, we

have that at any point of the execution of the algorithm, |X| ≤
log |Ω |·𝐵 = 𝑂 (log2 |Ω |· log(1/𝛿)

𝜀2
). An element ofX takes𝑂 (log(|Ω |))

space to store. Hence the space complexity is𝑂 (log3 |Ω | · log(1/𝛿)
𝜀2
).

Correctness of the update time bound: Note that for processing a set

𝑆𝑖 , the time to sample 𝑁𝑖 distinct elements from 𝑆𝑖 (from lines 13
to 16) dominates the rest of the running time, which is invoked

at most 𝐾𝑖 times. Therefore, since each sampling operation takes

𝑂 (logΩ), the total update time is 𝑂 (log4 (|Ω |) · log(1/𝛿)
𝜀2
).

□

5 APPROXIMATE-DELPHIC SETS
Webegin bymaking a few observations about (𝛼,𝛾, 𝜂)-Approximate-

Delphic Oracles. The first observation is that the probability of suc-

cess of the oracle call for the approximate cardinality of a set can be

amplified using the median trick (by making multiple queries and

outputting the median value) - the proof follows from a standard

application of Chernoff’s bounds. The second observation is on get-

ting 𝐾 distinct samples from a set using the approximate sampling

oracle. The proof of the second item follows from the bound on the

Coupon Collector problem.

Observation 5.1. (1) Given access to an Approximate-Delphic
set 𝑆 through the (𝛼,𝛾, 𝜂)-Approximate-Delphic oracle that
gives an (𝛼,𝛾)-approximation of |𝑆 |, by querying the oracle
𝑂 (log𝑇𝛾) times we can obtain an (𝛼, 1/𝑇)-approximation of
|𝑆 |, for any integer 𝑇 . Also, if 𝐾 is an (𝛼, 1/𝑇)-approximation
of |𝑆 | then (1 + 𝛼)𝐾 has the guarantee that with probability
≥ (1 − 1/𝑇)

|𝑆 | ≤ (1 + 𝛼)𝐾 ≤ (1 + 𝛼)2 |𝑆 |.

(2) Given access to a set 𝑆 through the (𝛼,𝛾, 𝜂)-Approximate-
Delphic Oracle, for any𝐾 , using𝑂 ((1+𝜂)𝐾 log(𝑇𝐾)) samples
from (𝛼,𝛾, 𝜂)-Approximate-Delphic oracle to sample from 𝑆 ,
with probability ≥ (1−1/𝑇) we can obtain at leastmin{𝐾, |𝑆 |}
distinct samples of 𝑆 . In particular, for the case 𝐾 = |𝑆 |, with
𝑂 ((1 + 𝜂) |𝑆 | log(𝑇 |𝑆 |)) approximate sampling oracle queries,
we can compute |𝑆 | with probability ≥ (1 − 1/𝑇).

The algorithm for Approximate-Delphic families follows the

approach of Vatic. But before we present the algorithm, we need to

make some crucial observations about the implementation of Vatic

and how to adapt it to work for a set stream over Approximate-

Delphic family.

A crucial operation that we use for the implementation of our

algorithm Vatic is that drawing each element of a set 𝑆 indepen-

dently with probability 𝑝 for a fixed probability 𝑝 . Claim 2.5 shows

that this can be implemented by sampling process P: first by draw-

ing a number 𝐾 according to the Binomial distribution 𝐵(|𝑆 |, 𝑝)
and then drawing 𝐾 distinct elements at random from 𝑆 .

The above process crucially depends on knowing the exact size

of the set 𝑆 and that one can sample uniformly at random from the

set 𝑆 . These are not guaranteed in the case of Approximate-Delphic

sets. However, we argue that we can work with approximations to

implement the sampling procedure.

First, let us assume that we have |𝑆 | but we only have access

to an 𝜂-random sampling oracle. In this case, if we draw samples

(using an 𝜂-random sampling oracle) until we obtain 𝑘 distinct

elements of 𝑆 then probability of an element getting selected is

between 𝑘/(1 + 𝜂) |𝑆 | and (1 + 𝜂)𝑘/|𝑆 |. Thus if we draw a number

𝑘 according to the Binomial distribution 𝐵(|𝑆 |, 𝑝) and then draw 𝑘

distinct elements at random from 𝑆 using an 𝜂-random sampling or-

acle, then the probability that an element in 𝑆 is selected is between∑
𝑘

𝑘
(1+𝜂) |𝑆 | Pr[𝑘 ∼ 𝐵(|𝑆 |, 𝑝)] and

∑
𝑘
𝑘 (1+𝜂)
|𝑆 | Pr[𝑘 ∼ 𝐵(|𝑆 |, 𝑝)], that

is between 𝑝/(1 + 𝜂) and 𝑝 (1 + 𝜂). Now, if we only have an (𝛼,𝛾)-
approximation of |𝑆 | (instead of the exact value of |𝑆 |), it is still
possible to design a sampling process where each item of 𝑆 is se-

lected independently with a probability that is between 𝑝/2(1 + 𝜂)
and 𝑝 (1 + 𝜂) (1 + 𝛼)2, which will be sufficient for our purposes. We

detail this process in the next claim.

Claim 5.2. Let 𝑆 be any set and 𝑍 be an (𝛼,𝛾)-approximation of
|𝑆 |. For any 𝑝 ≤ 1

2(1+𝛼)2 , consider the process: first draw a number
𝑘 according to the Binomial distribution Bin(𝑍 (1 + 𝛼), 𝑝) and then
draw 𝑘 distinct samples using an 𝜂-random sampling oracle from 𝑆 .
Then with probability at least (1 − 𝛾) each element of 𝑆 is picked
independently and for any element 𝑥 ∈ 𝑆

𝑝

2(1 + 𝜂) ≤ Pr[𝑥 is picked] ≤ (1 + 𝛼)2𝑝 (1 + 𝜂), (4)

assuming 𝑆 ≥ 3 log 2(1 + 𝜂)/𝑝

Claim 5.2 is similar to that of Claim 2.5. The proof of Claim 5.2

is presented in the Appendix.

Wewill need onemore claim to prove the algorithm’s correctness

that estimates the size of Approximate-Delphic Sets. The claim

follows from a standard application of Chernoff’s bound.

Claim 5.3. Let 𝑅 be a set of 𝑁 elements and each element of 𝑅 is
selected independently with some probability that is guaranteed to be
between 𝛽1𝑝 and 𝛽2𝑝 . Let 𝑃 be the random variable that counts the
number of selected items. Then, assuming 𝛽1 ≤ 1 ≤ 𝛽2,

Pr [(1 − 𝜀)𝛽1𝑝𝑁 ≤ 𝑃 ≤ (1 + 𝜀)𝛽2𝑝𝑁] ≥ 1 − 2𝑒−𝜀
2𝑝𝑁𝛽1 .

Using Observation 5.1, Claim 5.2 and Claim 5.3 we now present

the generalization of Vatic to handle Approximate-Delphic sets.

The algorithm to estimate the size of the union of the sets from an

Approximate-Delphic family with access to a (𝛼,𝛾, 𝜂)-Approximate-

Delphic Oracle is presented in Ext-Vatic. The correctness and the

space and the update time complexities of Ext-Vatic is presented

in the following theorem which is restated.

Theorem 1.5. There is a streaming algorithm, which we call
Ext-Vatic that, given real numbers 𝜀, 𝛿 < 1, and a stream S =

⟨𝑆1, 𝑆2, · · · , 𝑆𝑀 ⟩ of unknown length𝑀 where each 𝑆𝑖 ⊆ Ω belongs to
anApproximate-Delphic family, and access to an (𝛼,𝛾, 𝜂)-Approximate-
Delphic oracle for some 𝛼,𝛾, 𝛿 for members of the family, outputs
a number in the range [(1−𝜀)

2(1+𝜂) (1+𝛼) |
⋃𝑀

𝑖=1 𝑆𝑖 |, (1 + 𝜀) (1 + 𝜂) (1 +
𝛼) |⋃𝑀

𝑖=1 𝑆𝑖 |] The worst case space complexity of the algorithm is

𝑂 ((log3 |Ω |) log(1/𝛿) · (1+𝜂)
𝜖2
). The algorithm, while processing any

item of the stream, makes

�̃� ((log3 |Ω |) log(1/𝛿) log(1

1 − 𝛾)
(1 + 𝜂)
𝜖2
)

calls to the (𝛼,𝛾, 𝜂)-Approximate-Delphic Oracle in the worst case.

Algorithm 2 Ext-Vatic

1: Initialize 𝐿 =
log(8/𝛿)

𝜀2
· 2(1 + 𝜂)

2: Initialize 𝐵 ←
(
𝐿 log

(
2 |Ω |
𝛿

))
3: Initialize Thresh1 ← 3 log(2(1 + 𝜂) |Ω |/𝐿)
4: Initialize Thresh2 ← (1 + 𝜂) · Thresh1 · log(8 |Ω |𝛿

· Thresh1)
5: Initialize X ← ∅
6: for 𝑖 = 1 to𝑀 do
7: for all (𝑠, ∗) ∈ X do
8: if 𝑠 ∈ 𝑆𝑖 then
9: remove (𝑠, ∗) from X
10: for k = 1 to Thresh2 do
11: Pick a random sample 𝑦 from 𝑆 (using the 𝜂-sampling

oracle)

12: if 𝑦 is not in Y then
13: Y = Y ∪ {𝑦}
14: if |Y| ≤ Thresh1 then
15: 𝐸𝑖 = |Y|
16: else
17: 𝐸𝑖 = (1 +𝛼)𝑇𝑖 ; [𝑇𝑖 is an (𝛼, 𝛿/4|Ω |)-approximation of |𝑆𝑖 |]

18: Reset Y to ∅
19: Set 𝑝 ← 1/2(1 + 𝛼)2
20: Pick 𝑁𝑖 from the binomial distribution Bin(𝐸𝑖 (1 + 𝛼), 𝑝)
21: while 𝑝 > 1/2 ⌈(|X |+𝑁𝑖)/𝐵⌉

and 𝑝 ≥ 𝐿/|Ω | do
22: 𝑁𝑖 ← Bin(𝑁𝑖 , 1/2) and 𝑝 ← 𝑝/2
23: if 𝑝 > 𝐿/|Ω | then
24: Set 𝐾𝑖 ← 4𝑁𝑖 · log(4Ω𝛿)
25: for k = 1 to 𝐾𝑖 do
26: 𝑦 ← Sample(𝑆𝑖)
27: if |L| < 𝑁𝑖 then
28: L ← L ∪ {(𝑦, 𝑝)}
29: X ← X ∪ L;
30: Let 𝑝0 = min{𝑝𝑠 | ∃𝑠, (𝑠, 𝑝𝑠) ∈ X}
31: for (𝑠, 𝑝𝑠) ∈ X do
32: With probability (1 − 𝑝0/𝑝𝑠) remove (𝑠, 𝑝𝑠) from X
33: Output

|X |
𝑝 (1+𝛼)

6 APPLICATIONS
So far, we have presented key technical results in the context of

Delphic and Approximate-Delphic sets in their generality and pre-

sented algorithms Vatic and Ext-Vatic. We also demonstrated

that the streaming version of the well-known Klee’s Measure Prob-

lem fits in the Delphic family framework (this has already been

done in [33]). In this section, we discuss how algorithms Vatic and

Ext-Vatic can be applied to a wide range of significant computa-

tional problems.

6.1 Applications of the Delphic Family
Framework

We now briefly discuss streaming problems that fit the Delphic

family framework. The descriptions of these problems, except that

of the Hypervolume estimation problem, are based on [33], where

the significance of these problems is discussed in some detail.

Hypervolume indicator estimation: Hypervolume indicator estima-

tion is a special case of KMP wherein every rectangle has the origin

(0, 0, . . . 0) as a vertex. We define it as follows: A 𝑑-dimensional axis

aligned rectangle r over an universe Ω = Δ𝑑 , rooted at the origin, is
defined as the set [0, 𝑏1] × [0, 𝑏2] × . . . × [0, 𝑏𝑑]. Given a rectangle

r rooted at origin, let Range(r) denote set of tuples {(𝑥1, . . . , 𝑥𝑑)}
where 0 ≤ 𝑥𝑖 ≤ 𝑏𝑖 and 𝑥𝑖 ∈ Δ. Such a 𝑑-dimensional rectangle can

be succinctly represented by the tuple (𝑏1, 𝑏2, · · · , 𝑏𝑑). Hypervol-
ume indicator estimation problem is the following: Given a stream

R of size𝑀 such that R = ⟨r1, r2, · · · r𝑀 ⟩, where each item r𝑖 is a
𝑑-dimensional rectangle rooted at the origin over Ω = Δ𝑑 , give a
(𝜀, 𝛿)-approximation of the VolumeR, the volume of R.

Hypervolume indicator is employed to measure the quality of

Pareto sets in the context of multi-objective optimization [35]. We

point the readers to a recent survey [18] for details on this impor-

tant quality measure and computational problems and algorithms

related to it.

Test Coverage Estimation: For an 𝑛-bit string a = 𝑎1𝑎2 · · ·𝑎𝑛 ∈
{0, 1}𝑛 , the 𝑡-coverage of a, denoted by Cov𝑡 (a), is defined as

Cov𝑡 (a) =
{
(𝑇, y) | 𝑇 ⊂ [𝑛], |𝑇 | = 𝑡, y ∈ {0, 1}𝑡

and the restriction of a to indices in 𝑇 gives y}

The input is a stream A of size 𝑀 such that A = ⟨a1, . . . , a𝑀 ⟩
where a𝑖 ∈ {0, 1}𝑛 , the 𝑡-coverage of A, denoted by Cov𝑡 (A), is
defined as Cov𝑡 (A) = ∪1≤𝑖≤𝑀Cov𝑡 (a𝑖).

The test coverage estimation problem is: Given a stream A =

a1, · · · , a𝑀 , compute an (𝜀, 𝛿)-approximation of |Cov𝑡 (A)| for any
given 𝑡 .

Observe that corresponding to every a𝑖 , we can construct the

set 𝑆𝑖 = Cov𝑡 (a), which satisfies the desired properties of Delphic

sets.

Model Counting for DNF: Let 𝑋 be a set of 𝑛 Boolean variables. A

literal is a variable or its negation. A formula 𝜑 over 𝑋 is in DNF if

it is represented as a disjunction of conjunctions of literals. Each

such conjunction is called a term, therefore, 𝜑 over 𝑀 terms is

represented as 𝑇1 ∨𝑇2 ∨ . . . ∨𝑇𝑀 . Let Sol(𝜑) represent the set of
satisfying assignments of 𝜑 . The streaming version of the DNF

model counting problem is the following: Given a DNF formula

𝜑 = 𝑇1∨𝑇2∨ . . .∨𝑇𝑀 , as a stream ⟨𝑇1, . . . ,𝑇𝑀 ⟩ of𝑀 terms, compute

an (𝜀, 𝛿)-approximation of |Sol(𝜑) |.
Corresponding to every term 𝑇𝑖 , we can construct the set 𝑆𝑖 =

Sol(𝑇𝑖), which satisfies the desired properties of Delphic sets.

6.2 Applications of the Approximate-Delphic
Family Framwork

We now discuss natural problems that can be framed as set union es-

timation problems over the Approximate-Delphic family. In general,

these problems are related to well-known computational problems

for which exact counting is #P-hard, but there are efficient approxi-

mate counting algorithms. We briefly discuss some of them here

without details about parameters.

Discrete volume of convex bodies: The problem is to compute a (𝜀, 𝛿)-
approximation of discrete volume (number of lattice points) of the

union of a set of convex bodies in a set stream. An item in the stream

is a list of vertices or facets of a polytope P. Membership checking

(i.e., to check whether 𝑥 ∈ P, i.e., whether x lies inside the polytope
P) can be accomplished in polynomial time. But, in its generality,

even approximating the number of integer points in an arbitrary

polytope is NP-hard. However, there are efficient sampling and

approximate counting algorithms for special cases. An interesting

and somewhat general case is when each polytope P is large: in

particular, P is large enough to contain a ball of radius Ω(𝑛
√
log𝑚)

where 𝑛 is the dimension, and𝑚 is the number of facets. In this

case, Kannan and Vempala gave polynomial-time algorithms for

approximate uniform sampling and also to approximately count

the number of lattice points of P within a constant factor [22].

Knapsack counting problem: #KNAP is the following problem: Given

a non-negative vector a = (𝑎1, . . . , 𝑎𝑛) and non-negative integer

𝑏; count the number of 𝑥 ∈ {0, 1}𝑛 so that

∑
𝑖 𝑎𝑖𝑥𝑖 ≤ 𝑏. In the set

streaming problem, each item is a #KNAP instance and goal is to

approximate the size of the union of the sets described by each

instance. It is known that the exact counting is #P-hard. A good

body of research has gone into designing approximate counting

(and sampling) algorithms for #KNAP [11, 12, 16, 26]. In particular,

[16] designed a deterministic fully polynomial time approximation

scheme for the #KNAP and an algorithm to uniformly sample from

the set described by an instance.

Boolean Circuits: As mentioned in Remark 1.6, Boolean circuits are

general enough to be able to represent a large class of sets. In the set

streaming setting, each item in the stream is a Boolean circuit𝐶 over

𝑛-bit binary strings. The problem is to give an (𝜀, 𝛿)-approximation

of the union of sets represented by all the circuits in the stream.

While the problem of computing the exact size of the set represented

by a Boolean circuit is #P-hard, the (𝛼,𝛾, 𝜂)-Approximate-Delphic

oracle can be implemented with poly(|𝐶 |, log 1/𝛾, 1/𝛼, 1/𝜂) calls to
an NP oracle [20, 30].

7 CONCLUSION
In this paper, we present the first streaming algorithm for obtaining

an (𝜀, 𝛿)-approximation of the size of the union of Delphic sets

using only poly(log |Ω |, 𝜀−1, log𝛿−1) worst-case space and update

time complexity, independent of the stream size. We also extend

our result to handle Approximate-Delphic sets. These two results

answer two of the open problems from [33]. We would like to note

that both our algorithms can be adapted to obtain approximate-

uniform sampling algorithms from the union of the sets. While we

achieved the broad goal of designing algorithms with no depen-

dence on the stream size𝑀 for a large class of problems, there are

more questions that need to be explored. A natural direction to

explore would be to improve the space and update time complexity,

in particular their dependence on log(|Ω |). For special cases of Del-
phic sets such as DNF [32] and Distinct Elements [21], algorithms

with only linear dependence on log(|Ω |) for space complexity with

poly(log(|Ω |)) update time complexity are known (ignoring the

dependence on 𝜀 and 𝛿). It is worth remarking that there is lower

bound of Ω((log |Ω | + 1

𝜀) · log(1/𝛿)) for Distinct Elements. Trivially,

this lower bound also holds for estimating the union of Delphic Sets.

Bridging the gap between lower and upper bounds in the context

of Delphic sets remains an important open question.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers of PODS 22 for valuable com-

ments and suggestions that help improve the presentation of the

paper. This work was supported in part by National Research

Foundation Singapore under its NRF Fellowship Programme[NRF-

NRFFAI1-2019-0004], Ministry of Education Singapore Tier 2 grant

MOE-T2EP20121-0011, NSFCCF-2130608 andHDR:TRIPODS-1934884

awards.

REFERENCES
[1] Noga Alon, Yossi Matias, and Mario Szegedy. 1999. The Space Complexity of

Approximating the FrequencyMoments. J. Comput. Syst. Sci. 58, 1 (1999), 137–147.
https://doi.org/10.1006/jcss.1997.1545

[2] Ziv Bar-Yossef, TS Jayram, Ravi Kumar, D Sivakumar, and Luca Trevisan. 2002.

Counting distinct elements in a data stream. In International Workshop on Ran-
domization and Approximation Techniques in Computer Science. Springer, 1–10.

[3] Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. 2002. Reductions in streaming

algorithms, with an application to counting triangles in graphs. In Proc. of SODA.
ACM/SIAM, 623–632.

[4] Jon Louis Bentley. 1977. Algorithms for Klee’s rectangle problems. Technical

Report. Technical Report, Computer.

[5] Karl Bringmann and Tobias Friedrich. 2010. Approximating the volume of unions

and intersections of high-dimensional geometric objects. Comput. Geom. 43, 6-7
(2010), 601–610.

[6] Timothy M Chan. 2010. A (slightly) faster algorithm for Klee’s measure problem.

Computational Geometry 43, 3 (2010), 243–250.

[7] Eric Y Chen and Timothy M Chan. 2005. Space-efficient algorithms for Klee’s

measure problem. algorithms 3, 5 (2005), 6.
[8] Bogdan S Chlebus. 1998. On the Klee’s measure problem in small dimensions. In

International Conference on Current Trends in Theory and Practice of Computer
Science. Springer, 304–311.

[9] S. A. Cook. 1971. The complexity of theorem-proving procedures. In Proceedings
of the third annual ACM symposium on Theory of computing (STOC). ACM, New

York, NY, USA, 151–158. https://doi.org/10.1145/800157.805047

[10] P. Dagum, R. Karp, M. Luby, and S. Ross. 2000. An optimal algorithm for Monte

Carlo estimation. SIAM Journal on computing 29, 5 (2000), 1484–1496.

[11] Martin Dyer. 2003. Approximate Counting by Dynamic Programming. In Pro-
ceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing
(STOC ’03). Association for Computing Machinery, New York, NY, USA, 693–699.

https://doi.org/10.1145/780542.780643

[12] Martin Dyer, Alan Frieze, Ravi Kannan, Ajai Kapoor, Ljubomir Perkovic, and

Umesh Vazirani. 1993. A Mildly Exponential Time Algorithm for Approximating

the Number of Solutions to a Multidimensional Knapsack Problem. Combina-
torics, Probability and Computing 2, 3 (1993), 271–284. https://doi.org/10.1017/

S0963548300000675

[13] Philippe Flajolet and G Nigel Martin. 1985. Probabilistic counting algorithms

for data base applications. Journal of computer and system sciences 31, 2 (1985),
182–209.

[14] Michael L Fredman and Bruce Weide. 1978. On the complexity of computing the

measure of

⋃
[ai, bi]. Commun. ACM 21, 7 (1978), 540–544.

[15] Phillip B Gibbons and Srikanta Tirthapura. 2001. Estimating simple functions on

the union of data streams. In Proceedings of the thirteenth annual ACM symposium
on Parallel algorithms and architectures. 281–291.

[16] Parikshit Gopalan, Adam Klivans, Raghu Meka, Daniel Štefankovic, Santosh

Vempala, and Eric Vigoda. 2011. An FPTAS for #Knapsack and Related Counting

Problems. In 2011 IEEE 52nd Annual Symposium on Foundations of Computer
Science. 817–826. https://doi.org/10.1109/FOCS.2011.32

[17] Joachim Gudmundsson and Rasmus Pagh. 2017. Range-Efficient Consistent

Sampling and Locality-Sensitive Hashing for Polygons. In 28th International
Symposium on Algorithms and Computation, ISAAC 2017, December 9-12, 2017,
Phuket, Thailand (LIPIcs), Yoshio Okamoto and Takeshi Tokuyama (Eds.), Vol. 92.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 42:1–42:13.

[18] Andreia P. Guerreiro, Carlos M. Fonseca, and Luís Paquete. 2021. The Hypervol-

ume Indicator: Computational Problems and Algorithms. ACM Comput. Surv. 54,
6, Article 119 (jul 2021), 42 pages. https://doi.org/10.1145/3453474

[19] J. Hartmanis and R.E. Stearns. 1966. Algebraic Structure Theory of Sequential
Machines. Prentice Hall.

[20] M.R. Jerrum, L.G. Valiant, and V.V. Vazirani. 1986. Random generation of combi-

natorial structures from a uniform distribution. Theoretical Computer Science 43,
2-3 (1986), 169–188.

[21] Daniel M. Kane, Jelani Nelson, and David P.Woodruff. 2010. An optimal algorithm

for the distinct elements problem. In Proc. of PODS. ACM, 41–52.

[22] Ravi Kannan and Santosh Vempala. 1997. Sampling Lattice Points. In Proceedings
of the Twenty-Ninth Annual ACM Symposium on Theory of Computing (STOC ’97).
Association for Computing Machinery, New York, NY, USA, 696–700. https:

//doi.org/10.1145/258533.258665

[23] R.M. Karp and M. Luby. 1983. Monte-Carlo algorithms for enumeration and

reliability problems. Proc. of FOCS (1983).
[24] Richard M Karp, Michael Luby, and Neal Madras. 1989. Monte-Carlo approxima-

tion algorithms for enumeration problems. Journal of Algorithms 10, 3 (1989),
429 – 448. https://doi.org/10.1016/0196-6774(89)90038-2

[25] Victor Klee. 1977. Can the Measure of be Computed in Less than O (n log n)

Steps? The American Mathematical Monthly 84, 4 (1977), 284–285.

[26] Ben Morris and Alistair Sinclair. 2004. Random Walks on Trun-

cated Cubes and Sampling 0-1 Knapsack Solutions. SIAM J. Com-
put. 34, 1 (2004), 195–226. https://doi.org/10.1137/S0097539702411915

arXiv:https://doi.org/10.1137/S0097539702411915

[27] P.Motwani, R.and Raghavan. 1995. Randomized algorithms. Cambridge University

Press, New York, NY, USA.

[28] MarkHOvermars and Chee-Keng Yap. 1991. New upper bounds in Klee’s measure

problem. SIAM J. Comput. 20, 6 (1991), 1034–1045.
[29] A. Pavan and Srikanta Tirthapura. 2007. Range-Efficient Counting of Distinct

Elements in a Massive Data Stream. SIAM J. Comput. 37, 2 (2007), 359–379.
[30] L.J. Stockmeyer. 1974. The complexity of decision procedures in Automata Theory

and Logic. Ph.D. Dissertation. MIT. Project MAC Technical Report TR-133.

[31] He Sun and Chung Keung Poon. 2007. Two Improved Range-Efficient Algorithms

for F 0 Estimation. In International Conference on Theory and Applications of
Models of Computation. Springer, 659–669.

[32] A. Pavan r○ N. V. Vinodchandran r○ Arnab Bhattacharyya r○ Kuldeep S. Meel.

2021. Model Counting meets 𝐹0 Estimation. In Proceedings of ACM Symposium
on Principles of Database Systems (PODS).

[33] Kuldeep S. Meel r○N.V. Vinodchandran r○ Sourav Chakraborty. 2021. Estimating

the Size of Unions of Sets in Streaming Models. In Proceedings of ACM Symposium
on Principles of Database Systems (PODS).

[34] Srikanta Tirthapura and David P. Woodruff. 2012. Rectangle-efficient aggregation

in spatial data streams. In Proc. of PODS. ACM, 283–294.

[35] Eckart Zitzler, Dimo Brockhoff, and Lothar Thiele. 2007. The hypervolume in-

dicator revisited: On the design of Pareto-compliant indicators via weighted

integration. In International Conference on Evolutionary Multi-Criterion Optimiza-
tion. Springer, 862–876.

https://doi.org/10.1006/jcss.1997.1545
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/780542.780643
https://doi.org/10.1017/S0963548300000675
https://doi.org/10.1017/S0963548300000675
https://doi.org/10.1109/FOCS.2011.32
https://doi.org/10.1145/3453474
https://doi.org/10.1145/258533.258665
https://doi.org/10.1145/258533.258665
https://doi.org/10.1016/0196-6774(89)90038-2
https://doi.org/10.1137/S0097539702411915
https://arxiv.org/abs/https://doi.org/10.1137/S0097539702411915

A PROOF OF CLAIM 2.5
Claim 2.5. The sampling process P samples each element of 𝑆 inde-
pendently with probability 𝑝 .

Proof. For any𝑥 ∈ 𝑆 , the probability of choosing𝑥 is∑𝑘
𝑘
|𝑆 | Pr[𝑘 ∼

𝐵(|𝑆 |, 𝑝)]. Using the definition of Binomial distribution we have

|𝑆 |∑
𝑘=0

𝑘

|𝑆 | Pr [𝑘 ∼ 𝐵(|𝑆 |, 𝑝)] =

|𝑆 |∑
𝑘=0

𝑘

|𝑆 |

(
|𝑆 |
𝑘

)
𝑝𝑘 (1 − 𝑝) |𝑆 |−𝑘

=

|𝑆 |∑
𝑘=1

(
|𝑆 | − 1
𝑘 − 1

)
𝑝𝑘 (1 − 𝑝) |𝑆 |−𝑘

= 𝑝 ·
|𝑆 |−1∑
𝑘=0

(
|𝑆 | − 1
𝑘

)
𝑝𝑘 (1 − 𝑝) |𝑆 |−1−𝑘

= 𝑝

Now, to prove that each element of 𝑆 is chosen independently let

us calculate the probability of choosing any specific 𝑥1, . . . , 𝑥𝑡 from

𝑆 . Note that, when one picks a subset of size 𝑘 from 𝑆 , probability

that all 𝑥1, . . . , 𝑥𝑡 is picked is 0 if 𝑘 < 𝑡 and is

(𝑘
𝑡

)
/
(|𝑆 |
𝑡

)
otherwise.

So, the probability that our process will of choose 𝑥1, . . . , 𝑥𝑡 is

|𝑆 |∑
𝑘=0

(𝑘
𝑡

)(|𝑆 |
𝑡

) Pr [𝑘 ∼ 𝐵(|𝑆 |, 𝑝)]
=

|𝑆 |∑
𝑘=𝑡

(𝑘
𝑡

)(|𝑆 |
𝑡

) Pr [𝑘 ∼ 𝐵(|𝑆 |, 𝑝)]
=

|𝑆 |∑
𝑘=𝑡

(𝑘
𝑡

)(|𝑆 |
𝑡

) 𝑘𝑝𝑘 (1 − 𝑝) |𝑆 |−𝑘
=

|𝑆 |∑
𝑘=𝑡

(
|𝑆 | − 𝑡
𝑘 − 𝑡

)
𝑝𝑘 (1 − 𝑝) |𝑆 |−𝑘

= 𝑝𝑡 ·
|𝑆 |−𝑡∑
𝑘=0

(
|𝑆 | − 𝑡
𝑘

)
𝑝𝑘 (1 − 𝑝) |𝑆 |−𝑡−𝑘

= 𝑝𝑡

Thus, for any set of 𝑡 elements in 𝑆 probability that the 𝑡 elements

are chosen is 𝑝𝑡 . This proves that all the items of 𝑆 are chosen

independently with probability 𝑝 .

□

B PROOF OF CLAIM 5.2
Claim 5.2. Let 𝑆 be any set and 𝑍 be an (𝛼,𝛾)-approximation of
|𝑆 |. For any 𝑝 ≤ 1

2(1+𝛼)2 , consider the process: first draw a number
𝑘 according to the Binomial distribution Bin(𝑍 (1 + 𝛼), 𝑝) and then
draw 𝑘 distinct samples using an 𝜂-random sampling oracle from 𝑆 .
Then with probability at least (1 − 𝛾) each element of 𝑆 is picked
independently and for any element 𝑥 ∈ 𝑆

𝑝

2(1 + 𝜂) ≤ Pr[𝑥 is picked] ≤ (1 + 𝛼)2𝑝 (1 + 𝜂), (4)

assuming 𝑆 ≥ 3 log 2(1 + 𝜂)/𝑝

Proof. Since 𝑍 is an (𝛼,𝛾)-approximation of |𝑆 |, by definition

we have with probability at least (1−𝛾), |𝑆 |/(1+𝛼) ≤ 𝑍 ≤ (1+𝛼) |𝑆 |.
In the rest of the proof we will show that Equation 4 holds assuming,

|𝑆 |/(1 + 𝛼) ≤ 𝑍 ≤ (1 + 𝛼) |𝑆 |. The Claim will thus follow. We

now, prove the upper and lower bound on Pr[𝑥 is picked] in the

Equation 4.

Upper bound: For any 𝑥 ∈ 𝑆 , the probability of 𝑥 getting selected is

≤ ∑
𝑘
𝑘 (1+𝜂)
|𝑆 | Pr[𝑘 ∼ 𝐵(𝑍 (1 + 𝛼), 𝑝)] which is less than or equal to

𝑝
𝑍 (1+𝛼)
|𝑆 | (1 +𝜂) (by identical argument as in the proof of Claim 2.5).

Since 𝑍 ≤ (1+𝛼) |𝑆 | the above quantity is less than (1+𝛼)2𝑝 (1+𝜂)
with probability ≥ (1 − 𝛾).
Lower bound: On the other hand, if it so happens that the number 𝑘

drawn from Bin(𝑍 (1 + 𝛼), 𝑝) is bigger than the actual size of the

set 𝑆 then drawing 𝑘 distinct elements from 𝑆 would be impossible.

But since 𝑝 ≤ 1

2(1+𝛼)2 and 𝑆 ≥ 3 log 2(1 + 𝜂)/𝑝 then by Chernoff

bound we have that Pr[𝑘 > |𝑆 |] < 𝑝/2(1 + 𝜂). Thus the probability
that an element 𝑥 is drawn is

≥
|𝑆 |∑
𝑘=0

𝑘

|𝑆 | (1 + 𝜂) Pr[𝑘 ∼ 𝐵(𝑍 (1 + 𝛼), 𝑝)]

≥
𝑍 (1+𝛼)∑
𝑘=0

𝑘

|𝑆 | (1 + 𝜂) Pr[𝑘 ∼ 𝐵(𝑍 (1 + 𝛼), 𝑝)] −
𝑝

2(1 + 𝜂)

=
𝑝

2(1 + 𝜂)
The final equality follows from identical argument as in the proof of

Claim 2.5. The proof that the elements of 𝑆 are picked independently

is follows from identical argument as in the proof of Claim 2.5.

□

C PROOF OF COUPON COLLECTOR
PROBLEM

Theorem C.1 (Coupon Collector Problem). Given access to
uniform random samples from a set𝑇 and a number 𝑟 ≤ |𝑇 |, let 𝑍𝑟 be
a random variable that stands for the number of independent uniform
random samples from 𝑇 needed before we get 𝑟 distinct samples from
𝑇 . Then for any 𝛽 ≥ 1

Pr [𝑍𝑟 > 𝛽𝑟 log 𝑟] ≤ 𝑟−(𝛽/2)+1 .

Proof. Let us divide the elements in 𝑇 into (𝑟 + 1 number of

disjoint buckets 𝐵0, 𝐵1, . . . , 𝐵𝑟 of size [|𝑇 |/𝑟], where for all 𝑖 ≠ 0

the size of the bucket 𝐵𝑖 is [|𝑇 |/𝑟] and the 𝐵0 contains the rest of

the items, that is {|𝑇 |/𝑟 } items. Here we denote by [𝑥] the largest
integer less than or equal to 𝑥 and {𝑥} denots 𝑥 − [𝑥]. Let {|𝑇 |/𝑟 }
be 𝑡 and [|𝑇 |/𝑟] be 𝑠 . . Note 0 ≤ 𝑡 < 𝑟 and |𝑇 | = 𝑠𝑟 + 𝑡 , and hence

𝑠𝑟 ≤ |𝑇 |/2.
Let us draw a set of 𝛽𝑟 log 𝑟 independent samples from the set𝑇 .

Note that this means that with probability 𝑠/|𝑇 | an element from a

bucket 𝐵𝑖 is drawm. Let 𝐴𝑖 denote the random variable indicating

whether an element from bucket 𝐵𝑖 is not drawn. Note that

Pr[𝐴𝑖] =
(
1 − 𝑠

|𝑇 |

)𝛽𝑟 log 𝑟
=

(
1

𝑒

)𝛽 𝑠𝑟
|𝑇 | log 𝑟

≤ 𝑟−
𝑠𝑟
|𝑇 | 𝛽 .

So the probability that the random variable 𝑍𝑟 is more than

𝛽𝑟 log 𝑟 is less than the probability that some element of each of the

Algorithm 3 Ext-APS-Estimator

1: Initialize Thresh1 ←
(
log(8/𝛿)+log𝑀

𝜀2

)
2: Initialize Thresh2 ← 3 log(2|Ω | (1 + 𝜂))
3: Initialize Thresh3 ← (1 + 𝜂) · Thresh2 · log(|Ω | · Thresh2)
4: Initialize 𝑝 ← 1/2(1 + 𝛼)2
5: Initialize X,Y ← ∅
6: for 𝑖 = 1 to𝑀 do
7: for all (𝑠, ∗) ∈ X do
8: if 𝑠 ∈ 𝑆𝑖 then
9: remove (𝑠, ∗) from X
10: for k = 1 to Thresh3 do
11: Pick a random sample 𝑦 from 𝑆 (using the 𝜂-sampler)

12: if 𝑦 is not in Y then
13: Y = Y ∪ {𝑦}
14: if |Y| ≤ Thresh2 then
15: 𝐸𝑖 = |Y|
16: else 𝐸𝑖 = (1+𝛼)𝑇𝑖 ; [𝑇𝑖 is an (𝛼, 𝛿/2|Ω |)-approximation of |𝑆𝑖 |]

17: Reset Y to ∅
18: Pick a number 𝑁𝑖 from the binomial distribution 𝐵(𝐸𝑖 , 𝑝)
19: while 𝑁𝑖 + |X| is more than Thresh1 do
20: Throw away each element of X with probability 1/2
21: 𝑁𝑖 = 𝐵(𝑁𝑖 , 1/2) and 𝑝 = 𝑝/2
22: for k = 1 to 𝑁𝑖 do
23: Draw a random sample 𝑦 from 𝑆𝑖 such that 𝑥 ∉ X
24: Add 𝑥 to X.
25: Output

|X |
𝑝 (1+𝛼)

buckets 𝐵1, . . . , 𝐵𝑟 is not drawn when 𝛽𝑟 log 𝑟 elements are drawn

uniformly and independently at random. Thus,

Pr [𝑍𝑟 > 𝛽𝑟 log 𝑟] ≤ Pr[∪𝑟𝑖=1𝐴𝑖] ≤
𝑟∑
𝑖=1

Pr[𝐴𝑖] = 𝑟−
𝑠𝑟
|𝑇 | |𝛽+1 .

Since 𝑠𝑟 ≥ |𝑇 |/2 so have Pr [𝑍𝑟 > 𝛽𝑟 log 𝑟] ≤ 𝑟−(𝛽/2)+1 .
□

D EXTENSION OF THE APS-ESTIMATOR
ALGORITHM (FROM [33]) TO
APPROXIMATE-DELPHIC SETS

The technique used in the proof of Theorem 1.5 can be used to ex-

tend the algorithmAPS-Estimator (from [33]) to workwith (𝛼,𝛾, 𝜂)-
Approximate-Delphic sets. Ext-APS-Estimator is the extended

algorithm. It also uses a slightly different implementation of the

algorithm as compared to that in [33]. The proof the following

theorem follows using exactly the same arguments as used in The-

orem 1.5, and thus we skip the proof of this theorem. Note that,

as in [33], the algorithm Ext-APS-Estimator needs to know the

size of the stream in advance and the complexity depends on the

size of the stream.

TheoremD.1. Given any reals numbers 0 < 𝜀, 𝛿 < 1, and a stream
S = ⟨𝑆1, 𝑆2 · · · , 𝑆𝑀 ⟩ wherein each 𝑆𝑖 ⊆ Ω belongs to anApproximate-
Delphic family, the algorithm Ext-APS-Estimator, given access to
an (𝛼,𝛾, 𝜂)-Approximate-Delphic Oracle, outputs a number that is

between (1−𝜀)
2(1+𝜂) (1+𝛼) |

⋃𝑀
𝑖=1 𝑆𝑖 | and (1 + 𝜀) (1 + 𝜂) (1 + 𝛼) |

⋃𝑀
𝑖=1 𝑆𝑖 |.

The algorithm has worst case space complexity𝑂
(
log

(
|Ω |
𝛿

)
· (1+𝜂)

𝜖2

)
.

For the update time the number of calls to the (𝛼,𝛾, 𝜂)-Approximate-

Delphic Oracle is �̃�
(
(1 + 𝜂) log2 (|Ω |) · log(1/𝛿𝛾)

)
.

E PROOF OF THEOREM 1.5
Proof. We first prove the correctness of the algorithm. Note

that the algorithm is exactly same as Vatic except following few

points:

- The constants Thresh1 and Thresh2 are so set such that from

Observation 5.1 we have: after the for loop in Line 10-13

is completed, while processing the set 𝑆𝑖 , the number of

elements inY is at least min{|𝑆𝑖 |, Thresh1} with probability

≥ (1 − 𝛿/8|Ω |).
- Thus after the if-else condition in Line 14-17 𝐸𝑖 = |𝑆𝑖 | if
|𝑆𝑖 | ≤ Thresh1 and else with probability at least (1−𝛿/8|Ω |),
|𝑆𝑖 |
(1+𝛼) ≤ 𝐸𝑖 ≤ |𝑆𝑖 | (1 + 𝛼).

- The constant Thresh1 is so set that with 𝑝 ≤ 1/2(1 + 𝛼)2
using Claim 5.2 one can see that in Line 20- 29 each element

in 𝑆𝑖 is added to X independently with probability that is

between 𝑝/2(1 + 𝜂) and (1 + 𝛼)2𝑝 (1 + 𝜂).
Now following the same argument as in proof of Theorem 1.2 we

see that at the end of the stream for any element of 𝑥 ∈ ∪𝑖𝑆𝑖 is
(𝑥, 𝑝𝑥) is in the set X with probability between 𝑝𝑥/2(1 + 𝜂) and
(1+𝛼)2𝑝𝑥 (1+𝜂) and 𝑝𝑥 ≥ 𝐿/| ∪𝑖 𝑆𝑖 |. Thus from Claim 5.3 we have

that with probability ≥ (1 − 𝛿
4

(1 − 𝜀)
2(1 + 𝜂) | ∪𝑖 𝑆𝑖 | ≤

|X|
𝑝
≤ (1 + 𝛼)2 (1 + 𝜂) | ∪𝑖 𝑆𝑖 |.

By using union bound over all the possible errors we bound the

total error probability to ≤ 𝛿 .
The space complexity is obvious from the pseudocode. The up-

date time complexity also follows easily. The only thing to keep

in mind is that in Line 17 an access to an

(
𝛼,

𝛿/4
|Ω | , 𝜂

)
-Approximate-

Delphic oracle is needed and this, as observed in Observation 5.1,

needs log(4|Ω |/𝛿) calls to an (𝛼,𝛾, 𝜂)-Approximate-Delphic Oracle.

□

F PROOF OF CASCADE BINOMIAL SAMPLING
Our sampling process involves sampling the binomial distribution

Bin(𝑛, 𝑝) for a positive integer 𝑛 (cardinality of a set in the stream)

and a probability 𝑝 that is adaptively chosen. In general to sam-

ple the distribution Bin(𝑛, 𝑝𝑞) the process we employ a cascading

process: first sample Bin(𝑛, 𝑝) to get a number 𝑙 and then sample

Bin(𝑙, 𝑞). Let S denote this process. For completeness we give proof

of correctness that S is same as sampling from Bin(𝑛, 𝑝𝑞).

Theorem F.1. Let 𝑛 be a positive integer and 0 ≤ 𝑝, 𝑞 ≤ 1 be
probability values. Consider the following sampling process S: First
get 𝑙 according to Bin(𝑛, 𝑝) and then get 𝑘 according to Bin(𝑙, 𝑞). Then
the sampling process S is same as sampling Bin(𝑛, 𝑝𝑞).

Proof. We will show that Pr(𝑘 ← S) = Pr(𝑘 ← Bin(𝑛, 𝑝𝑞)) =(𝑛
𝑘

)
(𝑝𝑞)𝑘 (1 − 𝑝𝑞)𝑛−𝑘 .

Pr(𝑘 ← S) =

𝑛∑
𝑙=0

Pr

(
𝑘 ← Bin(𝑙, 𝑞) | 𝑙 ← Bin(𝑛, 𝑝)

)
· Pr(𝑙 ← Bin(𝑛, 𝑝))

=

𝑛∑
𝑙=0

(
𝑙

𝑘

)
𝑞𝑘 (1 − 𝑞)𝑙−𝑘 ·

(
𝑛

𝑙

)
𝑝𝑙 (1 − 𝑝)𝑛−𝑙

=

𝑛∑
𝑙=0

(
𝑛

𝑙

) (
𝑙

𝑘

)
𝑝𝑙 (1 − 𝑝)𝑛−𝑙𝑞𝑘 (1 − 𝑞)𝑙−𝑘

=

𝑛∑
𝑙=0

(
𝑛

𝑘

) (
𝑛 − 𝑘
𝑙 − 𝑘

)
𝑝𝑙 (1 − 𝑝)𝑛−𝑙𝑞𝑘 (1 − 𝑞)𝑙−𝑘

=

(
𝑛

𝑘

) 𝑛∑
𝑙≥𝑘

(
𝑛 − 𝑘
𝑙 − 𝑘

)
𝑝𝑙 (1 − 𝑝)𝑛−𝑙𝑞𝑘 (1 − 𝑞)𝑙−𝑘

=

(
𝑛

𝑘

) 𝑛−𝑘∑
𝑟=0

(
𝑛 − 𝑘
𝑟

)
𝑝𝑟+𝑘 (1 − 𝑝)𝑛−𝑟−𝑘𝑞𝑘 (1 − 𝑞)𝑟

=

(
𝑛

𝑘

)
(𝑝𝑞)𝑘

𝑛−𝑘∑
𝑟=0

(
𝑛 − 𝑘
𝑟

)
𝑝𝑟 (1 − 𝑝)𝑛−𝑟−𝑘 (1 − 𝑞)𝑟

=

(
𝑛

𝑘

)
(𝑝𝑞)𝑘

𝑛−𝑘∑
𝑟=0

(
𝑛 − 𝑘
𝑟

)
𝑝𝑟 (1 − 𝑞)𝑟 (1 − 𝑝)𝑛−𝑟−𝑘

=

(
𝑛

𝑘

)
(𝑝𝑞)𝑘

(
(1 − 𝑞)𝑝 + 1 − 𝑝

)𝑛−𝑘
=

(
𝑛

𝑘

)
(𝑝𝑞)𝑘 (1 − 𝑝𝑞)𝑛−𝑘

= Pr

(
𝑘 ← Bin(𝑛, 𝑝𝑞)

)

□

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques

	2 Notations and Preliminaries
	3 Related Work
	4 Vatic: An Algorithm for Unknown Stream Size
	5 Approximate-Delphic Sets
	6 Applications
	6.1 Applications of the Delphic Family Framework
	6.2 Applications of the Approximate-Delphic Family Framwork

	7 Conclusion
	References
	A Proof of Claim 2.5
	B Proof of Claim 5.2
	C Proof of Coupon Collector Problem
	D Extension of the APS-Estimator algorithm (from MVC21) to Approximate-Delphic Sets
	E Proof of Theorem 1.5
	F Proof of Cascade Binomial Sampling

