
WAPS: Weighted and Projected Sampling ???

Rahul Gupta1, Shubham Sharma1, Subhajit Roy1, and Kuldeep S. Meel2

1 Indian Institute of Technology Kanpur, India
{grahul,smsharma,subhajit}@iitk.ac.in

2 National University of Singapore, Singapore
meel@comp.nus.edu.sg

Abstract. Given a set of constraints F and a user-defined weight func-
tion W on the assignment space, the problem of constrained sampling
is to sample satisfying assignments of F conditioned on W . Constrained
sampling is a fundamental problem with applications in probabilistic
reasoning, synthesis, software and hardware testing. Consequently, the
problem of sampling has been subject to intense theoretical and practical
investigations over the years. Despite such intense investigations, there
still remains a gap between theory and practice. In particular, there has
been significant progress in the development of sampling techniques when
W is a uniform distribution, but such techniques fail to handle general
weight functions W . Furthermore, we are, often, interested in Σ1

1 formu-
las, i.e., G(X) := ∃Y F (X,Y) for some F ; typically the set of variables
Y are introduced as auxiliary variables during encoding of constraints
to F . In this context, one wonders whether it is possible to design sam-
pling techniques whose runtime performance is agnostic to the underlying
weight distribution and can handle Σ1

1 formulas?

The primary contribution of this work is a novel technique, called WAPS,
for sampling over Σ1

1 whose runtime is agnostic to W . WAPS is based
on our recently discovered connection between knowledge compilation
and uniform sampling. WAPS proceeds by compiling F into a well stud-
ied compiled form, d-DNNF, which allows sampling operations to be
conducted in linear time in the size of the compiled form. We demon-
strate that WAPS can significantly outperform existing state-of-the-art
weighted and projected sampler WeightGen, by up to 3 orders of magni-
tude in runtime while achieving a geometric speedup of 296× and solving
564 more instances out of 773. The distribution generated by WAPS is
statistically indistinguishable from that generated by an ideal weighted
and projected sampler. Furthermore, WAPS is almost oblivious to the
number of samples requested.

? Appendix along with open source tool is available at
https://github.com/meelgroup/waps.

?? This work was supported in part by NUS ODPRT Grant R-252-000-685-133 and
AI Singapore Grant R-252-000-A16-490. The computational work for this article
was performed on resources of the National Supercomputing Centre, Singapore
https://www.nscc.sg.

https://github.com/meelgroup/waps
https://www.nscc.sg

2 Gupta, Sharma, Roy and Meel

1 Introduction

Boolean satisfiability (SAT) has gathered applications in bounded model check-
ing of hardware and software systems [5,7,51], classical planning [35] and schedul-
ing [27]. Despite the worst-case hardness of SAT, the past few decades have
witnessed a significant improvement in the runtime performance of the state-of-
the-art SAT solvers [41]. This improvement has led to the usage of SAT solvers
as oracles to handle problems whose complexity lies beyond NP. Among these
problems, constrained sampling, that concerns with sampling from the space of
solutions of a set of constraints F , subject to a user-defined weight function
W , has witnessed a surge of interest owing to the wide range of applications
ranging from machine learning, probabilistic reasoning, software and hardware
verification to statistical physics [3,32,39,45].

Not surprisingly, the problem of sampling is known to be computationally
intractable. When the weight function W is fixed to a uniform distribution,
the problem of constrained sampling is also known as uniform sampling. Uni-
form sampling has witnessed a long-standing interest from theoreticians and
practitioners alike [4,33,38,45]. The past few years, however, have witnessed a
significant improvement in the runtime performance of the sampling tools when
the weight function W is fixed to a uniform distribution owing to the rise of
hashing-based paradigm [2,11,13,22]. While the significant progress for uniform
sampling has paved the way for its usage in constrained random simulation [45],
the restriction of uniform distribution is limiting, and several applications of
constrained sampling require the underlying techniques to be able to handle a
wide variety of distributions and related problem formulations as listed below:

Literal-Weighted Sampling In case of literal-weighted sampling, we consider
the weight function over assignments defined as the product of the weight of
literals, which is specified using a weight function W (·) that assigns a non-
negative weight to each literal l in a boolean formula F . As argued in [12],
literal-weighted weight function suffices for most of the practical applica-
tions ranging from constrained random simulation, probabilistic reasoning,
and reliability of power-grids [10,14,21,45].

Projected Sampling Typically, users define constraints in high-level model-
ing languages such as Verilog [1], Bayesian networks [14] and configuration
of grids [21] and then CNF encodings are employed to convert them into a
CNF [6]. Commonly used schemes like Tseitin encoding [50] introduce aux-
iliary variables during encoding; though the encoded formulas are equisatis-
fiable, they typically do not preserve the number of satisfying assignments.
In particular, given an initial set of constraints G expressed over a set of
variables X, we obtain another formula F such that G(X) = ∃Y F (X,Y).
Therefore, we are concerned with sampling over solutions of F projected over
a subset of variables (such as X in this case). In other words, we are con-
cerned with sampling over Σ1

1 formulas.

WAPS: Weighted and Projected Sampling 3

Conditioned Sampling Given a boolean formula Φ and a partial assignment σ,
conditioned sampling refers to sampling from the models of Φ that satisfy σ.
Conditioning has interesting applications in testing where one is interested
in fuzzing the system with inputs that satisfy certain patterns (precondi-
tions). Conditioning has been applied in the past for fault diagnosis [23],
conformant planning [46] and databases [15].

Typically, practical applications require sampling techniques that can handle
all the above formulations. While techniques based on interval propagation, bi-
nary decision diagrams and random perturbation of solution space [22,25,44]
cannot handle projection, conditioned, and weighted sampling efficiently, the
hashing-based techniques have significantly improved the scalability of sam-
pling techniques and are capable of handling projection and literal-weighted
scheme [11,42]. However, the performance of hashing-based techniques is ex-
tremely limited in their ability to handle literal-weighted sampling, and one
observes a drastic drop in their performance as the weight distribution shifts
away from uniform. In this context, one wonders: whether it is possible to de-
sign techniques which can handle projection, conditioned, and literal-weighted
sampling without degradation in their performance?

In this work, we answer the above question in affirmative: we extend our
previously proposed knowledge compilation framework in the context of uniform
sampling to handle all the three variants. We have implemented a prototype
of our framework, named WAPS, and demonstrate that within a time limit of
1800 secs, WAPS performs better than the current state-of-the-art weighted and
projected sampler WeightGen [10], by up to 3 orders of magnitude in terms of
runtime while achieving a geometric speedup of 296×. Out of the 773 benchmarks
available, WAPS was able to sample from 588 benchmarks while WeightGen was
able to sample from only 24 benchmarks. Furthermore, WAPS is almost oblivious
to the number of samples requested.

A significant advantage of our framework is its simplicity: we show that our
previously proposed framework in the context of uniform sampling, KUS [49],
can be lifted to handle literal-weighted, projection and conditioned sampling.
We demonstrate that unlike hashing-based techniques, the runtime performance
of WAPS is not dependent on the underlying weight distribution. We want to
assert that the simplicity of our framework, combined with its runtime perfor-
mance and its ability to be agnostic to the underlying distribution is a significant
novel contribution to the area of constrained sampling. Besides, an important
contribution of our work is the theoretical analysis of sampling techniques that
employ knowledge compilation.

The rest of the paper is organized as follows. We first discuss the related
work in section 2. We then introduce notations and preliminaries in section 3.
In section 4 we present WAPS and do theoretical analysis of WAPS in section 5.
We then describe the experimental methodology and discuss results in section 6.
Finally, we conclude in section 7.

4 Gupta, Sharma, Roy and Meel

2 Related Work

Weighted sampling is extensively studied in the literature with the objective
of providing scalability while ensuring strong theoretical guarantees. Markov
Chain Monte Carlo (MCMC) sampling [32,40] is the most popular technique
for weighted sampling; several algorithms like Metropolis-Hastings and simu-
lated annealing have been extensively studied in the literature [36,40]. While
MCMC based sampling is guaranteed to converge to a target distribution under
mild requirements, convergence is often impractically slow [31]. The practical
adaptations for MCMC-based sampling in the context of constrained-random
verification has been proposed in [37]. Unfortunately, practical MCMC based
sampling tools use heuristics that destroy the theoretical guarantees. Interval-
propagation and belief networks have also been employed for sampling [20,26,29],
but, though these techniques are scalable, the generated distributions can deviate
significantly from the uniform distribution, as shown in [38].

To bridge the wide gap between scalable algorithms and those that give
strong guarantees of uniformity several hashing-based techniques have been pro-
posed [10,11,24,28] for weighted sampling. The key idea behind hashing-based
techniques is to employ random parity constraints as pairwise independent hash
functions to partition the set of satisfying assignments of CNF formula into cells.
The hashing-based techniques have achieved significant runtime performance
improvement in case of uniform sampling but their scalability suffers for weight
distribution and depends strongly on parameters such as tilt, which are unlikely
to be small for most practical distributions [42].

In recent past, a significant amount of work has been done to compile proposi-
tional theory, often represented as a propositional formula in CNF into tractable
knowledge representations. One of the prominent and earliest representations is
Ordered Binary Decision Diagrams (OBDDs), which have been effectively used
for circuit analysis and synthesis [9]. Another family of representations known as
Deterministic Decomposable Negation Normal Form (d-DNNF) [19] have proved
to be influential in many probabilistic reasoning applications [14,17,18]. Recently,
another representation called as Sentential Decision Diagram (SDD) [16] was
proposed which maintains canonicity and polytime support for boolean combi-
nations and bridged the gap of succinctness between OBDDs and d-DNNFs. In
our recent work [49], we were able to tackle the problem of uniform sampling by
exploiting the properties of d-DNNF. Specifically, we were able to take advan-
tage of recent advancements made in the field of knowledge compilation and use
the compiled structure to generate uniform samples while competing with the
state-of-the-art tools for uniform sampling.

3 Notations and Preliminaries

A literal is a boolean variable or its negation. A clause is a disjunction of a set
of literals. A propositional formula F in conjunctive normal form (CNF) is a
conjunction of clauses. Let V ars(F) be the set of variables appearing in F . The

WAPS: Weighted and Projected Sampling 5

set V ars(F) is called support of F . A satisfying assignment or witness of F ,
denoted by σ, is an assignment of truth values to variables in its support such
that F evaluates to true. We denote the set of all witnesses of F as RF . Let
var(l) denote the variable of literal l, i.e., var(l) = var(¬l) and F|l denotes the
formula obtained when literal l is set to true in F . Given an assignment σ over
V ars(F) and a set of variables P ⊆ V ars(F), define σP = {l | l ∈ σ, var(l) ∈ P}
and RF↓P to be the projection of RF onto P , i.e., RF↓P = {σP |σ ∈ RF }.

Given a propositional formula F and a weight function W (·) that assigns
a non-negative weight to every literal, the weight of assignment σ denoted as
W (σ) is the product of weights of all the literals appearing in σ, i.e., W (σ) =∏
l∈σW (l). The weight of a set of assignments Y is given byW (Y) =

∑
σ∈Y W (σ).

Note that, we have overloaded the definition of weight function W (·) to support
different arguments – a literal, an assignment and a set of assignments. We want
to highlight that the assumption about weight distribution being generated solely
by a literal-weighted function stands well, as many real-world applications like
probabilistic inference can be efficiently reduced to literal-weighted sampling [14].
Also, for notational convenience, whenever the formula F , weight function W
and sampling set P is clear from the context, we omit mentioning it.

3.1 Weighted and Projected Generators

A weighted and projected probabilistic generator is a probabilistic algorithm that
generates a witness from RF↓P with respect to weight distribution generated by
weight function W . A weighted and projected generator Gwp(·, ·, ·) is a proba-
bilistic generator that guarantees

∀y ∈ RF↓P ,Pr [Gwp(F, P,W) = y] =
W (y)

W (RF↓P)
,

An almost weighted and projected generator Gawp(·, ·, ·) relaxes this require-
ment, ensuring that: given a tolerance ε > 0, ∀y ∈ RF↓P we have

W (y)

(1 + ε)W (RF↓P)
≤ Pr [Gawp(F, P,W) = y] ≤ (1 + ε)W (y)

W (RF↓P)
,

Probabilistic generators are allowed to occasionally “fail” in the sense that
no witness may be returned even if RF↓P is non-empty. The failure probability
for such generators must be bounded by a constant strictly less than 1.

OR

AND AND

-x1 -x2x3 x1

Fig. 1: Example of d-DNNF

OR

AND AND

x2 -x1 x1 x3

Fig. 2: The projected d-DNNF of ex. 1

6 Gupta, Sharma, Roy and Meel

3.2 Deterministic Decomposable Negation Normal Form (d-DNNF)

To formally define d-DNNF, we first define the Negation Normal Form (NNF):

Definition 1. [19] Let X be the set of propositional variables. A sentence in
NNF is a rooted, directed acyclic graph (DAG) where each leaf node i is labeled
with true, false, x or ¬x, x ∈ X; and each internal node is labeled with ∨ or ∧
and can have arbitrarily many children.

d-DNNF further imposes that the representation is:

– Deterministic: An NNF is deterministic if the operands of ∨ in all well-
formed boolean formula in the NNF are mutually inconsistent.

– Decomposable: An NNF is decomposable if the operands of ∧ in all well-
formed boolean formula in the NNF are expressed on a mutually disjoint set
of variables.

The deterministic and decomposable properties are conveniently expressed
by AND-OR graphs (DAGs) where a node is either an AND node, an OR node
or a literal. The operands of AND/OR nodes appear as children of the node.
Figure 1 shows an example of d-DNNF representation. For every node t, the
subformula corresponding to t is the formula corresponding to d-DNNF obtained
by removing all the nodes u such that there does not exist a path from t to u.
T (t) represents the set of all partial satisfying assignments for the subformula
corresponding to t. The siblings of a node t are the children of the parent of t
excluding t itself and the set of such children is given by Siblings(t).

Decision-DNNF is a subset of d-DNNF where the deterministic OR nodes
are decision nodes [18]. The state-of-the-art d-DNNF construction tools like
C2D [18], Dsharp [43] and D4 [30], construct the Decision-DNNF represen-
tation where each OR node has exactly two children while an AND node may
have multiple children. Since our framework WAPS employs modern d-DNNF
compilers, we assume that the OR node has exactly two children. This assump-
tion is only for the simplicity of exposition as our algorithms can be trivially
adopted to the general d-DNNF representations.

4 Algorithm

In this section, we discuss our primary technical contribution: WAPS, weighted
and projected sampler that samples from RF↓P with respect to weight function
W by employing the knowledge compilation techniques.

WAPS takes a CNF formula F , a set of sampling variables P , a function
assigning weights to literals W and required number of samples s as inputs and
returns SampleList, a list of size s which contain samples such that each sample is
independently drawn from the weighted distribution generated by W over RF↓P .

Similar to KUS, WAPS (Algorithm 1) mainly comprises of three phases: Com-
pilation, Annotation and Sampling. For d-DNNF compilation, WAPS invokes a
specialized compilation routine PCompile over the formula F and the sampling

WAPS: Weighted and Projected Sampling 7

set P (line 1). This is followed by the normalization of weights such that for
any literal l, W ′(l) + W ′(¬l) = 1, where W ′ is the normalized weight returned
in line 2. Then for annotation, WAnnotate is invoked in line 3 which uses the
weight function W ′ to annotate weights to all the nodes of the d-DNNF tree.
Finally, subroutine Sampler (line 4) is invoked which returns s independently
drawn samples over P following the weighted distribution generated by W over
RF↓P . We now describe these three phases in detail.

4.1 Compilation

The compilation phase is performed using the subroutine PCompile. PCompile
is a modified procedure over the component caching and clause learning based
algorithm of the d-DNNF compiler Dsharp [43,47]. It is presented in Algo-
rithm 2. The changes from the existing algorithm are underlined. The rest of the
procedure which is similar to Dsharp is mentioned here for completeness. The
description of PCompile is as follows:

PCompile takes in a CNF formula F in the clausal form and a set of sampling
variables P as input and returns a d-DNNF over P . If the formula does not
contain any variable from P , PCompile invokes SAT (line 2) which returns a
True node if the formula is satisfiable, else it returns a False node. Otherwise,
DecideLiteral is invoked to choose a literal appearing in F such that var(l) ∈ P
(line 3). This decision is then recursively propagated by invoking CompileBranch
to create t1, the d-DNNF of F|l (line 4) and t2, the d-DNNF of F|¬l (line 5).
Disjoin is invoked in line 6 which takes t1 and t2 as input and returns t2 if t1
is False node, t1 if t2 is False node otherwise a new tree composed by an OR
node as the parent of t1 and t2. The result of Disjoin is then stored in the cache
(line 7) and returned as an output of PCompile (line 8).

We now discuss the subroutine CompileBranch. It is presented in Algorithm 3.
It takes in a CNF formula F , set of sampling variables P and literal l as input
and returns a d-DNNF tree of F|l on P . It first invokes BCP (Binary Constraint
Propagation), with F , l and P which performs unit-propagation to return a
tuple of reduced formula F ′ and a set of implied literals (term) projected over
variables in P (line 1). Then CompileBranch checks if F ′ contains an empty clause
and returns False node to indicate that F|l is not satisfiable, else the formula is
solved using component decomposition as described below.

At line 6 it breaks the formula F ′ into separate components formed by dis-
joint set of clauses such that no two components share any variables. Then each
component is solved independently (lines 8–15). For each component, it first ex-
amines the cache to see if this component has been solved earlier and is present
in the cache (line 9). If cache lookup fails, it solves the component with a re-
cursive call to PCompile (line 11). If any component is found to be unsatisfiable,
False node is returned implying that the overall formula is unsatisfiable too, else
CompileBranch simply conjoins the components’ d-DNNFs together with the de-
cided l and implied literals (term) and returns this after storing it in the cache
for the formula F|l (lines 16–18).

We illustrate PCompile procedure on the following example formula F :

8 Gupta, Sharma, Roy and Meel

Example 1. F = {{x1, x2}, {¬x3,¬x5, x6}, {¬x2, x4,¬x1}, {x3,¬x6,¬x1},
{x6, x5,¬x1, x3}, {x3, x6,¬x5,¬x1}}

Figure 2 represents the d-DNNF of example 1 on P = {x1, x2, x3}. For detailed
discussion about applying PCompile on F please refer to Appendix.

Algorithm 1 WAPS(F, P,W, s)

1: dag← PCompile(F, P)
2: W ′ ← Normalize(W)
3: WAnnotate(dag.root,W ′)
4: SampleList← Sampler(dag.root, s)
5: return SampleList

Algorithm 2 PCompile(F, P)

1: if V ars(F) ∩ P = φ then
2: return SAT(F)

3: l← DecideLiteral(F, P)
4: t1 ← CompileBranch(F, P, l)
5: t2 ← CompileBranch(F, P,¬l)
6: t← Disjoin(t1, t2)
7: CacheStore(F, t)
8: return t

Algorithm 3 CompileBranch(F, P, l)

1: (F ′, term)← BCP(F, l, P)
2: if ∅ ∈ F ′ then
3: CacheStore(F|l, False)
4: return False . CDCL is done
5: else
6: Comps← DisjointComponents(F ′)
7: dcomps← {}
8: for C ← Comps do
9: ddnnf ← GetCache(C)

10: if ddnnf is not found then
11: ddnnf ← PCompile(C,P)

12: dcomps.Add(ddnnf)
13: if ddnnf = False then
14: CacheStore(F|l, False)
15: return False
16: t = Conjoin(l, term, dcomps)
17: CacheStore(F|l, t)
18: return t

4.2 Annotation

The subroutine WAnnotate is presented in Algorithm 4. WAnnotate takes in a d-
DNNF dag and a weight function W as inputs and returns an annotated d-DNNF
dag whose each node t is annotated with a weight, given by the sum of weights
of all the partial assignments represented by subtree rooted at t. The weights
subsequently annotated on children of an OR node indicate the probability with
which it would be selected in the sampling phase.

WAnnotate performs a bottom up traversal on d-DNNF dag in a reverse
topological order. For each node in the d-DNNF dag, WAnnotate maintains an
attribute, weight, as per the label of the node given as follows:

Literal (lines 2–3) : The weight of a literal node is taken as the weight of the
literal given by the weight function W .

OR (lines 4–8) : The weight of OR node is made equal to the sum of weights
of both of its children.

AND (lines 9–13) : The weight of AND node is made equal to the product of
weights of all its children.

WAPS: Weighted and Projected Sampling 9

Algorithm 4 Bottom-Up Pass to annotate d-DNNF with weights on literals

1: function WAnnotate(t,W)
2: if label(t) = Literal then
3: t.weight←W (t)
4: else if label(t) = OR then
5: t.weight← 0
6: for c ∈ {t.left, t.right} do
7: WAnnotate(c)
8: t.weight← t.weight+ c.weight

9: else if label(t) = AND then
10: t.weight← 1
11: for c ∈ Childrens(t) do
12: WAnnotate(c)
13: t.weight← t.weight× c.weight

4.3 Sampling

Algorithm Sampler takes the annotated d-DNNF dag and the required number
of samples s and returns SampleList, a list of s samples conforming to the distri-
bution of their weights as governed by weight function W given to WAnnotate.
The subroutine Sampler is very similar to the sampling procedure in our previous
work [49] except that we take the annotated weight of the node instead of the
annotated count in the previous work as the probability for Bernoulli trials. We
refer the readers to Appendix for a detailed discussion.

4.4 Conditioned Sampling

The usage of samplers in testing environment necessitates sampling from F con-
ditioned on fixing assignment to a subset of variables. The state of the art tech-
niques, such as those based on universal hashing, treat every query as indepen-
dent and are unable to reuse computation across different queries. In contrast,
the compilation to d-DNNF allows WAPS to reuse the same d-DNNF. In partic-
ular, for a given conditioning expressed as conjunction of different literals, i.e.,
Ĉ =

∧
i li.

In particular, instead of modifying computationally expensive d-DNNF, we
modify the weight function as follows:

Ŵ (l) =

{
0, l /∈ Ĉ
W (l) otherwise

5 Theoretical Analysis

We now present theoretical analysis of WAPS, which consists of two components:
correctness of WAPS and analysis of behavior of Sampler on the underlying d-
DNNF graph. First, we prove that WAPS is an exact weighted and projected

10 Gupta, Sharma, Roy and Meel

sampler in Theorem 1. To this end, we prove the correctness of our projected
d-DNNF dag compilation procedure PCompile in Lemma 1. In Lemma 2, we
show that WAnnotate annotates each node of the d-DNNF with weights that
represent the weight of assignments represented by subtree rooted at that node.
This enables us to sample as per the weight distribution in the sampling phase
which is proved in Theorem 1 using Lemmas 1 and 2. Secondly, further probing
into the behavior of subroutine Sampler, we provide an analysis of the probability
of visiting any node in the d-DNNF dag while sampling. For this, we first find a
probability of visiting a node by following a particular path in Lemma 3 and then
we use this result to prove an upper bound for the general case of visiting a node
from all possible paths in Theorem 2. We believe that this analysis will motivate
the researchers to find new ways to speed up or device new methods to find exact
or approximate sampling techniques over a given compiled representation.

The proofs of Theorem 1 and Lemmas 1, 2 and 3 can be found in Appendix.

Lemma 1. Given a formula F and set of sampling variables P , the tree returned
by PCompile(F, P) is a d-DNNF dag which represents the set of satisfying as-
signments of the formula F projected over the set of sampling variables P .

Lemma 2. Every node t in the d-DNNF dag returned by WAnnotate is anno-
tated by W (T (t)), where T (t) is the set of all the partial assignments correspond-
ing to the subtree rooted at t.

Theorem 1. For a given F , P and s, SampleList is the list of samples generated
by WAPS. Let SampleList[i] indicate the sample at the ith index of the list. Then

for each y ∈ RF↓P , ∀i ∈ [s], we have Pr [y = SampleList[i]] = W (y)
W (RF↓P)

Lemma 3. For a given F and P , let fol(ρ) be the event of following a path ρ,

which start at root and ends at node t, then Pr [fol(ρ)] =
W (T (t))×cρ
W (RF↓P) where cρ is

the product of weight of all the OR nodes’ siblings encountered in the path ρ from
root to t and T (t) is the set of all the partial satisfying assignments represented
by subtree rooted at t.

Theorem 2. For a given F and P , let visit(t) be the event of visiting a node

t to fetch one sample as per subroutine Sampler, then Pr [visit(t)] ≤ W (Γ (t))
W (RF↓P)

where Γ (t) = {σ | σ ∈ RF↓P , σ↓V ars(t) ∈ T (t)} and T (t) is a set of all the
partial satisfying assignments represented by subtree rooted at t.

Proof. In lemma 3 we have calculated the probability of visiting a node t by
taking a particular path from root to node t. So the probability of visiting a
node t will be the sum of probability of visiting t by all possible paths. Let
P = {ρ1, ρ2, · · · , ρm} be the set of all paths from root to node t and visit(t) be
the event of visiting a node t in subroutine Sampler then,

Pr [visit(t)] =
∑
ρ∈P

Pr [visit(t) | fol(ρ)]× Pr [fol(ρ)] =
∑
ρ∈P

1× Pr [fol(ρ)]

WAPS: Weighted and Projected Sampling 11

From Lemma 3, Pr [visit(t)] =
∑
ρ∈P

W (T (t))×cρ
W (RF↓P) where cρ is the product of the

weight of all the OR nodes’ siblings encountered in a path ρ from root to t.
For any such path, we call {t1ρ, t2ρ, · · · , tnρ} as the set of all the OR node siblings
encountered on the path ρ. Now, let σextρ be the set of assignments over P
represented by path ρ. Therefore,

σextρ = T (t1ρ)× T (t2ρ) · · · × T (tnρ)× T (t)

where, T (·) are set of assignments and × is a cross product. Now, any tuple from
σextρ represents a satisfying assignment in the d-DNNF. Therefore, σextρ ⊆ RF↓P .
Note that, from lemma 2, it follows that weight annotated by WAnnotate at t is
equal to W (T (t)). Therefore,

cρ = W (T (t1ρ))×W (T (t2ρ)) · · · ×W (T (tnρ))

And, W (σextρ) = W (T (t)) × cρ. Notice that, σextρ ⊆ Γ (t) as σextρ represents
satisfying extensions of partial assignments contained in T (t) itself. This is true
∀ ρ ∈ P. Therefore as W (.) is an increasing function,⋃

ρ∈P
σextρ ⊆ Γ (t) =⇒

∑
ρ∈P

W (T (t))× cρ ≤ W (Γ (t))

Note that, the inequality indeed holds as the intersection of sets of partial as-
signments represented by t and any other node not lying on the path from root
to t may not be φ (empty). Therefore,∑

ρ∈P

W (T (t))× cρ
W (RF↓P)

≤ W (Γ (t))

W (RF↓P)
=⇒ Pr [visit(t)] ≤ W (Γ (t))

W (RF↓P)

6 Evaluation

In order to evaluate the runtime performance and analyze the quality of sam-
ples generated by WAPS, we implemented a prototype in Python. For d-DNNF
compilation, our prototype makes use of Dsharp [43] when sampling set is
available else we use D4 [30]. We would have preferred to use state-of-the-art
d-DNNF compiler D4 but owing to its closed source implementation, we could
not modify it as per our customized compilation procedure PCompile. Therefore,
for projected compilation, we have modified Dsharp which has an open-source
implementation. We have conducted our experiments on a wide range of publicly
available benchmarks. In all, our benchmark suite consisted of 773 benchmarks
arising from a wide range of real-world applications. Specifically, we used con-
straints arising from DQMR networks, bit-blasted versions of SMT-LIB (SMT)
benchmarks, and ISCAS89 circuits [8] with parity conditions on randomly chosen
subsets of outputs and nextstate variables [34,48]. We assigned random weights
to literals wherever weights were not already available in our benchmarks. All
our experiments were conducted on a high performance compute cluster whose

12 Gupta, Sharma, Roy and Meel

Table 1: Run time (in seconds) for 1000 samples

Benchmark Vars Clauses |P | WeightGen
WAPS Speedup

Compile A+S Total on WeightGen

s526a 3 2 366 944 24 490.34 15.37 1.96 17.33 28.29

LoginService 11511 41411 36 1203.93 15.02 0.75 15.77 76.34

blockmap 05 02 1738 3452 1738 1140.87 0.04 5.30 5.34 213.65

s526 3 2 365 943 24 417.24 0.06 0.67 0.73 571.56

or-100-5-4-UC-60 200 500 200 1795.52 0.01 0.74 0.74 2426.38

or-50-5-10-UC-40 100 250 100 1292.67 0.01 0.36 0.36 3590.75

blasted case35 400 1414 46 TO 0.57 1.46 2.03 -

or-100-20-4-UC-50 200 500 200 TO 0.19 2.48 2.67 -

each node consists of E5-2690 v3 CPU with 24 cores and 96GB of RAM. We
utilized single core per instance of benchmark with a timeout of 1800 seconds.

The objective of our evaluation was to answer the following questions:

1. How does WAPS perform in terms of runtime in comparison to WeightGen,
the current state-of-the-art weighted and projected sampler?

2. How does WAPS perform for incremental sampling and scales when asked
for different number of samples?

3. How does the distribution of samples generated by WAPS compare with the
distribution generated by an ideal weighted and projected sampler?

4. How does WAPS perform for conditioning on arbitrary variables?
5. How does our knowledge compilation based sampling techniques perform in

comparison to hashing based sampling techniques for the task of generalizing
to arbitrary weight distributions?

Our experiment demonstrated that within a time limit of 1800 secs, WAPS is
able to significantly outperform existing state-of-the-art weighted and projected
sampler WeightGen, by up to 3 orders of magnitude in terms of runtime while
achieving a geometric speedup of 296×. Out of the 773 benchmarks available
WAPS was able to sample from 588 benchmarks while WeightGen was able to
sample from only 24 benchmarks. For incremental sampling, WAPS achieves a
geometric speedup of 3.69. Also, WAPS is almost oblivious to the number of
samples requested. Empirically, the distribution generated by WAPS is statisti-
cally indistinguishable from that generated by an ideal weighted and projected
sampler. Also, while performing conditioned sampling in WAPS, we incur no
extra cost in terms of runtime in most of the cases. Moreover, the performance
of our knowledge compilation based sampling technique is found to be oblivious
to weight distribution. We present results for only a subset of representative
benchmarks here. Detailed data along with the expanded versions of all the
tables presented here is available at https://github.com/meelgroup/waps

Number of instances solved We compared the runtime performance of WAPS
with WeightGen [10] (state-of-the-art weighted and projected sampler) by gen-
erating 1000 samples from each tool with a timeout of 1800 secs. Figure 3 shows
the cactus plot for WeightGen and WAPS. We present the number of bench-
marks on the x−axis and the time taken on y−axis. A point (x, y) implies that

https://github.com/meelgroup/waps

WAPS: Weighted and Projected Sampling 13

x benchmarks took less than or equal to y seconds to sample. All our runtime
statistics for WAPS include the time for the knowledge compilation phase (via
D4 or Dsharp). From all the 773 available benchmarks WeightGen was able
to sample from only 24 benchmarks while WAPS was able to sample from 588
benchmarks. Table 1 shows the runtimes of some of the benchmarks on the two
tools. The columns in the table give the benchmark name, number of variables,
number of clauses, size of sampling set, time taken in seconds by WeightGen and
WAPS divided into time taken by Compilation and A+S: Annotation and Sam-
pling followed by speedup of WAPS with respect to WeightGen. Table 1 clearly
shows that WAPS outperforms WeightGen by upto 3 orders of magnitude. For
all the 24 benchmarks that WeightGen was able to solve WAPS outperformed
WeightGen with a geometric speedup of 296×.

Incremental Sampling Incremental sampling involves fetching multiple, rel-
atively small-sized samples until the objective (such as desired coverage or vio-
lation of property) is achieved. We benefit from pre-compiled knowledge repre-
sentations in this scenario, as they allow us to perform repeated sampling as per
varied distributions. If weights are changed, we simply Annotate the tree again
followed by sampling, else, we directly move to the sampling phase, thus saving
a significant amount of time by bypassing the compilation phase.

In our experiments, we have evaluated the time taken by WAPS for 1000
samples in 10 successive calls with same weights. The results are presented in
table 2 for a subset of benchmarks. The first column mentions the benchmark
name with the number of variables, clauses and size of sampling set in subsequent
columns. The time taken by WAPS for first run to fetch 1000 samples is given
in the fifth column while the overall time taken for first run together with the
subsequent 9 incremental runs is presented in sixth column. The final column
shows the average gain in terms of speedup calculated by taking the ratio of time
taken by WAPS for first run with the average time taken by WAPS for subsequent
9 incremental runs thus resulting in a total of 10000 samples. Overall, WAPS
achieves a geometric speedup of 3.69× on our set of benchmarks.

0 100 200 300 400 500 600
Instances

0

250

500

750

1000

1250

1500

1750

CP
U
tim

e
(s
)

WAPS WeightGen

Fig. 3: Cactus Plot
comparing WeightGen and WAPS.

Benchmark Vars Clauses |P | WAPS
Speedup

1000 10,000

case110 287 1263 287 1.14 9.28 1.26
or-70-10-10-UC-20 140 350 140 2.75 9.02 6.56

s526 7 4 383 1019 24 60.38 143.16 13.20
or-60-5-2-UC-10 120 300 120 12.10 20.35 16.50

s35932 15 7 17918 44709 1763 69.01 106.65 20.73
case121 291 975 48 35.85 51.41 20.73

s641 15 7 576 1399 54 729.38 916.83 35.01
squaring7 1628 5837 72 321.95 365.13 67.10

LoginService 11511 41411 36 15.89 18.12 64.13
ProjectService 3175 11019 55 184.51 195.25 154.61

Table 2: Runtimes (in sec.) of
WAPS for incremental sampling

Effect of number of samples To check how WAPS scales with different num-
ber of samples, we invoked WAPS for fetching different number of samples: 1000,

14 Gupta, Sharma, Roy and Meel

Table 3: Runtime (in sec.) of WAPS to generate different size samples

Benchmark Vars Clauses |P | Sampling Size
1000 2000 4000 8000 10000

s1488 7 4 872 2499 14 0.5 0.75 1.29 2.2 2.9

s444 15 7 377 1072 24 0.74 1.29 1.91 3.46 4.12

s526 3 2 365 943 24 0.84 1.03 1.86 3.71 4.22

s820a 3 2 598 1627 23 0.63 1.03 2.04 3.92 4.81

case35 400 1414 46 2.38 3.22 5.31 9.38 11.41

LoginService 11511 41411 36 15.8 16.12 16.68 18.3 18.36

ProjectService 3175 11019 55 184.22 184.99 188.33 191.16 193.92

or-60-20-6-UC-10 120 300 120 1465.34 1458.23 1494.46 1499.67 1488.23

2000, 4000, 8000, 10000 with a timeout of 1800 secs. Table 3 presents the runtime
of WAPS for different samples on some benchmarks. The first column represents
the benchmark name. Second, third and fourth columns represent the number
of variables, clauses and size of sampling set. The next five columns represent
the time taken by WAPS for 1000, 2000, 4000, 8000 and 10000 samples. Table
3 clearly demonstrates that WAPS is almost oblivious to the number of samples
requested.

Uniform sampling generalized for weighted sampling To explore the
trend in performance between uniform and weighted sampling on the dimension
of hashing based techniques pitched against our newly proposed sampling tech-
niques based on knowledge compilation, we compared WAPS to KUS in a paral-
lel comparison between WeightGen and UniGen2. Specifically, we ran WAPS for
weighted sampling and KUS for uniform sampling without utilizing the sampling
set as KUS does not support the sampling set. On the other hand, for hashing
based sampling techniques, we compared WeightGen to UniGen2 while using the
sampling set. Figure 4 shows the cactus plot for WeightGen and UniGen2 and
figure 5 shows a cactus plot for WAPS and KUS. From all the 773 benchmarks,
WeightGen was able to sample from only 24 benchmarks while UniGen2 was able
to sample from 208 benchmarks. In comparison, WAPS was able to sample from
606 benchmarks while KUS was able to sample from 602 benchmarks. Our ex-
periments demonstrated that the performance of hashing-based techniques is
extremely limited in their ability to handle literal-weighted sampling and there
is a drastic drop in their performance as the weight distribution shifts away
from uniform. While for our knowledge compilation based sampling techniques
we observe that their performance is oblivious to the weight distribution.

Distribution comparison We measure the distribution of WAPS vis-a-vis an
ideal weighted and projected sampler (IS) and observed that WAPS is statistically
indistinguishable from IS. Please refer to Appendix for more detailed discussion.

Effect of conditioning on variables We evaluated the performance of WAPS
in the context of conditioned sampling. We observed a slight improvement in
average runtime as more and more variables get constrained. For detailed results,
please refer to Appendix.

WAPS: Weighted and Projected Sampling 15

0 25 50 75 100 125 150 175 200
Instances

0

250

500

750

1000

1250

1500

1750
CP

U
tim

e
(s
)

UniGen2 WeightGen

Fig. 4: Cactus Plot comparing
WeightGen and UniGen2.

0 100 200 300 400 500 600
Instances

0

250

500

750

1000

1250

1500

1750

CP
U
tim

e
(s
)

WAPS KUS

Fig. 5: Cactus Plot comparing
WAPS and KUS.

7 Conclusion

In this paper, we designed a knowledge compilation-based framework, called
WAPS, for literal-weighted, projected and conditional sampling. WAPS provides
strong theoretical guarantees and its runtime performance upon the existing
state-of-the-art weighted and projected sampler WeightGen, by up to 3 orders
of magnitude in terms of runtime. Out of the 773 benchmarks available, WAPS
is able to sample from 588 benchmarks while WeightGen is only able to sample
from 24 benchmarks. WAPS achieves a geometric speedup of 3.69 for incremental
sampling. It is worth noting that WeightGen has weaker guarantees than WAPS.
Furthermore, WAPS is almost oblivious to the number of samples requested.

References

1. System Verilog. http://www.systemverilog.org (2015)
2. Achlioptas, D., Hammoudeh, Z.S., Theodoropoulos, P.: Fast Sampling of Perfectly

Uniform Satisfying Assignments. In: Proc. of SAT. pp. 135–147 (2018)
3. Bacchus, F., Dalmao, S., Pitassi, T.: Algorithms and Complexity Results for #SAT

and Bayesian Inference. In: Proc. of FOCS. pp. 340–351 (2003)
4. Bellare, M., Goldreich, O., Petrank, E.: Uniform Generation of NP-witnesses using

an NP-oracle. Information and Computation 163(2), 510–526 (2000)
5. Biere, A., Cimatti, A., Clarke, E., Fujita, M., Zhu, Y.: Symbolic model checking

using SAT procedures instead of BDDs. In: Proc. DAC. pp. 317–320 (1999)
6. Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability. IOS

Press (2009)
7. Biesse, P., Leonard, T., Mokkedem, A.: Finding bugs in an alpha microprocessor

using satisfiability solvers. In: Proc. of CAV. pp. 454–464 (2001)
8. Brglez, F., Bryan, D., Kozminski, K.: Combinational profiles of sequential bench-

mark circuits. In: Proc. of ISCAS. pp. 1929–1934 (1989)
9. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision dia-

grams. ACM Computing Surveys (CSUR) 24(3), 293–318 (1992)
10. Chakraborty, S., Fremont, D.J., Meel, K.S., Seshia, S.A., Vardi, M.Y.: Distribution-

Aware Sampling and Weighted Model Counting for SAT. In: Proc. of AAAI. pp.
1722–1730 (2014)

http://www.systemverilog.org

16 Gupta, Sharma, Roy and Meel

11. Chakraborty, S., Fremont, D.J., Meel, K.S., Seshia, S.A., Vardi, M.Y.: On Paral-
lel Scalable Uniform SAT Witness Generation. In: Proc. of TACAS. pp. 304–319
(2015)

12. Chakraborty, S., Fried, D., Meel, K.S., Vardi, M.Y.: From weighted to unweighted
model counting. In: Proceedings of IJCAI. pp. 689–695 (2015)

13. Chakraborty, S., Meel, K.S., Vardi, M.Y.: A Scalable and Nearly Uniform Gener-
ator of SAT Witnesses. In: Proc. of CAV. pp. 608–623 (2013)

14. Chavira, M., Darwiche, A.: On probabilistic inference by weighted model counting.
Artificial Intelligence 172(6), 772–799 (2008)

15. Dalvi, N.N., Schnaitter, K., Suciu, D.: Computing query probability with incidence
algebras. In: Proc. of PODS. pp. 203–214 (2010)

16. Darwiche, A.: SDD: A new canonical representation of propositional knowledge
bases. In: Proc. 22nd Int’l Joint Conf. on Artificial Intelligence. pp. 819–826 (2011)

17. Darwiche, A.: On the tractable counting of theory models and its application to
belief revision and truth maintenance. CoRR (2000)

18. Darwiche, A.: New Advances in Compiling CNF to Decomposable Negation Normal
Form. In: Proc. of ECAI. pp. 318–322 (2004)

19. Darwiche, A., Marquis, P.: A knowledge compilation map. Journal of Artificial
Intelligence Research 17, 229–264 (2002)

20. Dechter, R., Kask, K., Bin, E., Emek, R.: Generating random solutions for con-
straint satisfaction problems. In: Proc. of AAAI. pp. 15–21 (2002)

21. Duenas-Osorio, L., Meel, K.S., Paredes, R., Vardi, M.Y.: Counting-based reliability
estimation for power-transmission grids. In: Proc. of AAAI (2017)

22. Dutra, R., Laeufer, K., Bachrach, J., Sen, K.: Efficient sampling of SAT solutions
for testing. In: Proc. of ICSE. pp. 549–559 (2018)

23. Elliott, P., Williams, B.: DNNF-based Belief State Estimation. In: Proc. of AAAI.
pp. 36–41 (2006)

24. Ermon, S., Gomes, C.P., Sabharwal, A., Selman, B.: Embed and Project: Discrete
Sampling with Universal Hashing. In: Proc. of NIPS. pp. 2085–2093 (2013)

25. Ermon, S., Gomes, C.P., Selman, B.: Uniform Solution Sampling Using a Con-
straint Solver As an Oracle. In: Proc. of UAI. pp. 255–264 (2012)

26. Gogate, V., Dechter, R.: A New Algorithm for Sampling CSP Solutions Uniformly
at Random. In: Proc. of CP. pp. 711–715 (2006)

27. Gomes, C.P., Selman, B., McAloon, K., Tretkoff, C.: Randomization in Backtrack
Search: Exploiting Heavy-tailed Profiles for Solving Hard Scheduling Problems. In:
Proc. of AIPS (1998)

28. Ivrii, A., Malik, S., Meel, K.S., Vardi, M.Y.: On computing minimal independent
support and its applications to sampling and counting. Constraints pp. 1–18 (2015)

29. Iyer, M.A.: RACE: A word-level ATPG-based constraints solver system for smart
random simulation. In: Proc. of ITC. pp. 299–308 (2003)

30. Jean-Marie Lagniez, P.M.: An Improved Decision-DNNF Compiler. In: Proc. of
IJCAI. pp. 667–673 (2017)

31. Jerrum, M.R., Sinclair, A.: Approximating the permanent. SIAM journal on com-
puting 18(6), 1149–1178 (1989)

32. Jerrum, M.R., Sinclair, A.: The Markov Chain Monte Carlo method: an approach
to approximate counting and integration. Approximation algorithms for NP-hard
problems pp. 482–520 (1996)

33. Jerrum, M.R., Valiant, L.G., Vazirani, V.V.: Random generation of combinatorial
structures from a uniform distribution. Theoretical Computer Science 43(2-3),
169–188 (1986)

WAPS: Weighted and Projected Sampling 17

34. John, A.K., Chakraborty, S.: A quantifier elimination algorithm for linear modular
equations and disequations. In: Proc. of CAV. pp. 486–503 (2011)

35. Kautz, H., Selman, B.: Pushing the envelope: Planning, propositional logic, and
stochastic search. In: Proc. of AAAI (1996)

36. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671–680 (1983)

37. Kitchen, N.: Markov Chain Monte Carlo Stimulus Generation for Constrained
Random Simulation. Ph.D. thesis, University of California, Berkeley (2010)

38. Kitchen, N., Kuehlmann, A.: Stimulus generation for constrained random simula-
tion. In: Proc. of ICCAD. pp. 258–265 (2007)

39. Madras, N., Piccioni, M.: Importance sampling for families of distributions. Annals
of applied probability pp. 1202–1225 (1999)

40. Madras, N.: Lectures on Monte Carlo Methods, Fields Institute Monographs 16.
American Mathematical Society (2002)

41. Malik, S., Zhang, L.: Boolean satisfiability from theoretical hardness to practical
success. Commun. ACM 52(8), 76–82 (2009)

42. Meel, K.S.: Constrained Counting and Sampling: Bridging the Gap between Theory
and Practice. Ph.D. thesis, Rice University (2017)

43. Muise, C., McIlraith, S.A., Beck, J.C., Hsu, E.: DSHARP: Fast d-DNNF Compi-
lation with sharpSAT. In: Proc. of AAAI. pp. 356–361 (2016)

44. Naveh, R., Metodi, A.: Beyond feasibility: CP usage in constrained-random func-
tional hardware verification. In: Proc. of CP. pp. 823–831 (2013)

45. Naveh, Y., Rimon, M., Jaeger, I., Katz, Y., Vinov, M., s Marcu, E., Shurek, G.:
Constraint-based random stimuli generation for hardware verification. In: Proc of
IAAI. pp. 1720–1727 (2006)

46. Palacios, H., Bonet, B., Darwiche, A., Geffner, H.: Pruning Conformant Plans by
Counting Models on Compiled d-DNNF Representations. In: Proc. of ICAPS. pp.
141–150 (2005)

47. Sang, T., Bacchus, F., Beame, P., Kautz, H.A., Pitassi, T.: Combining component
caching and clause learning for effective model counting. In: Proc. of SAT (2004)

48. Sang, T., Beame, P., Kautz, H.: Performing Bayesian inference by weighted model
counting. In: Prof. of AAAI. pp. 475–481 (2005)

49. Sharma, S., Gupta, R., Roy, S., Meel, K.S.: Knowledge Compilation meets Uniform
Sampling. In: Proc. of LPAR-22. pp. 620–636 (2018)

50. Tseitin, G.S.: On the Complexity of Derivation in Propositional Calculus (1983)
51. Velev, M.N., Bryant, R.E.: Effective Use of Boolean Satisfiability Procedures in the

Formal Verification of Superscalar and VLIW Microprocessors. J. Symb. Comput.
(2), 73–106 (2003)

	WAPS: Weighted and Projected Sampling

