
Assessing Heuristic Machine Learning
Explanations with Model Counting ?

N. Narodytska1, A. Shrotri2, K. Meel3, A. Ignatiev4,5, and J. Marques-Silva4

1 VMware Research, CA, USA nnarodytska@vmware.com
2 Rice University, Houston, USA as128@rice.edu

3 National University of Singapore, Singapore meel@comp.nus.edu.sg
4 Faculty of Science, University of Lisbon, Portugal
{aignatiev,jpms}@ciencias.ulisboa.pt

5 ISDCT SB RAS, Irkutsk, Russia

Abstract. Machine Learning (ML) models are widely used in decision making
procedures in finance, medicine, education, etc. In these areas, ML outcomes can
directly affect humans, e.g. by deciding whether a person should get a loan or be
released from prison. Therefore, we cannot blindly rely on black box ML models
and need to explain the decisions made by them. This motivated the develop-
ment of a variety of ML-explainer systems, including LIME and its successor
ANCHOR. Due to the heuristic nature of explanations produced by existing tools,
it is necessary to validate them. We propose a SAT-based method to assess the
quality of explanations produced by ANCHOR. We encode a trained ML model
and an explanation for a given prediction as a propositional formula. Then, by
using a state-of-the-art approximate model counter, we estimate the quality of the
provided explanation as the number of solutions supporting it.

1 Introduction
The advances in Machine Learning (ML) in recent years explain, to a large ex-

tent, the impact and societal significance commonly attributed to Artificial Intelligence
(AI). As an indirect consequence, the fast growing range of ML applications includes
settings where safety is paramount (e.g. self-driving vehicles), but also settings were
humans are directly affected (e.g. finance, medicine, education, and judiciary). Work
on improving confidence in ML models includes both solutions for verifying properties
of these models, but also approaches for explaining predictions, namely in situations
where the operation of the ML model is not readily interpretable by a human decision
maker. The general field of eXplainable AI (XAI) targets both the development of nat-
urally interpretable ML models (e.g. decision trees or sets), but also the computation
of explanations in settings where the ML model is viewed as a black-box, e.g. neural
networks, ensembles of classifiers, among others.

The best-known XAI approaches are heuristic-based, and offer so-called local ex-
planations, in the sense that the space of feature values is not analyzed exhaustively.
? This work was supported by FCT grants ABSOLV (LISBOA-01-0145-FEDER-028986),

FaultLocker (PTDC/CCI-COM/29300/2017), SAFETY (SFRH/BPD/120315/2016), SAM-
PLE (CEECIND/04549/2017), National Research Foundation Singapore under its AI Singa-
pore Programme AISG-RP-2018-005 and NUS ODPRT Grant R-252-000-685-133.

mailto:nnarodytska@vmware.com
mailto:as128@rice.edu
mailto:meel@comp.nus.edu.sg
mailto:aignatiev@ciencias.ulisboa.pt
mailto:jpms@ciencias.ulisboa.pt


2 Narodytska et al.

Among a number of recently proposed approaches for computing local explanations,
LIME [23] and its successor ANCHOR [24] represent two successful instantiations.
However, and since both LIME and ANCHOR are heuristic-based, a natural question is:
how accurate in practice are heuristic-based explanations? This paper focuses on AN-
CHOR [24] (since it improves upon LIME [23]) and proposes a novel approach for as-
sessing the quality of heuristic approaches for computing (local) explanations. For each
computed explanation, ANCHOR reports a measure of quality, namely the estimated pre-
cision of the explanation, i.e. the percentage of instances where the explanation applies
and the prediction matches. Starting from an encoding of the ML model, the explanation
computed by ANCHOR, and the target prediction, this paper proposes to use (approxi-
mate) model counting for assessing the actual precision of the computed explanation.
Concretely, the paper considers Binarized Neural Networks (BNNs) [15], exploits a
recently proposed propositional encoding for BNNs [22], and assesses the quality of
ANCHOR on well-known datasets. As we demonstrate, the quality of ANCHOR’s ex-
planations can vary wildly, indicating that there are datasets where the explanations of
ANCHOR are fairly accurate, but also that there are datasets where the explanations
of ANCHOR can be rather inaccurate. The somewhat unexpected conclusions of our
experimental evaluation offer further evidence to the need of formal techniques in XAI.

2 Preliminaries
Boolean Satisfiability. We assume notation and definitions standard in the area of

Boolean Satisfiability (SAT), i.e. the decision problem for propositional logic [5]. For-
mulas are represented in Conjunctive Normal Form (CNF) and defined over a set of
variables Y = {y1, . . . , yn}. A CNF formula F is a conjunction of clauses, a clause is
a disjunction of literals, and a literal li is a variable yi or its complement ¬yi. A truth
assignment is a map from variables to {FALSE, TRUE}. Given a truth assignment, a
clause is satisfied iff at least one of its literals is assigned value TRUE. A formula is sat-
isfied iff all of its clauses are satisfied. If there is an assignment µ that satisfies formula
F , then F is said to be satifiable, and assignment µ is called a model of formula F .

CNF encodings of cardinality constraints, i.e. constraints of the form
∑n
i=0 li ◦ k

where ◦ ∈ {<,≤,=, 6=,≥, >}, have been studied extensively, and will be assumed
throughout [5]. In this work we employ reified cardinality constraints: y ⇔

∑n
i=0 li ≥

k. We use the full sequential counters encoding [31] to model this constraint in SAT.
However, other encodings can be used.

Model counting. Given a CNF formula, the problem of model counting is to calcu-
late the number satisfying assignments or models. For a formula F , we denote its count
by #F . This problem is complete for the complexity class #P [36], which contains
the entire polynomial hierarchy [35]. Despite the high complexity, a number of tools for
exact model counting have been developed [27,34,21,17], which were shown to work
well on certain benchmarks arising in practice. However, for many applications, obtain-
ing exact counts is not necessary and a good approximation often suffices, especially
when it leads to better scalability. These requirements have led to the emergence of
approximate counting approaches [13,7,32] which employ universal hash functions [6]
along with specialized SAT solvers [33] for balancing accuracy and scalability. In our
experiments, we use a state-of-the-art tool called ApproxMC3 [32] which takes as in-



Assessing Heuristic Machine Learning Explanations with Model Counting 3

put a CNF formula F along with a tolerance value ε and confidence δ, and outputs an
approximate count C such that Pr[ 1

(1+ε)#F ≤ C ≤ (1 + ε)#F ] ≥ 1 − δ, where
the probability is defined over the random choice of hash functions. A key advantage
of ApproxMC3 is that it supports projected model counting, i.e. for a formula F over
variable set Y = Y1 ∪ Y2, ApproxMC3 can approximately count the number of as-
signments to the variables in Y1, called sampling set, such that the formula ∃Y2(F)
evaluates to true. Since we use parsimonious encodings of cardinality constraints in the
current work, projection is not strictly required from a correctness perspective. Never-
theless, it greatly speeds up computation as our encoding scheme provides us access
to independent support [1], which is specified as sampling set. Furthermore, usage of
projection may be necessary for applying our approach to other encodings and more
complex models.

Classification problems. We define the supervised classification problem. We are
given a dataset of training samples (i.e. a training set) E = {e1, . . . , eM} over a set
of categorical features F = {f1, . . . , fK}. Each sample ei is a pair {(vi1, . . . , viK), qi},
where (vi1, . . . , v

i
K) are values of the corresponding features, vji ∈ Z, and qi determines

the class of the sample ei, qi ∈ Q, where Q is a set of possible classes. Note that we
assume that all features are categorical, so vji s take only discrete values.

Solving a classification problem consists of building a classifier function that maps
a sample to its class label, G : {0, 1}K → Q. Given a training set, a classifier is learned
during the training phase so that it captures the relationship between samples and class
labels. After the training phase is complete, the classifier is fixed. W.l.o.g. we work with
a binary classification problem, so that Q = {0, 1}. However, our approach also works
for the classification with multiple class labels case, without additional modifications.

Binarized Neural Networks. A binarized neural network (BNN) is a feedforward
network where weights and activations are binary and take values {−1, 1} [15]. A BNN
is built from blocks of layers. Each block performs a number of linear and non-linear
transformations such as batch normalization, hyperbolic tangent, and binarization. Whi-
le internal layers of a block can produce real-valued intermediate outputs, the output of
the block is a binary vector. The output of the last layer is a real-valued vector of size
|Q| that is used to determine the winner.

3 Explanations for Machine Learning Models
There is a large body of work on generating explanations for ML models

[26,20,19,25,37,29,2,3]. The main motivation for this line of research is the practical
need to interpret, analyze and understand decisions of ML models, as these decisions
can affect humans. For example, ML models can be used to decide whether a person
should get a loan or be released from prison [16,28]. There are multiple ways to attack
the explainability problem depending on our assumptions about the model. One ap-
proach is to treat the model as a white box. For example, we can analyze an ML model
and extract a (nearly) equivalent interpretable model, e.g. one can distill a neural net-
work into a decision tree model [14,38]. However, this approach has several drawbacks,
e.g. a converter needs to be developed for each pair of model classes, the extraction of
an equivalent model can be computationally hard, etc. There are also heuristic gradient-
based white-box methods [30], but they are mostly designed for computer vision tasks.



4 Narodytska et al.

An alternative approach is to treat the ML model as a black box. Methods that make
no assumptions about the underlying ML model are known as model-agnostic expla-
nation generators. Since working with black-box models is challenging, these methods
are restricted to finding explanations that hold locally in a subspace of the input space.
Prominent examples include ML-explainer LIME and its successor ANCHOR [23,24].

In this work, we consider ANCHOR, proposed by Ribeiro et al. [24], which is the
only system that generates explanations, but also provides quality metrics for them.
However, these metrics are obtained purely heuristically and are not guaranteed to be
accurate. We take this approach a step further, proposing a rigorous method with guar-
anteed error bounds. Since this problem is intractable in the general case, we focus on
types of ML models that allow a succinct representation as a Boolean formula. For such
models, we reformulate the computation of quality metrics as a Boolean logic problem,
specifically the problem of determining the number of solutions of a Boolean formula.

3.1 ANCHOR’s Heuristic Explanations
We start by describing the concepts behind ANCHOR. We use notations and defini-

tions from [24]. ANCHOR introduces the notion of an anchor explanation, which is “a
rule [over inputs] that sufficiently anchors the prediction locally so that changes to the
rest of inputs does not affect the prediction”. Let e = ((v1, . . . , vK), eq) be a sample
from the dataset E and let us denote vector (v1, . . . , vK) of input feature values by ev .

Example 1. Consider a sample e from the adult dataset describing characteristics of
a person [16]. A sample contains twelve features such as age, sex, race, occupation,
marriage status, etc. We consider a binary classifier that predicts whether the income of
a person is above or below $50K. Suppose we have a sample:
e = ((Age is (37, 48], Private, Husband, Sales, White, Male, Married), > $50K).

Hence, ev = (Age is (37, 48], Private, Husband, Sales, White, Male, Married) is the
vector of features (some features are undefined) and the class label eq is > $50K. ut

LetA be a set of predicates over input features ev such that ev satisfies all predicates
in A, denoted A(ev) = 1. An anchor is defined as follows.

Definition 1. A set of unary predicates A is an anchor for prediction eq of model G if
ED(e′v|A)[G(e′v) = eq] ≥ τ,A(ev) = 1, (1)

whereD(e′v | A) denotes samples that satisfyA and τ is a parameter close to 1. In other
words, A is an anchor if all samples that match A are most likely classified as eq .

Example 2. Continuing with our example, the ANCHOR algorithm starts from a sample
e and a trained ML model. Assume that it produces an anchor A = (White, Male). The
interpretation of this anchor is that if we consider a population of white males then the
ML model mostly likely predicts the class > $50K. ut

To estimate the quality of the explanation, the following precision metric of anchor
was introduced:

prec(A) = ED(e′v|A)[G(e′v) = eq], (2)



Assessing Heuristic Machine Learning Explanations with Model Counting 5

In other words, the precision metric measures the fraction of samples that are classified
as eq among those that match A. As pointed out in [24], for an arbitrary dataset and a
black-box model, it is intractable to compute this precision directly, prompting a prob-
abilistic definition of precision P (prec(A) ≥ τ) ≥ 1−δ, where τ and δ are parameters
of the algorithm. The problem of finding a high-precision anchor was formulated as a
pure-exploration multi-armed bandit problem and solved using a dedicated algorithm.
In our example, the precision of A is 0.99%.

Indeed, for an arbitrary model computing the exact precision value is intractable.
However, we argue that for a rich class of models we can compute the precision metric
exactly or get a good approximation of this value.

3.2 Model-Counting Based Assessment of Explanations

In this section, we discuss how to evaluate the quality of explanations produced
by ANCHOR for a subclass of ML models. Our main idea is to compute the precision
metric directly using an logical representation of the ML model. Here we focus on ML
models that admit an equivalent CNF encoding. For such models, we can formulate
the problem of computing the precision metric as a model counting problem. To obtain
such formulation, we need to encode the following three components as a CNF: (a) the
ML model, (b) the anchor and (c) the set of valid inputs.

First, we define a subclass of ML models suitable for our approach. Consider an ML
model G that maps an input vector x to an output vector o, o = G(x). The prediction of
the model is given by ARGMAX(o).For simplicity, we consider a binary classification
problem, so we have two classes, hence, o is a 2-dimensional vector. We require that
there exists a CNF representation of the model, denoted BING(x, s), that simulates the
model in the following sense: all models of BING(x, s) such that s = 0 are exactly the
samples that are classified as class 0 by G. Likewise, all models of BING(x, s) such that
s = 1 are samples that are classified as class 1 by G. For now, we assume that such
models exist and consider a concrete classifier in the next session. Second, we consider
a CNF encoding of an anchor A. We recall that A is a set of unary predicates over input
categorical features, so it can be easily translated to CNF. We denote a CNF encoding
of A as BINA. Third, we need a declarative representation of the space of samples. We
require that a set of valid samples can be defined using a propositional formula that
we denote by BIND(x). The assumption that the input space can be represented as a
logical formula is standard in the line of work on verification of neural networks [18,12].
However, it might not hold for some datasets, like images. An encoding of a valid
instance space is an interesting research direction, which is outside the scope of this
work. There are a number of natural cases that allow such representation. First, we
can assume that all possible combinations of input features are valid. For instance, in
Example 1, any combination of features is a plausible sample. Second, we may want
to restrict the considered inputs, e.g. we would like to consider all inputs that are close
to a given sample e w.r.t. a given distance measure. Finally, a user might have a set of
preferences over samples that are expressible as a Boolean formula.

Now we put all three components together into the following formula
PA(x, s) = BING(x, s) ∧ BINA(x) ∧ BIND(x). (3)



6 Narodytska et al.

Structure of kth internal block, BLOCKk : {−1, 1}nk → {−1, 1}nk+1 on input xk ∈ {−1, 1}nk

LIN y = Akxk + bk , where Ak ∈ {−1, 1}nk+1×nk and bk ∈ Rnk+1

BN zi = αki

(
yi−µki
σki

)
+ γki , where y = (y1, . . . , ynk+1), and αki , γki , µki , σki ∈ Rnk+1

BIN xk+1 = sign(z) where z = (z1, . . . , znk+1) ∈ Rnk+1 and xk+1 ∈ {−1, 1}nk+1

Structure of output block, OUTPUT : {−1, 1}nd → {0, 1} on input xd ∈ {−1, 1}nd

LIN w = Adxd + bd, where Ad ∈ {−1, 1}2×nd and bd ∈ R2

BN o = αo
(
w−µo
σo

)
+ γo, where w = (w1, w2), and αo, γo, µo, σo ∈ R2

Table 1: Structure of internal and output blocks which, stacked together, form a BNN.

Then the precision of an anchor A for model G and prediction eq defined by (2) can
be written as

M =
#(PA(x, s) ∧ s = eq)

#(PA(x, s))
. (4)

In other words, M measures the fraction of models that are classified as eq among
those that match A and satisfy D. Hence, this is exactly the fraction of models that
defines the precision of the anchor A in (2). In practice, even for small ML models
exact model counting is not feasible. Therefore, we use an efficient approximate model
counting algorithm called ApproxMC3.

4 Encoding of Binarized Neural Networks
Let us discuss BNNs, which is our underlying machine learning model. A BNN

can be described in terms of blocks of layers that map binary vectors to binary vectors.
Hence, we define a block of binarized neural network (referred to as BLOCK) as a func-
tion that maps an input x to an output x′, i.e. BLOCK : {−1, 1}n → {−1, 1}m. The last
block has a different structure OUTPUT : {−1, 1}n → R2. Each BLOCK takes an input
vector x and applies three transformations: LIN, BN and BIN 6. Table 1 shows trans-
formations of internal and output blocks in detail. It was shown in [22], that BLOCK
can be encoded as a system of reified cardinality constraints that can be translated into
a Boolean formula efficiently [31]. We recall the main idea of the encoding.

Encoding of BLOCK. BLOCK applies three transformations: LIN, BN and BIN to
an input vector x. The main insight here is that instead of applying these transformations
sequentially, we can consider a composition of these functions. Hence, we relate input
and output of a block as follows.

x′ =

{
1, if α

(
(Ax+b)−µ

σ

)
+ γ ≥ 0

−1, otherwise

Next we note that we can re-group the inequality condition in such a way that the
left side of the inequality must take the integer value and the right side is a real value.
Namely, assuming α > 0 (α < 0 is similar), we rewrite inequality condition as Ax ≥
−γσ
α − b+µ. Note that Ax is an integer vector and −γσα − b+µ is a real-valued vector.

6 In the training phase, there is an additional hard tanh layer after batch normalization but it is
redundant in the inference phase.



Assessing Heuristic Machine Learning Explanations with Model Counting 7

Hence, we can perform rounding of the right hand side safely. This gives a relation that
contains only integers, so it can be encoded into CNF efficiently.

Encoding of OUTPUT. For our purpose, we only need to know whether o1 ≥ o2.
We introduce a Boolean variable s that captures this relation.

s =

{
0, if αo1

(
w1−µo1

σo1

)
+ γo1 ≥ αo2

(
w2−µo2

σo2

)
+ γo2

1, otherwise
(5)

As w = Adxd + bd, we can re-group the inequality condition the same way as for
the BLOCK to obtain a reified constraint over integers. So, we have that s = 0 iff the
prediction is the 0th class and s = 1 otherwise.

CNF Encoding. Based on the encoding of blocks BLOCK and OUTPUT,
the network can be represented as a Boolean formula: BINBNN(x, s) ≡∧D
i=1 BINBLOCKd(x

d−1, xd) ∧ BINO(xD, s), where BINBLOCKd(x
d−1, xd) encodes

the dth block BLOCK with an input xd and an output xd+1, d ∈ [1, D], BINO is a
Boolean encoding of the last set of layers. Note that BINBNN(x, s) satisfies the re-
quirements for ML model encoding that we stated in the previous section.

5 Experimental Results
In this section we present results of our experimental evaluation. Our goal is to

assess the quality of ANCHOR’s precision metric.
Datasets. We consider three well-known publicly available datasets that were used

in [24]. These datasets were processed the same way7 as in [24]. The adult dataset [16]
was collected by the Census bureau, where it was used to predict whether a given
adult person earns more than $50K a year depending on various attributes. The lend-
ing dataset was used to predict whether a loan on the Lending Club website will be
granted. The recidivism dataset was used to predict recidivism for individuals released
from North Carolina prisons in 1978 and 1980 [28].

ML model. We trained a BNN on each benchmark with three internal BLOCKs and
an OUTPUT block. There are 25 neurons per layer on average. We use a standard onehot
encoding to convert categorical features to Boolean inputs for BNN. We split the input
data into training (80% of data) and test (20%) sets. The accuracy of BNN is 0.82 for
the adult, 0.83 for lending and 0.63 for recidivism, which matches XGBoost [9] used
in [24]. To generate anchors, we used the native implementation of ANCHOR. The sizes
of CNF encodings are (a) 50K variables and 202K clauses for adult, (b) 21K variables
and 80K clauses for lending, (c) 75K variables and 290K clauses for recidivism.

Quality assessment. We performed two sets of experiments depending on con-
straints on the sample space. First, we consider the case of an unrestricted set of sam-
ples. Second, we restrict samples to a local neighborhood of a sample we started with
to generate an anchor. For the first case, the rejection sampling based algorithm by
Dagum et al. [10] can be used for measuring accuracy up to desired tolerance and con-
fidence, very efficiently. However, in general there can be additional constraints over the
input, such as for encoding some notion of neighborhood of a sample, or for incorporat-
ing a set of user preferences. In such cases, rejection sampling based approaches fail. To

7 https://github.com/marcotcr/anchor-experiments

https://github.com/marcotcr/anchor-experiments


8 Narodytska et al.

(a) Unrestricted set of samples (b) Restricted set of samples
Fig. 1: The precision metric estimates for three datasets.

ensure wider applicability, we use the tool ApproxMC3, which can perform projected
counting over the input variables of arbitrary constraints encoded as CNF formulas.

We invoke ApproxMC3 with the default tolerance and confidence (ε = 0.8 and δ =
0.2), which has been the standard in earlier works [7,8,32]. Studies have reported that
the error observed in practice (εobs = 0.037) is an order of magnitude better than the
theoretical guarantee of 0.8 [32], which is similar to what we found in our preliminary
experiments even when considering the quotient of two approximate counts as in (4).
This obviates the need for stronger (ε, δ) as input, as the default settings are sufficiently
accurate in practice for our purposes.

Unrestricted set of samples. Here we consider the case when we do not put any
restrictions of a set of samples. We compute high-precision anchors for 300 randomly
selected inputs of each test dataset with a default value of τ = 0.95. On average, the
precision metric reported by ANCHOR is high, over 0.99. For each anchor, we perform
approximate model counting of solutions according to (4). Then, we compute the dis-
crepancy between the precision metric returned by ANCHOR and the estimate computed
by our method.

Figure 1a shows our results. Each cactus plot shows the precision that is returned by
ANCHOR and is computed with ApproxMC3 for the corresponding dataset. ANCHOR’s
precision estimates are around 0.99 for the three datasets and so the corresponding lines
in Figure 1 merge. Figure 1 shows that ANCHOR’s estimates of the precision metric are
good for the lending dataset. On average the discrepancy is 0.13 in this set. In contrast,
the discrepancy was high in the adult dataset, 0.34 on average. For the recidivism dataset
the mean discrepancy is 0.25. Overall, we can conclude that the metric produced by
ANCHOR is more on the optimistic side, as we cannot confirm 0.99 precision.

Constrained set of samples. Second, we consider the case when we want to re-
strict the space of samples. One interesting case is to consider how good the anchor are
among the samples that are close to the original sample e we started with. We define
a neighborhood of e given an anchor A as all samples that match A and differ from e
in at most 50% of the remaining features. We expect that ANCHOR performs better in
the local neighborhood of e. Figure 1b shows our results. We obtain that on average
the discrepancy is 0.08 for the lending dataset, 0.2 for the adult dataset and 0.21 for
recidivism. So, we see a significant improvement for the adult dataset (the discrepancy
dropped from 0.34 to 0.2) and minor improvements for the other two sets.



Assessing Heuristic Machine Learning Explanations with Model Counting 9

6 Conclusions and Future Work
This paper investigates the quality of heuristic (or local) explanations computed by

a recent XAI tool, namely ANCHOR [24]. Although for some datasets the precisions
claimed by Anchor can be confirmed, it is also the case that for several other datasets
Anchor estimates precisions that are unrealistically high. There are a number of possi-
ble directions for future work. For example, it is interesting to consider powerful model
compilation techniques [11] that can compute the exact number of solutions and, there-
fore, the precision metrics exactly. The main challenge here is to build an effective
compiler from BNNs to BDDs [4]. Another direction is to investigate the application
of the ideas in this paper to other XAI tools and consider other ML models that can be
translated to SAT.

References
1. On computing minimal independent support and its applications to sampling and counting.

Constraints 21(1), 41–58 (2016)
2. Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I.J., Hardt, M., Kim, B.: Sanity checks for

saliency maps. In: NeurIPS. pp. 9525–9536 (2018)
3. Alvarez-Melis, D., Jaakkola, T.S.: Towards robust interpretability with self-explaining neural

networks. In: NeurIPS. pp. 7786–7795 (2018)
4. Andy Shih, A.D., Choi, A.: Verifying binarized neural networks by local automaton learning.

In: VNN (2019)
5. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability, Frontiers

in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)
6. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. In: Proc. of STOC. pp.

106–112. ACM (1977)
7. Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable approximate model counter. In: Proc.

of CP. pp. 200–216 (2013)
8. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Improving approximate counting for probabilistic

inference: From linear to logarithmic sat solver calls. In: Proceedings of International Joint
Conference on Artificial Intelligence (IJCAI) (7 2016)

9. Chen, T., Guestrin, C.: XGBoost: A scalable tree boosting system. In: KDD. pp. 785–794.
ACM (2016)

10. Dagum, P., Karp, R., Luby, M., Ross, S.: An optimal algorithm for Monte Carlo estimation.
SIAM Journal on Computing 29(5), 1484–1496 (2000)

11. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17, 229–264
(2002). https://doi.org/10.1613/jair.989, https://doi.org/10.1613/jair.989

12. Dreossi, T., Ghosh, S., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: A formalization of ro-
bustness for deep neural networks. CoRR abs/1903.10033 (2019), http://arxiv.org/abs/1903.
10033

13. Ermon, S., Gomes, C.P., Sabharwal, A., Selman, B.: Taming the curse of dimensionality:
Discrete integration by hashing and optimization. In: Proc. of ICML. pp. 334–342 (2013)

14. Frosst, N., Hinton, G.E.: Distilling a neural network into a soft decision tree. In: Besold,
T.R., Kutz, O. (eds.) Proceedings of the First International Workshop on Comprehensibility
and Explanation in AI and ML 2017 co-located with 16th International Conference of the
Italian Association for Artificial Intelligence (AI*IA 2017), Bari, Italy, November 16th and
17th, 2017. CEUR Workshop Proceedings, vol. 2071. CEUR-WS.org (2017)

15. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks.
In: NIPS. pp. 4107–4115 (2016)

https://doi.org/10.1613/jair.989
https://doi.org/10.1613/jair.989
http://arxiv.org/abs/1903.10033
http://arxiv.org/abs/1903.10033


10 Narodytska et al.

16. Kohavi, R.: Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In:
KDD. pp. 202–207 (1996)

17. Lagniez, J.M., Marquis, P.: An improved decision-dnnf compiler. In: IJCAI. pp. 667–673
(2017)

18. Leofante, F., Narodytska, N., Pulina, L., Tacchella, A.: Automated verification of neu-
ral networks: Advances, challenges and perspectives. CoRR abs/1805.09938 (2018), http:
//arxiv.org/abs/1805.09938

19. Li, O., Liu, H., Chen, C., Rudin, C.: Deep learning for case-based reasoning through proto-
types: A neural network that explains its predictions. In: AAAI. pp. 3530–3537 (2018)

20. Montavon, G., Samek, W., Müller, K.: Methods for interpreting and understanding deep
neural networks. Digital Signal Processing 73, 1–15 (2018)

21. Muise, C., McIlraith, S.A., Beck, J.C., Hsu, E.: DSHARP: Fast d-DNNF Compilation with
sharpSAT. In: Canadian Conference on Artificial Intelligence (2012)

22. Narodytska, N., Kasiviswanathan, S.P., Ryzhyk, L., Sagiv, M., Walsh, T.: Verifying proper-
ties of binarized deep neural networks. In: AAAI. pp. 6615–6624 (2018)

23. Ribeiro, M.T., Singh, S., Guestrin, C.: ”Why should I trust you?”: Explaining the predictions
of any classifier. In: KDD. pp. 1135–1144 (2016)

24. Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: High-precision model-agnostic explana-
tions. In: AAAI (2018)

25. Ross, A.S., Doshi-Velez, F.: Improving the adversarial robustness and interpretability of deep
neural networks by regularizing their input gradients. In: AAAI. pp. 1660–1669 (2018)

26. Ross, A.S., Hughes, M.C., Doshi-Velez, F.: Right for the right reasons: Training differen-
tiable models by constraining their explanations. In: IJCAI. pp. 2662–2670 (2017)

27. Sang, T., Beame, P., Kautz, H.: Performing bayesian inference by weighted model counting.
In: Prof. of AAAI. pp. 475–481 (2005)

28. Schmidt, P., Witte, A.D.: Predicting recidivism in north carolina, 1978 and 1980. Inter-
University Consortium for Political and Social Research (1988), https://www.ncjrs.gov/App/
Publications/abstract.aspx?ID=115306

29. Shih, A., Choi, A., Darwiche, A.: A symbolic approach to explaining bayesian network clas-
sifiers. In: IJCAI. pp. 5103–5111 (2018)

30. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: Visualising
image classification models and saliency maps. CoRR abs/1312.6034 (2013), http://arxiv.
org/abs/1312.6034

31. Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints. In: CP. pp.
827–831 (2005)

32. Soos, M., Meel, K.S.: Bird: Engineering an efficient cnf-xor sat solver and its applications to
approximate model counting. In: Proceedings of AAAI Conference on Artificial Intelligence
(AAAI) (1 2019)

33. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems. In:
Theory and Applications of Satisfiability Testing - SAT 2009, 12th International Conference,
SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceedings. pp. 244–257 (2009)

34. Thurley, M.: SharpSAT: counting models with advanced component caching and implicit
BCP. In: Proc. of SAT. pp. 424–429 (2006)

35. Toda, S.: Pp is as hard as the polynomial-time hierarchy. SIAM Journal on Computing 20(5),
865–877 (1991)

36. Valiant, L.: The complexity of enumeration and reliability problems. SIAM Journal on Com-
puting 8(3), 410–421 (1979)

37. Wu, M., Hughes, M.C., Parbhoo, S., Zazzi, M., Roth, V., Doshi-Velez, F.: Beyond sparsity:
Tree regularization of deep models for interpretability. In: AAAI. pp. 1670–1678 (2018)

38. Zhang, Q., Yang, Y., Wu, Y.N., Zhu, S.: Interpreting CNNs via decision trees. CoRR
abs/1802.00121 (2018), http://arxiv.org/abs/1802.00121

http://arxiv.org/abs/1805.09938
http://arxiv.org/abs/1805.09938
https://www.ncjrs.gov/App/Publications/abstract.aspx?ID=115306
https://www.ncjrs.gov/App/Publications/abstract.aspx?ID=115306
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1802.00121

	Assessing Heuristic Machine Learning  Explanations with Model Counting  

