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Abstract

Rigorous Security Analysis of Machine Learning Systems

by

Teodora B�lu��

Doctor of Philosophy in Computer Science

National University of Singapore

Machine learning systems, particularly neural networks, have drastically trans-
formed the technological landscape. Despite these impressive advances, security and
privacy attacks highlight how these systems fail under the presence of adversaries,
and even due to unintentional failures. This has generated research into testing
and verifying desirable properties beyond accuracy on a test set such as robustness,
fairness, and privacy. However, both conceptual and algorithmic gaps remain that
hinder refutability of security claims in machine learning.

In this thesis, we tackle these challenges towards rigorous security analysis. On
a conceptual front, we propose three novel queries for checking properties of interest
for neural networks: counting queries, causal queries, and decisional convergence
queries. On an algorithmic front, we give procedures with theoretical guarantees
to solve these queries. First, counting queries ask what is the cardinality of the
set of inputs that satisfy a given property. We develop diverse techniques to solve
these queries and provide soundness guarantees for our procedures. Specifically, our
techniques have probably approximately correct guarantees, in that the returned
count is close to the ground truth within a user-specified tolerance and with a user-
specified probability. We show that counting queries enable checkable properties of
robustness, fairness and susceptibility to trojan attacks, in the presence of failures.
Second, why certain machine learning attacks and defenses seem e�ective is not well
understood. We propose causal queries that answer how various variables concerning
the training process relate with each other and a given adversary. We specifically use
causal queries to investigate the relationship between generalization and membership
inference attacks, whose connections have been hypothesized in prior work. Finally,
we propose decisional convergence queries, which aim to answer if an approximate

viii



property (determined by a parameter) is satisfied even as its approximation reaches
the limit. We show that we can formulate convergence queries to check forgeability,
a security property of stochastic gradient descent, the de-facto training algorithm.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction
Machine learning (ML), and in particular deep learning, has drastically trans-

formed the technological landscape, permeating into many application domains [219,
86, 48, 183]. As systems that incorporate machine learning components, i.e., ML
systems, grow in importance, their security has become a major concern.

Security of ML systems has been predominantely argued via attack procedures
in the last decade. Attacks highlight concerns that neural networks may fail in
unexpected ways [222, 24, 165], be manipulated by adversaries [141, 143, 146, 76] or
leak private information about the training data [21, 207, 159, 98] or the machine
learning model [23, 59, 119]. In traditional software security, security violations can
then be formally specified and verified to make rigorous security claims. However,
neural networks are stochastically trained, and they may run on inputs drawn from
an unknown distribution at inference time. The nature of vulnerabilities in ML
is thus often intrinsically tied to learning, i.e., they are “features, not bugs” [56,
237, 99]. As a result, even distinguishing exactly between the intended versus
unintended behavior of the ML system is unclear. Unless we precisely define security
vulnerabilities though, it is impossible to rigorously verify security, or the lack
thereof, only from experimental attack procedures.

It is worth recalling that the designers of ML systems often make statistical
claims about their behavior, i.e., a given system is claimed to satisfy properties of
interest with high probability but not always. Properties of interest are thus often
probabilistic, and revolve around characterizing expected moments and deviations
of random variables such as those defined over choices of the input. Existing
principled approaches such as abstract interpretation [212, 67] or satisfiability modulo
theories [112], however, are qualitative. These do not consider the cardinality of the
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set of inputs that satisfy the property. Moreover, certain properties of interest are
defined over random variables involved in the training process such as the choice of
hyper-parameters, the choice of training dataset, the sampling of batches, the input
data distribution, and so on. This complex interplay of many inputs to the training
process a�ect the desirable property. Even if one were to fix all these inputs to
the training process, making it deterministic, security properties over such concrete
training execution have been studied in the approximate regime, without precise
definitions, and sound procedures to verify them [105, 261, 226]. Thus, many of
the existing security claims are non-refutable, either because of the lack of formal
security definitions, limited abstractions for reasoning about the training process, or
ad-hoc testing procedures without theoretical guarantees.

Thesis Statement. This thesis puts forward foundations for rigorous security
analysis of ML systems: We give formal security definitions, abstractions and sound
procedures (with guarantees). On a conceptual front, we propose three novel
queries to evaluate security and privacy properties of neural networks: counting
queries, causal queries and decisional convergence queries. On an algorithmic
front, we develop sound algorithms to answer each category of queries, which draw
upon propositional logic, hypothesis testing, causal reasoning and linear algebraic
techniques to give e�cient algorithms. At the same time, we demonstrate the utility
of these queries in several applications, bridging between formal security definitions
and abstract models of reasoning about training. We show that our queries can
refute or support new and existing claims about the behavior of neural networks in
the presence of adversaries, providing concrete advances towards refutability in ML
security. These query types are unlike satisfiability queries over a property; they
ask questions about cardinality of the set of examples satisfying, the contribution of
each random variables to the observed outcome, and the rate of convergence as we
constrain the property gradually towards a limit.

1.1 Gaps in Rigorous Security Analysis
Machine learning security is a nascent field, with much of the past decade dictated

by a cat-and-mouse game of attacks followed by defenses, followed by attacks. More
principled approaches such as formal verification [111, 228, 4, 10, 93, 205, 156, 49,
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130] or provable defenses [35, 153, 1, 248] for neural networks have been proposed.
Despite these e�orts, rigorous security analysis for ML systems eludes many security
concerns. We identify gaps in existing works on all fundamental aspects of rigorous
security, and we give concrete examples below.

Gaps in Definitions. Several lawsuits have been filed claiming copyright infringe-
ment recently against ML models that could cost billions of dollars. To address both
intellectual property concerns and ensure non-repudiation properties of training
data, we require proofs of model ownership and creation using a particular dataset
beyond reasonable doubt. Existing works show that even if one were to record SGD
executions, such proofs are repudiable [226, 261]. They show that one can come
up with a di�erent set of samples called a forgery, that result in approximately
equal training step updates. However, we show that if one replaces a training step
with an approximately forged one, the di�erence between the forged and original
traces diverges with subsequent training. Because of this, after subsequent training,
forgeries that result in approximately equal updates are detectable. We argue that
forgery needs to be precisely defined with algebraic properties, under exact equality.

Gaps in Abstractions for Training. The lack of clarity in setups and adversary
capabilities and goals has been recently highlighted for privacy evaluations [195].
Membership inference attacks are meta-procedures for evaluating privacy defined
over the outcomes of the training algorithm (i.e., the de-facto stochastic gradient
descent) [207, 142, 196, 135, 252, 260]. However, the parameters of these algorithms
are chosen in an ad-hoc manner, or by heuristically seaching through possible
combinations that yield better performance, i.e., hyper-parameter tuning. Thus,
even if there exists a clear definition of what property membership inference attacks
aim to show violations of (e.g., membership in a training set or attribute inference,
depending on the parametrization of the attack), along with a threat model and a
procedure, it is di�cult to formally check the statements about the attack procedure,
namely whether something has been memorized, or it is generalized. We show that
without explicit assumptions about the setup or the process to generate data of these
meta-procedures, it can lead to paradoxes in empirical evaluations of the attack.
One may ask: why not derive these from theory, why do we need a causal model?
The answer is that it is not trivial to mathematically model the relationship between
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all these variables for deep neural networks (of more than 1-2 layers) without making
some assumptions about the distribution of data [251, 194], or the sample regime
(asymptotic regimes are not checkable), and so on. More concretely, the relationship
between training choices and generalization of deep neural networks trained with
stochastic gradient descent is an open problem. This gap would be filled if we had
a model to reason about the interaction between of the setup. Only then can we
start checking statements about causes of membership inference attacks, and start
drawing connections between them and generalization measures.

Gaps in Procedures. Many properties of interest for ML models are probabilistic,
i.e., they aim to measure moments of random variables defined over distributions of
inputs and outputs of the ML model. Fairness metrics often establish a relationship
between the expected outputs of an ML model and constraints over the inputs [151].
For example, equalized odds aims to evaluate whether the probability of getting
the same outcomes for di�erent groups are same [83]. Individual fairness [46], or
statistical parity [241] aim to ensure that the outputs of the ML model or training
algorithm are independent from the group an individual belongs to. Other security
properties such as trojan attack susceptibility [141] and robustness to adversarial
examples [222] also fall in this category. Despite the statistical nature of ML, most of
the existing works evaluate these properties via attack procedures that find counter-
examples of the desirable property [19], or via verification that give a decisional
answer if the property is always satisfied, over the all input examples [67, 49]. Such
techniques check existential queries. Evaluations of quantitative or statistical queries
are either ad-hoc testing procedures, without guarantees [65, 82], guarantees in the
asymptotic regime [4], or with respect to a dataset [63]. Instead, for rigorous security
guarantees, our goal is to have sound procedures in the finite sample regime. Such
procedures should return answers that can only deviate by a user-specified tolerance
from the ground truth, with high probability.

1.2 Formalizing Security via Novel Queries
The conceptual contributions of this thesis are based on formulating three novel

types of queries to enable formally checkable properties for secure machine learning.
Thus, each type of query returns answers with a guarantee. First, we propose
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queries called counting queries that estimate the cardinality of the set of counter-
examples to the property P. This is fundamentally di�erent from asking if the
set is empty, i.e., the property is satisfied for all, or there exist counter-examples.
These types of queries allow quantification of security properties in the presence of
failures and adversaries. Second, we introduce causal queries that answer “what
if” questions connecting random variables that appear in the training process and
attack procedures. Thus, the goal of these queries is to enable supporting or refuting
existing hypotheses about adversaries, and connecting them to aspects of the learning
process. Third, we introduce convergence queries that ask if the property is still true
in the limit. We describe the query formulations below, and detail the application
of these queries for checking properties to Section 1.3.

Counting Queries. Given a neural network f , an input x and a logical property P, a
counting query asks how many assignments P(f, x) has when the input x is sampled
according to a probability distribution. As an illustrative example, let us take
robustness to adversarial examples. For a randomly chosen input x that is correctly
classified by the neural network f , adversarial examples xadv are carefully crafted by
adding a small imperceptible perturbation ‘ to x, i.e., ||xadv≠x||p Æ ‘ in Lp norm, that
is enough to make the neural network misclassify, f(x) ”= f(xadv). A decisional query
about robustness determines if the property P(f, x) := (f(x) = f(xadv)) is satisfied
over the set of inputs xadv such that ||xadv ≠ x||p Æ ‘, or there exist inputs for which
P is false, i.e., there exist adversarial examples. The counting query formulation
for the robustness property asks how many adversarial examples exist within a
perturbation size ‘ of an input x, when adversarial examples are sampled according
to some probability distribution. Counting robustness asks what the cardinality
of the set of randomly sampled inputs xadv is, under ¬P(f, x) := (f(x) ”= f(xadv)).
A variant of the counting query above revolves around bounding the cardinality:
Given a logical property P specified over a space of inputs and outputs of a deep
neural network and a numerical threshold ◊, decide whether P is true for less than ◊

fraction of the inputs, where the inputs are sampled according to a distribution. For
both of these queries, we ensure soundsness defined as a probably approximately
correct [240] answer from the ground truth, i.e., the true cardinality under the
distribution. These types of queries thus o�er a general framework for checking
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several properties of neural networks such as robustness, fairness, and susceptibility
to trojan attacks (see Chapters 2 and 3).

Causal Queries. Given a training algorithm with many random variables defined
over choices of hyper-parameters such as the training dataset size and the model’s
number of parameters, the causal queries are “what if” queries. It consists of two
variables: the potential cause variable, called the treatment variable X, and the
desired outcome variable Y . Abstractly, the causal query encodes the average e�ect
of the treatment variable X on the outcome Y , when the treatment variables takes
on a particular value. This is di�erent from estimating conditional probabilities, i.e.,
what the probability of an event given that we observe another random variable
take a particular value. In order to estimate causal e�ects, one must be able to
intervene and change the value of the variable, even if these values are not observed
under the given distribution. We specifically introduce such queries to evaluate the
relationship between properties of the training algorithm governed by these many
random variables and membership inference attacks accuracy [207] (see Chapter 4).

Decisional Convergence Queries. Many properties of interest have a set of
approximation parameters such as the perturbation size in robustness queries [222]
or the acceptable distance between the model parameters in forgeability [226].
Decisional convergence queries aim to determine whether a property is satisfied
as the approximation error approaches zero, indicating convergence towards the
desired behavior. Counting and qualitative queries focus on properties of neural
networks for a fixed approximation parameter, and do not answer whether the
property is true as the approximation parameter approaches convergence, i.e., for
all approximations including the smallest one. The convergence queries take in as
input a neural network f and a property P that is defined with respect to a limit of
the approximation ‘ and over inputs x to f . The query is decisional as it answer
whether the property P holds over inputs x as ‘ approaches a limit.

1.3 Utility in Security Applications
The novel query formulations allow us to quantify several properties of neural

networks, and test several existing hypotheses, which are being actively studied.

Robustness. In counting queries for robustness, we want to estimate the probability
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of the event of sampling points close to x under the uniform distribution, where
adversarial examples xadv are defined as ||xadv ≠ x||Œ Æ ‘ such that f(x) ”= f(xadv).
Let us denote the number of adversarial examples xadv as adversarial density. We
show an empirical attack-agnostic metric for estimating robustness of a given deep
neural network and input x called adversarial hardness. It is the highest perturbation
bound for which the adversarial density is below a suitably low ◊. We can search
empirically for the highest perturbation bound ‘Hard for which a sound certifier says
“Yes” when queried with di�erent ◊, implying that f has suitably low density of
adversarial examples for perturbation bounds below ‘Hard. Adversarial hardness is
a measure of the di�culty of finding an adversarial example by uniform sampling.
We find that this measure strongly correlates with perturbation bounds produced
by prominent white-box attacks [145, 24]. Given this strong correlation, we can
e�ectively use adversarial hardness as a proxy for perturbation sizes obtained from
specific attacks, when comparing the relative robustness of two deep neural networks.
Moreover, it implies that the distribution of hard instances for specialized attack
procedures corresponds to that of lower adversarial density instances.

Generalization vs. Membership Inference. To showcase the utility of our
approach, we study 6 well-known membership inference attacks and 2 defenses for
deep neural networks trained using standard stochastic gradient descent training
procedures. We analyze a list of intuitive “root causes” which have been suggested
in prior works and formally specify them as 9 causal hypotheses. We show that two
stochastic parameters inherent in the training process, namely Bias and Variance,
can quantitatively predict both generalization measures and membership inference
attack performance, providing new insights. These factors play a disproportionately
larger role in explaining membership inference attack performance, compared to
other factors such as model complexity, dataset size, or even generalization measures
themselves. Our approach o�ers a more nuanced lens to connect generalization and
membership inference attack accuracy from that o�ered by prior works [19, 144,
254].

Forgeability. We analyze one fundamental property of the de-facto training algo-
rithm stochastic gradient descent, namely forgeability: Is it possible to obtain the
same model parameters (outputs) from two di�erent minibatches (inputs)? If yes,
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then we say that the output is forgeable. Forgeability has emerged in the context
of several applications such as machine unlearning [226], model ownership [105,
261, 53], and membership inference tests [116, 117]. If a model is forgeable, certain
training samples used could have been replaced with other samples without changing
the output. Despite its emerging applications, characterizing forgery in practice
has remained an intriguing open problem. Prior work shows that it is possible to
forge intermediate model parameters within certain approximation error (under a
vector norm) and conjectured that forgery could be made exact with zero error,
but this remains a conjecture hitherto [226, 117, 116]. Creating exact forgery of
model checkpoints has not been demonstrated yet. Thus, we formulate the existence
of exact forgeries as decisional convergence query: does forgery hold in the limit,
when the approximation goes to zero? We present the first theoretical impossibility
result for exact forgery of stochastic gradient descent execution states. Our theorem
specifies conditions under which traces are provably unforgeable, which are e�ciently
checkable on concrete stochastic gradient descent executions, given the training
dataset and model parameters.

1.4 Sound Procedures for Solving Queries
While the three proposed queries are useful in checking properties of neural

networks, in order to solve such queries in practice requires computational tractability.
This thesis systematically analyzes their computational hardness, and gives practical
algorithms to answer them.

1.4.1 Solving Counting Queries

Deciding whether a property of interest for a given neural network holds or not
is NP-hard [111]. Intuitively, algorithms that are able to return the number of
examples that satisfy a given property (even if it is zero or unsatisfiable) should be
at least as hard at the decision problem. In this dissertation, we reduce counting
the number of satisfying assignments of logical formulae to counting queries for
properties of a class of neural networks. Thus, we show that solving counting queries
of this type belong to the complexity class #P-hard.

Our first technical contribution of this dissertation is an analysis framework,
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which models the given set of neural networks N = {f1, . . . , fn} and the property
P as a set of logical constraints „, such that the problem of quantifying how often
N satisfies P reduces to model counting over „. Our approach works by encoding
the neural network into a logical formula in conjunctive normal form (CNF). The
key to achieving soundness guarantees is the notion of equicardinality, which defines
a principled way of encoding neural networks into a CNF formula F , such that
counting queries over the NN reduces to counting the satisfying assignments of F

projected to a subset of the support of F . We then use approximate model counting
on F , which has seen rapid advancement in practical tools that provide PAC-style
guarantees on counts for F , i.e., the computed result is within a multiplicative
(1 + ‘) factor of the ground truth with confidence at least 1 ≠ ”. The end result is a
quantitative verification procedure for neural networks with soundness and precision
guarantees.

The second counting formulation falls under the class of promise problems, in
that we are promised that the probability that inputs satisfy the given logical
property P is less than a threshold ◊ or more than a threshold ◊ + ÷. We propose
PROVERO, a procedure that achieves the above goal with proven soundness:
When it halts with a “Yes” or “No” decision, it is correct with probability 1 ≠ ” and
within approximation error ÷ to the given ◊. The verifier can control the desired
parameters (÷, ”), making them arbitrarily close to zero. That is, the verifier can
have controllably high certainty about the verifier’s output, and ◊ can be arbitrarily
precise (or close to the ground truth). The lower the choice of (÷, ”) used by the
verifier, the higher is the running time.

The algorithms proposed in PROVERO are based on sampling, namely hypoth-
esis testing, and derive procedures using concentration bounds. The key idea of
which is to use cheaper (in sample complexity) hypothesis tests to decide “Yes” or
“No” early. Given the threshold ◊ and the error ÷, the high-level idea is to propose
alternative hypotheses on the left side of ◊ and on the right side of ◊ + ÷. Thus, we
can potentially return much faster when the true probability p is further from the
threshold ◊.
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1.4.2 Solving Causal Queries

We propose a new approach that explains membership inference attacks through
a causal model. A causal model is a graph where nodes are random variables that
abstractly represent properties of the underlying stochastic process and edges denote
cause-e�ect relationships between them. We can model the process of sampling data
sets, picking hyper-parameters like the size of the neural network, output vectors,
generalization parameters like bias and variance, and predictions from membership
inference attack procedures as random variables. These random variables can be
measured empirically during experiments. We can then both encode and infer causal
relationships between nodes quantitatively through equations. Edges in our causal
model are of two types: 1) mechanistically derived edges denote known mathematical
facts derived from domain knowledge (prior work, definitions, etc.); and 2) relations
inferred from experimental observations using causal discovery techniques.

The causal model, once learnt, acts like a predictive model—one can ask what will
be the expected performance of a particular membership inference attack if the “root
causes” (random variables in the model) were to have certain values not observed
during prior experiments. Such estimation can be done without running expensive
experiments. A causal model allows us to “single out” the e�ect of one variable on
the membership inference attack performance. To carefully solve these queries, we
leverage the principled framework of causal reasoning known as do-calculus. It allows
us to perform systematic refutation tests, which avoids confusing causation with
correlation. Such tests quantitatively tell us how well the model fits the observed
data and answer causal queries about surmised root causes.

1.4.3 Solving Decisional Convergence Queries

We propose the first conceptual mechanism to resolve data non-repudiation
disputes by providing an algorithm to solve decisional convergence queries. The
application of the query is on a property called forgery in stochastic gradient descent.
The existence of forgery implies the existence of two sets of samples (minibatches)
of a given dataset could result in the same model parameters after a step of gradient
descent. In the context of data non-repudiation, one minibatch corresponds to the
actual execution trace of stochastic gradient descent by an honest trainer, whereas
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another is a minibatch used for forgery. Under a regime of ‘ æ 0, we consider
exact forgery, i.e., if the model parameters of the forgery match on all bits. In
stochastic gradient descent, the next model parameters are obtained via summing
high-dimensional gradient vectors with respect to the current model parameters of
the samples in the minibatch. Thus, collision of model parameters implies collision
of sums of high-dimensional gradient vectors from a given dataset. If all these
gradient vectors were independent, then forgery would be impossible. However, we
are interested in integer combinations, since we can only add or remove samples to
form minibatches.

Thus, our test called LSBUnforgeability implements a one-way check, that
takes advantage of the algebraic properties: if no combination of the least significant
bits of the representations of the gradient vectors can sum up to zero, then there is
no integer combination of the gradient vectors. Hence, if LSBUnforgeability

returns no solution for the boolean, then we can safely return that the training step
is collision-resistant or that unforgeability holds in convergence.

1.5 Summary of Contributions
This thesis closes foundational gaps by formalizing security properties (Chapter 5

introduces and shows why properties in the limit are essential for security), models
of reasoning about the training process (Chapter 4 proposes causal models for
stochastic gradient descent), and sound procedures to verify or test such properties
of machine learning (Chapter 2 and Chapter 3).

On a conceptual front, we introduce three novel formulations of queries that
are useful for evaluating several properties of neural networks that connect to
security and privacy applications. On a technical side, we develop a diverse toolbox
that is required to solve such queries for neural networks, and present how several
algorithmic frameworks can be used as tools for evaluating the security and privacy
of neural networks, beyond attacks and qualitative verification, but with rigorous
guarantees. Since the algorithmic tools are quite diverse, each chapter has its own
related work or other useful background presented within.

In Chapter 2 we demonstrate that counting queries are tractable and useful in
several security applications. We present two approaches to solve these queries.
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First, we propose a principled algorithmic approach for encoding neural networks
to CNF formulae that preserve model counts. We build an end-to-end tool called
NPAQ that can handle binarized neural networks [96]. We show that NPAQ scales
to neural networks with 1 ≠ 3 internal layers and 20 ≠ 200 units per layer. We use
2 standard datasets namely MNIST and UCI Adult Census Income dataset. We
showcase how NPAQ can be used in diverse security applications with case studies
for robustness, fariness and susceptibility to trojan attacks.

In Chapter 3, we propose a sampling-based approach called PROVERO to
answer bounded counting queries. PROVERO only needs black-box access to
the deep neural network, freeing it up from assuming anything about the internal
implementation of the deep neural networks. The deep neural network can be
deterministic or from a general family of non-deterministic deep neural networks.
This allows checking probabilistic properties of deterministic deep neural networks
and of randomization procedures defined over deep neural networks [130].

In Chapter 4, we propose the first use of causal analysis for studying membership
inference attacks on deep neural networks. We derive causal models for 6 member-
ship inference attacks by combining both known domain-specific assumptions and
observations made from experiments. Our key contribution is a new quantitative
connection between membership inference attacks and generalization, which enables
refuting claims about causation with finer accuracy.

In Chapter 5, we present the first conceptual mechanism to solve data non-
repudiation claims. The key building block is a concrete test to check whether a
training step in stochastic gradient descent is unforgeable or is “collision-resistant”,
i.e., no two training samples give the same update at a given point in the training.
The empirical results of this test on the same experimental setup as prior work are
contrasting, which highlight the need for better security definitions. We formalize
checking forgeability of gradient updates as a decisional convergence query, where
forgery is considered in the limit, under precise algebraic definitions.

1.6 Statement of Joint Work
All the works presented in this thesis were led by Teodora Baluta. In addition,

Shiqi Shen, Shweta Shinde, Kuldeep S. Meel and Prateek Saxena contributed to
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the work in Chapter 2, and the development was done by Shiqi Shen and Teodora
Baluta. Zheng Leong Chua, Kuldeep S. Meel and Prateek Saxena contributed to
the work in Chapter 3. Shiqi Shen, S. Hitarth, Shruti Tople, and Prateek Saxena
contributed to the work presented in Chapter 4. Chapter 5 is a joint work with Ivica
NikoliÊ, and Racchit Jain, Divesh Aggarwal and Prateek Saxena have contributed
to the work.
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Chapter 2

Verifiability via Approximate Count-
ing Queries

2.1 Introduction
In the past decade, there has been a surge of interest in the design of method-

ological approaches to verification and testing of neural networks. Early e�orts
focused on formal verification wherein, given a neural network N and property
P , one is concerned with determining whether there exists an input I to N such
that P is violated [173, 178, 49, 156, 111, 93, 45, 205]. While such certifiability
techniques provide value, for instance in demonstrating the existence of adversarial
examples [78, 166], it is worth recalling that the training of neural networks is a
stochastic complex process. Therefore, many analyses of neural networks require
counting queries, which determines how many inputs satisfy P.

It is natural to encode properties as well as conditions on inputs or outputs as
logical formulae. In order to answer counting queries, we focus on the following
formulation of quantitative verification: Given a set of neural networks N and a
property of interest P defined over the union of inputs and outputs of neural networks
in N , we are interested in estimating how often P is satisfied. In many critical
domains, client analyses often require guarantees that the computed estimates be
reasonably close to the ground truth. We are not aware of any prior approaches
that provide such formal guarantees, though the need for quantitative verification
has recently been recognized [245].

Security Applications. Quantitative verification enables many applications in
security analysis (and beyond) for neural networks. We present 3 applications in
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which the following analysis questions can be quantitatively answered:

• Robustness: How many adversarial samples does a given neural network have?
Does one neural network have more adversarial inputs compared to another
one?

• Trojan Attacks: A neural network can be trained to classify certain inputs
with “trojan trigger” patterns to the desired label. How well-poisoned is a
trojaned model, i.e., how many such trojan inputs does the attack successfully
work for?

• Fairness: Does a neural network change its predictions significantly when
certain input features are present (e.g., when the input record has gender
attribute set to “female” vs. “male”)?

Note that such analysis questions boil down to estimating how often a given
property over inputs and outputs is satisfied. Estimating counts is fundamentally
di�erent from checking whether a satisfiable input exists. Since neural networks
are stochastically trained, the mere existence of certain satisfiable inputs is not
unexpected. The questions above checks whether their counts are su�ciently large
to draw statistically significant inferences. Section 2.3 formulates these analysis
questions as logical specifications.

Our Approach. The primary contribution of this chapter is a new analysis
framework, which models the given set of neural networks N and P as set of
logical constraints, Ï, such that the problem of quantifying how often N satisfies P
reduces to model counting over Ï. We then show that the quantitative verification
is #P -hard. Given the computational intractability of #P , we seek to compute
rigorous estimates and introduce the notion of approximate quantitative verification:
given a prescribed tolerance factor Á and confidence parameter ”, we estimate how
often P is satisfied with PAC-style guarantees, i.e., the computed result is within a
multiplicative (1 + Á) factor of the ground truth with confidence at least 1 ≠ ”.

Our approach works by encoding the neural network into a logical formula in
conjunctive normal form (CNF). The key to achieving soundness guarantees is our
new notion of equicardinality, which defines a principled way of encoding neural
networks into a CNF formula F , such that quantitative verification reduces to
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counting the satisfying assignments of F projected to a subset of the support of F .
We then use approximate model counting on F , which has seen rapid advancement
in practical tools that provide PAC-style guarantees on counts for F . The end
result is a quantitative verification procedure for neural networks with soundness and
precision guarantees.

While our framework is more general, we instantiate our analysis framework
with a sub-class of neural networks called binarized neural networks (or BNNs) [96].
BNNs are multi-layered perceptrons with +/-1 weights and step activation functions.
They have been demonstrated to achieve high accuracy for a wide variety of applica-
tions [185, 149, 121]. Due to their small memory footprint and fast inference time,
they have been deployed in constrained environments such as embedded devices [149,
121]. We observe that specific existing encodings for BNNs adhere to our notion
of equicardinality and implement these in a new tool called NPAQ

1. We provide
proofs of key correctness and composability properties of our general approach, as
well as of our specific encodings. Our encodings are linear in the size of N and P .

Empirical Results. We show that NPAQ scales to BNNs with 1 ≠ 3 internal
layers and 20 ≠ 200 units per layer. We use 2 standard datasets namely MNIST
and UCI Adult Census Income dataset. We encode a total of 84 models with
4, 692 ≠ 53, 010 parameters, into 1, 056 formulae and quantitatively verify them.
NPAQ encodes properties in less than a minute and solves 97.1% formulae in a
24-hour timeout. Encodings scale linearly in the size of the models, and its running
time is not dependent on the true counts. We showcase how NPAQ can be used
in diverse security applications with case studies. First, we quantify the model
robustness by measuring how many adversarially perturbed inputs are misclassified,
and then the e�ectiveness of 2 defenses for model hardening with adversarial training.
Next, we evaluate the e�ectiveness of trojan attacks outside the chosen test set.
Lastly, we measure the influence of 3 sensitive features on the output and check if
the model is biased towards a particular value of the sensitive feature.

Contributions. We make the following contributions:

• New Notion. We introduce the notion of approximate quantitative verification
1The name stands for Neural Property Approximate Quantifier. Code and benchmarks are

available at https://teobaluta.github.io/npaq/
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to estimate how often a property P is satisfied by the neural net N with
theoretically rigorous PAC-style guarantees.

• Algorithmic Approach, Tool, & Security Applications. We propose a principled
algorithmic approach for encoding neural networks to CNF formula that
preserve model counts. We build an end-to-end tool called NPAQ that can
handle BNNs. We demonstrate security applications of NPAQ in quantifying
robustness, trojan attacks, and fairness.

• Results. We evaluate NPAQ on 1, 056 formulae derived from properties over
BNNs trained on two datasets. We show that NPAQ presently scales to BNNs
of over 50, 000 parameters, and evaluate its performance characteristics with
respect to di�erent user-chosen parameters.

2.2 Problem Definition
Definition 1. Let N = {f1, f2, . . . , fm} be a set of m neural nets, where each neural
net fi takes a vector of inputs xi and outputs a vector yi, such that yi = fi(xi). Let
P : {x fi y} æ {0, 1} denote the property P over the inputs x =

mt
i=1

xi and outputs

y =
mt

i=1
yi. We define the specification of property P over N as Ï(x, y) = (

mw
i=1

(yi =
fi(xi)) · P(x, y)).

We show several motivating property specifications in Section 2.3. For the sake
of illustration here, consider N = {f1, f2} be a set of two neural networks that
take as input a vector of three integers and output a 0/1, i.e., f1 : Z3 æ {0, 1} and
f2 : Z3 æ {0, 1}. We want to encode a property to check the dis-similarity between f1

and f2, i.e., counting for how many inputs (over all possible inputs) f1 and f2 produce
di�ering outputs. The specification is defined over the inputs x = [x1, x2, x3], outputs
y1 = f1(x) and y2 = f2(x) as Ï(x, y1, y2) = (f1(x) = y1 · f2(x) = y2 · y1 ”= y2).

Given a specification Ï for a property P over the set of neural nets N , a
verification procedure returns r = 1 (SAT) if there exists a satisfying assignment ·

such that · |= Ï, otherwise it returns r = 0 (UNSAT). A satisfying assignment for
Ï is defined as · : {x fi y} æ {0, 1} such that Ï evaluates to true, i.e., Ï(·) = 1 or
· |= Ï.
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While the problem of standard (qualitative) verification asks whether there exists
a satisfying assignment to Ï, the problem of quantitative verification asks how many
satisfying assignments Ï admits. We denote the set of satisfying assignments for the
specification Ï as R(Ï) = {· : · |= Ï}.

Definition 2. Given a specification Ï for a property P over the set of neural nets
N , a quantitative verification procedure, NQV(Ï), returns the number of satisfying
assignments of Ï, r = |R(Ï)|.

It is worth noting that |R(Ï)| may be intractably large to compute via naïve
enumeration. For instance, we consider neural networks with hundreds of bits
as inputs for which the unconditioned input space is 2|x|. In fact, we prove that
quantitative verification is #P-hard, as stated below.

Theorem 1. NQV(Ï) is #P-hard, where Ï is a specification for a property P over
binarized neural nets.

Our proof is a parsimonious reduction of model counting of CNF formulas,
#CNF, to quantitative verification of binarized neural networks. We show how an
arbitrary CNF formula F can be transformed into a binarized neural net fi and a
property P such that for a specification Ï for P over N = {fi}, it holds true that
R(F) = R(Ï). See Section 2.4 for the full proof.

Remark 1. The parsimonious reduction from #CNF to NQV implies that fully
polynomial time randomized approximation schemes, including those based on Monte
Carlo, cannot exist unless NP=RP.

The computational intractability of #P necessitates a search for relaxations of
NQV. To this end, we introduce the notion of an approximate quantitative verifier
that outputs an approximate count within ‘ of the true count with a probability
greater than 1 ≠ ”.

Definition 3. Given a specification Ï for a property P over a set of neural nets
N , 0 < ‘ Æ 1 and 0 < ” Æ 1, an approximate quantitative verification procedure
(‘, ”)-NQV(Ï, ‘, ”) computes r such that Pr[(1 + ‘)≠1|R(Ï)| Æ r Æ (1 + ‘)|R(Ï)|] Ø
1 ≠ ”.
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The security analyst can set the “confidence” parameter ” and the precision or
“error tolerance” ‘ as desired. The (‘, ”)-NQV definition specifies the end guarantee
of producing estimates that are statistically sound with respect to chosen parameters
(‘, ”).

Connection to Computing Probabilities. Readers can naturally interpret
|R(Ï)| as a measure of probability. Consider N to be a set of functions defined
over input random variables x. The property specification Ï defines an event that
conditions inputs and outputs to certain values, which the user can specify as
desired. The measure |R(Ï)| counts how often the event occurs under all possible
values of x. Therefore, |R(Ï)|

2|x| is the probability of the event defined by Ï occurring.
Our formulation presented here computes |R(Ï)| weighting all possible values of x
equally, which implicitly assumes a uniform distribution over all random variables x.
Our framework can be extended to weighted counting [25, 26], assigning di�erent
user-defined weights to di�erent values of x, which is akin to specifying a desired
probability distributions over x. However, we consider this extension as a promising
future work.

2.3 Security Applications
We present three concrete application contexts which highlight how quantitative

verification is useful to diverse security analyses. The specific property specifications
presented here were derived directly from recent works, highlighting that NPAQ is
broadly applicable to analysis problems actively being investigated.

Robustness. An adversarial example for a neural network is an input which under
a small perturbation is classified di�erently [222, 78]. The lower the number of
adversarial examples, the more “robust” the neural network. Early work on verifying
robustness aimed at checking whether adversarial inputs exist. However, recent
works suggest that adversarial inputs are statistically “not surprising” [239, 9, 58]
as they are a consequence of normal error in statistical classification [73, 72, 146,
42]. This highlights the importance of analyzing whether a statistically significant
number of adversarial examples exist, not just whether they exist at all, under
desired input distributions. Our framework allows the analyst to specify a logical
property of adversarial inputs and quantitatively verify it. Specifically, one can

19



CHAPTER 2. VERIFIABILITY VIA APPROXIMATE COUNTING QUERIES

estimate how many inputs are misclassified by the net (f) and within some small
perturbation distance k from a benign sample (xb) [24, 166, 165], by encoding the
property P1 in our framework as:

P1(x, y, xb, yb, k) =
|x|ÿ

j=1
(xb[j] ü x[j]) Æ k · yb ”= y (P1)

As a concrete usage scenario, our evaluation reports on BNNs for image classification
(Section 2.7.2). Even for a small given input (say m bits), the space of all inputs
within a perturbation of k bits is

1
m

k

2
, which is too large to check for misclassification

one-by-one. NPAQ does not enumerate and yet can estimate adversarial input
counts with PAC-style guarantees (Section 2.7.2). As we permit larger perturbation,
as expected, the number of adversarial samples monotonically increase, and NPAQ

can quantitatively measure how much. Further, we show how one can directly
compare robustness estimates for two neural networks. Such estimates may also be
used to measure the e�cacy of defenses. Our evaluation on 2 adversarial training
defenses shows that the hardened models show lesser robustness than the plain
(unhardened) model. Such analysis can help to quantitatively refute, for instance,
claims that BNNs are intrinsically more robust, as suggested in prior work [64].

Trojan Attacks. Neural networks, such as for facial recognition systems, can be
trained in a way that they output a specific value, when the input has a certain
“trojan trigger” embedded in it [Trojannn]. The trojan trigger can be a fixed input
pattern (e.g., a sub-image) or some transformation that can be stamped on to a
benign image. One of the primary goals of the trojan attack is to maximize the
number of trojaned inputs which are classified as the desired target output, lattack.
NPAQ can quantify the number of such inputs for a trojaned network, allowing
attackers to optimize for this metric. To do so, one can encode the set of trojaned
inputs as all those inputs x which satisfy the following constraint for a given neural
network f , trigger t, lattack and the (pixel) location of the trigger M :

P2(x, y, t, lattack, M) =
fi

jœM

(x[j] = t[j]) · y = lattack (P2)

Section 2.7.3 shows an evaluation on BNNs trained on the MNIST dataset. Our
evaluation demonstrates that the attack accuracy on samples from the test set can
di�er significantly from the total set of trojaned inputs specified as in property P2.
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Fairness. The right notion of algorithmic fairness is being widely debated [46,
55, 257, 83, 38]. Our framework can help quantitatively evaluate desirable metrics
measuring “bias” for neural networks. Consider a scenario where a neural network f

is used to predict the recommended salary for a new hire in a company. Having been
trained on public data, one may want to check whether f makes biased predictions
based on certain sensitive features such as race, gender, or marital status of the new
hire. To verify this, one can count how often f proposes a higher salary for inputs
when they have a particular sensitive feature (say “gender”) set to certain values
(say “male”), given all other input features the same. Formally, this property can
be encoded for given sensitive features denoted by set S along with two concrete
sensitive values s1, s2, as:

P3(x1, x2, y1, y2, S, s1, s2) =
fi

iœS

(x1[i] = s1[i])

fi

iœS

(x2[i] = s2[i])
fi

i”œS

(x1[i] = x2[i]) · y1 = y2
(P3)

Notice the NPAQ counts over all possible inputs where the non-sensitive features
remain equal, but only the sensitive features change, which causes no change in
prediction. An unbiased model would produce a very high count, meaning that for
most inputs (or with high probability), changing just the sensitive features results
in no change in outputs. A follow-up query one may ask is whether inputs having
di�erent values for the sensitive features and all other values the same, determine
an increases (or decreases) of the output salary prediction. This can be encoded as
property P4 (or P5) below.

P4(x1, x2, y1, y2, S, s1, s2) =
fi

iœS

(x1[i] = s1[i])

fi

iœS

(x2[i] = s2[i])
fi

i”œS

(x1[i] = x2[i]) · y2 ≠ y1 > 0
(P4)

P5(x1, x2, y1, y2, S, s1, s2) =
fi

iœS

(x1[i] = s1[i])

fi

iœS

(x2[i] = s2[i])
fi

i”œS

(x1[i] = x2[i]) · y2 ≠ y1 < 0
(P5)

NPAQ can be used to quantitatively verify such properties, and compare models
before deploying them based on such estimates. Section 2.7.4 presents more concrete
evaluation details and interpretation of BNNs trained on the UCI Adult dataset [238].
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2.4 Quantitative Verification is #P-hard
We prove that quantitative verification is #P-hard by reducing the problem of

model counting for logical formulas to quantitative verification of neural networks.
We show how an arbitrary CNF formula F can be transformed into a binarized
neural net f and a specification Ï such that the number of models for F is the same
as Ï, i.e., |R(Ï)| = |R(F )|. Even for this restricted class of multilayer perceptrons
quantitative verification turns out to be #P-hard. Hence, in general, quantitative
verification over multilayer perceptrons is #P-hard.

Theorem 2. NQV (Ï) is #P-hard, where Ï is a specification for a property P over
binarized neural nets.

Proof. We proceed by constructing a mapping between the propositional variables
of the formula F and the inputs of the BNN. We represent the logical formula as
a logical circuit with the gates AND, OR, NOT corresponding to ·, ‚, ¬. In the
following, we show that for each of the gates there exist an equivalent representation
as a perceptron. For the OR gate we construct an equivalent perceptron, i.e., for
every clause Ci of the formula F , we construct a perceptron. The perceptron is
activated only if the inputs correspond to a satisfying assignment to the formula F .
Similarly, we show a construction for the AND gate. Thus, we construct a BNN
that composes these gates such that it can represent the logical formula exactly.

Let F be a CNF formula F = C1 · C2 · . . . Cn. We denote the literals appearing
in clause Ci as lij, j = 1, ..m. Let · : Supp(F ) æ {0, 1} be an assignment for F

where Supp(F ) represents the propositional variables F is defined on. We say F is
satisfiable if there exists an assignment · such that ·(F ) = 1. The binarized neural
net f has inputs x and one output y, y = N(x), and f : {≠1, 1}m·n æ {0, 1}. This
can be easily extended to multi-class output.

We first map the propositional variables in Supp(F ) to variables in the binary
domain {≠1, 1}. For every clause Ci, for every literal lij œ {0, 1} there is a correspond-
ing input to the neural net xij œ {≠1, 1} such that lij … xij = 1 · lij … xij = ≠1.
For each input variable xij the weight of the neuron connection is 1 if the proposi-
tional variable lij appears as a positive literal in the Ci clause and ≠1 if it appears
as a negative literal lij in Ci.
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For every clause Ci we construct a disjunction gadget, a perceptron equivalent
function to the OR gate. Given m inputs xi1, xi2, . . . xim œ {≠1, 1}, the disjunction
gadget determines the output of neuron qi. The output is the linear layer is
ti = q

m

j=1 wj · xij + m. The output neuron qi is 1 if the activation function sign(ti)
returns 1. Namely, the output is 1 only if at least one literal is true, i.e., not all wj ·xij

terms evaluate to ≠1. Notice that we only need m + 2 neurons (m for the inputs and
2 for the intermediate outputs) for each clause Ci with m literals. Next, we introduce
the conjunction gadget which, given n inputs q1, . . . , qn œ {≠1, 1} outputs y = 1 only
if q1 +q2 + . . .+qn Ø n. The linear layer’s output is tÕ = q

n

i=1 wi ·qi ≠n over which we
apply the sign activation function. The output of this gadget, y = q

n

i=1 wi · qi Ø n,
is 1 if all of the variables qi are 1, i.e., if all the clauses are satisfied.Notice that if
we consider the batch normalization a transformation over ti that returns ti, we can
obtain a binarized neural network f .

If the output of f on inputs x is 1 the formula F is SAT, otherwise it is
UNSAT. Moreover, the binarized neural network constructed for binary input
vectors of size m ◊ n outputs y = 1 for every satisfying assignment · of the formula
F , i.e., f(·(x)) = 1. Given a procedure #SAT(F ) that accepts formula F and
outputs a number r which is the number of satisfying assignments, it will also
compute the number of inputs for which the output of the BNN is 1. Specifically,
we can construct a quantitative verifier for the neural net f and a specification
Ï(x, y) = (y = N(x)) · y = 1 using #SAT(F ).

Reduction is polynomial. The size of the formula F is the size of the input x
to the neural net, i.e., m · n. The neural net has n + 1 perceptrons (n for each
disjunction gadget and one for the conjunction gadget).

2.5 Approach
Recall that exact counting (as defined in NQV) is #P -hard. Even for approx-

imate counting, many widely used sampling-based approaches, such as based on
Monte Carlo methods [81, 84, 162, 104], do not provide soundness guarantees since
existence of a method that only requires polynomially many samples computable
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in (randomized) polynomial time would imply NP = RP (See Remark 1). For
sound estimates, it is well-known that many properties encodable in our framework
require intractably large number of samples—for instance, to check for distribu-
tional similarity of two networks f1 and f2 in the classical model, a lower bound of
O(

Ô
2x) samples are needed to obtain estimates with reasonable (‘, ”) guarantees.

However, approximate counting for boolean CNF formulae has recently become
practical. These advances combine the classical ideas of universal hashing with the
advances in the Boolean satisfiability by invoking SAT solvers for NP queries, i.e.,
to obtain satisfiable witnesses for queried CNF formulae. The basic idea behind
these approximate CNF counters is to first employ universal hashing to randomly
partition the set of solutions into roughly small buckets. Then, the approximate
counter can enumerate a tractably small number of witnesses satisfying P using a
SAT solver within one bucket, which calculates the “density” of satisfiable solutions
in that bucket. By careful analysis using concentration bounds, these estimates
can be extended to the sum over all buckets, yielding a provably sound PAC-style
guarantee of estimates. Our work leverages this recent advance in approximate CNF
counting to solve the problem of (‘, ”)-NQV [218].

The Equicardinality Framework. Our key technical advance is a new algorithmic
framework for reducing (‘, ”)-NQV to CNF counting with an encoding procedure
that has provable soundness. The procedure encodes N and P into Ï, such that
model counting in some way over Ï counts over N · P. This is not straight-forward.
For illustration, consider the case of counting over boolean circuits, rather than
neural networks. To avoid exponential blowup in the encoding, often one resorts to
classical equisatisfiable encoding [236], which preserves satisfiability but introduces
new variables in the process. Equisatisfiability means that the original formula is
satisfiable if and only if the encoded one is too. Observe, however, that this notion
of equisatisfiability is not su�cient for model counting—the encoded formula may
be equisatisfiable but may have many more satisfiable solutions than the original.

We observe that a stronger notion, which we call equicardinality, provides a prin-
cipled approach to constructing encodings that preserve counts. An equicardinality
encoding, at a high level, ensures that the model count for an original formula can
be computed by performing model counting projected over the subset of variables in

24



CHAPTER 2. VERIFIABILITY VIA APPROXIMATE COUNTING QUERIES

the resulting formula. We define this equicardinality relation rigorously and prove
in Lemma 1 that model counting over a constraint is equivalent to counting over
its equicardinal encoding. Further, we prove in Lemma 2 that the equicardinal-
ity relation is closed under logical conjunction. This means model counting over
conjunction of constraints is equivalent to counting over the conjunction of their
equicardinal encodings. Equicardinality CNF encodings can thus be composed with
boolean conjunction, while preserving equicardinality in the resulting formulae.

With this key observation, our procedure has two remaining sub-steps. First,
we show equicardinal encodings for each neural net and properties over them to
individual equicardinality CNF formulae. This implies Â, the conjunction of the
equicardinality CNF encodings of the conjuncts in Ï, preserves the original model
count of Ï. Second, we show how an existing approximate model counter for CNF
with (‘, ”) guarantees can be utilized to count over a projected subset of the variables
in Â. This end result, by construction, guarantees that our final estimate of the
model count has bounded error, parameterized by Á, with confidence at least 1 ≠ ”.

Cardinality Constraints: x1 x2 x3 f(x)
x1 + x2 + x3 Ø 2 … v1 = 1
x1 + x2 + x3 Ø 1 … v2 = 1
x1 + x2 + x3 Ø 1 … v3 = 1
x1 + x2 + x3 Ø 1 … v4 = 1
x1 + x2 + x3 Ø 1 … v5 = 1

v1 + v2 + v3 + v4 + v5 Ø 5 … y

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Cardinality Constraints: x1 x2 x3 f1(x) f2(x)
x1 + x2 + x3 Ø 1 … v5
v1 + v2 + v3 + v4 + v5 Ø 5

… y
f1 : v2 = v3 = v4 = 1
f2 :x1 + x3 Ø 2 … v1
x1 + x2 + x3 Ø 1 … v2
x1 + x2 + x3 Ø 1 … v3
x1 + x2 + x3 Ø 1 … v4

0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 1
1 1 0 0 0
1 1 1 1 1

Figure 2.1. Example of encoding di�erent BNNs (f , f1, f2) as a conjunction over
a set of cardinality constraints. An attacker manipulates f with the goal to increase
the inputs with trigger x3 = 1 that classify as y = 0. Specifically, to obtain f1 the
weights of x1, x2, x3 in constraints of f for v2, v3, v4 are set to 0 (highlighted with
dashed lines, on the left). To obtain f2, we set w21 = 0. The trojan property P
.= (y = 0) · (x3 = 1) is satisfied by one input (left) for f , whereas for f2 we find two

(right).

Formalization. We formalize the above notions using notation standard for boolean
logic. The projection of an assignment ‡ over a subset of the variables t, denoted as
‡|t, is an assignment of t to the values taken in ‡ (ignoring variables other than t
in ‡).

25



CHAPTER 2. VERIFIABILITY VIA APPROXIMATE COUNTING QUERIES

Definition 4. We say that a formula Ï : t æ {0, 1} is equicardinal to a formula
Â : u æ {0, 1} where t ™ u, if:

(a) ’· |= Ï ∆ ÷‡, (‡ |= Â) · (‡|t = ·), and

(b) ’‡ |= Â ∆ ‡|t |= Ï.

An example of a familiar equicardinal encoding is Tseitin [236], which transforms
arbitrary boolean formulas to CNF. Our next lemma shows that equicardinality
preserves model counts. We define R(Â) ¿ t, the set of satisfying assignments of Â

projected over t, as {‡|t : ‡ |= Â}.

Lemma 1 (Count Preservation). If Â is equicardinal to Ï, then |R(Â) ¿ t| = |R(Ï)|.

Proof. By Definition 4(a), for every assignment · |= Ï, there is a ‡ |= Â and the
‡|t = · . Therefore, each distinct satisfying assignment of Ï must have a unique
assignment to ‡|t, which must be in R(Â) ¿ t. It follows that |R(Â) ¿ t| Ø |R(Ï)|,
then. Next, observe that Definition 4(b) states that everything in R(Â) ¿ t has
a satisfying assignment in Ï; that is, its projection cannot correspond to a non-
satisfying assignment in Ï. By pigeonhole principle, it must be that |R(Â) ¿ t| Æ
|R(Ï)|. This proves that |R(Â) ¿ t| = |R(Ï)|.

Lemma 2 (CNF-Composibility). 2 Consider Ïi : ti æ {0, 1} and Âi : ui æ {0, 1},
such that Ïi is equicardinal to Âi, for i œ {1, 2}. If (u1 ≠ t1) fl u2 = ? and
(u2 ≠ t2) fl u1 = ?, then Ï1 · Ï2 is equicardinal to Â1 · Â2.

Proof. (a) ’· |= Ï1 · Ï2 ∆ (· |= Ï1) · (· |= Ï2). By Definition 4(a), ÷‡1, ‡2, ‡1 |=
Â1 · ‡2 |= Â2. Further, by Definition 4(a), ‡1|t1 = · |t1 and ‡2|t2 = · |t2.
This implies that ‡1|t1 fi ‡2|t2 = ·1|t1 fi ·2|t2 = · . Then ‡1 fi ‡2 = ‡1|u1≠t1 fi
‡2|u2≠t2 fi (‡1|t1 fi ‡2|t2) = ‡1|u1≠t1 fi ‡2|u2≠t2 fi · . Since (u1 ≠ t1) fl u2 = ?,
we know that ‡1|u1≠t1 fl ‡2|u2≠t2 = ? and ‡1|u1≠t1 fl · = ?. Similarly, since
(u2 ≠ t2) fl u1 = ?, we know that ‡2|u2≠t2 fl · = ?. From this, it follows
that ‡1 fi ‡2 represent a set of satisfying assignments for Â1 · Â2. Further,

2The CCS’19 published version of this paper contained a mistake on the condition of lemma –
the intersection and union operators on the sets u1, t1, u2, t2 were incorrectly used. We would like
to thank Jiong Yang for pointing it out and helping us correct it.
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(‡1 fi ‡2)|t1fit2 = · . This proves part (a) of the claim that Ï1·Ï2 is equicardinal
to Â1 · Â2.

(b) ’‡ |= Â1 · Â2 ∆ (‡ |= Â1) · (‡ |= Â2). By Definition 4(b), ‡|t1 |= Ï1 and
‡|t2 |= Ï2. This implies ‡|t |= Ï1 · Ï2, thereby proving the part (b) of the
definition for the claim that Ï1 · Ï2 is equicardinal to Â1 · Â2.

Final Count Estimates. With the CNF-composability lemma at hand, we decom-
pose the counting problem over a conjunction of neural networks N and property P,
to that of counting over the conjunction of their respective equicardinality encodings.
Equicardinality encodings preserve counts, and taking their conjunction preserves
counts. It remains to show how to encode N to boolean CNF formulae, such that
the encodings are equicardinal. Since the encoding preserves counts originally de-
sired exactly, we can utilize o�-the-shelf approximate CNF counters [27, 218] which
have (‘, ”) guarantees. The final counts are thus guaranteed to be sound estimates
by construction, which we establish formally in Theorem 3 for the encodings in
Section 2.6.

Why Not Random Sampling? An alternative to our presented approach is
random sampling. One could simply check what fraction of all possible inputs
satisfies Ï by testing on a random set of samples. However, the estimates produced
by this method will satisfy soundness (defined in Section 2.2) only if the events being
measured have su�ciently high probability. In particular, obtaining such soundness
guarantees for rare events, i.e., where counts may be very low, requires an intractably
large number of samples. Note that such events do arise in security applications [21,
245]. Specialized Monte Carlo samplers for such low probability events have been
investigated in such contexts [245], but they do not provide soundness guarantees.
We aim for a general framework, that works irrespective of the probability of events
measured.

2.6 NPAQ Design
Our tool takes as input a set of trained binarized neural networks N and a

property P and outputs “how often" P holds over N with (‘, ”) guarantees. We
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show a two-step construction from binarized neural nets to CNF. The main principle
we adhere to is that at every step we formally prove that we obtain equicardinal
formulas. While BNNs and, in general, neural nets can be encoded using di�erent
background theories, we choose a specialized encoding of BNNs to CNF. First, we
express a BNN using cardinality constraints similar to [156] (Section 2.6.1). For
the second step, we choose to encode the cardinality constraints to CNF using a
sorting-based encoding (Section 2.6.2). We prove that NPAQ is preserving the
equicardinality in Theorem 3. Finally, we use an approximate model counter that
can handle model counting directly over a projected subset of variables for a CNF
formula [218].

2.6.1 BNN to Cardinality Constraints

Consider a standard BNN fi : {≠1, 1}n æ {0, 1}s that consists of d ≠ 1 internal
blocks and an output block [96]. We denote the kth internal block as fblkk

and the
output block as fout. More formally, given an input x œ {≠1, 1}n, the binarized
neural network is: fi(x) = fout(fblkd≠1(. . . (fblk1(x) . . .)). For every block fblkk

, we
define the inputs to fblkk

as the vector vk. We denote the output for k block as the
vector vk+1. For the output block, we use vd to denote its input. The input to fblk1

is v1 = x. We summarize the transformations for each block in Table 2.1.

Running Example. Consider a binarized neural net f : {≠1, 1}3 æ {0, 1} with a
single internal block and a single output (Figure 2.1). To show how one can derive the
constraints from the BNN’s parameters, we work through the procedure to derive the
constraint for the output of the internal block’s first neuron, denoted by v1. Suppose
we have the following parameters: the weight column vector w1 = [1 1 1] and bias
b1 = ≠2.0 for the linear layer; –1 = 0.8, ‡1 = 1.0, “1 = 2.0, µ1 = ≠0.37 parameters
for the batch normalization layer. First, we apply the linear layer transformation
(Eq. 2.1 in Table 2.1). We create a temporary variable for this intermediate output,
tlin

1 = Èx, w1Í + b1 = x1 + x2 + x3 ≠ 2.0. Second, we apply the batch normalization
(Eq. 2.2 in Table 2.1) and obtain tbn

1 = (x1 +x2 +x3 ≠2.0+0.37) ·0.8+2.0 . After the
binarization (Eq. 2.3 in Table 2.1), we obtain the constraints S1 = ((x1+x2+x3≠2.0+
0.37)·0.8+2.0 Ø 0) and S1 … v1 = 1. Next, we move all the constants to the right side
of the inequality: x1 +x2 +x3 Ø ≠2.0/0.8+2.0≠0.37 … v1 = 1. Lastly, we translate
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Table 2.1. BNN definition as a set of layers of transformations.

A. Internal Block fblkk
(vk) = vk+1

1) Linear Layer

tlin

i
= Èvk, wiÍ + bi (2.1)

where i = 1, ..., nk+1, wi is the ith column in Wk œ {≠1, 1}nk◊nk+1 , b is the bias row
vector œ Rnk+1 and y œ Rnk+1

2) Batch Normalization

tbn

i
= tlin

i
≠ µki

‡ki

· –ki + “ki (2.2)

where i = 1, ..., nk+1, –k is the kth weight row vector œ Rnk+1 , “k is the bias œ Rnk+1 ,
µk œ Rnk+1 is the mean and ‡k œ Rnk+1 is the standard deviation.
3) Binarization

tbn

i
Ø 0 ∆ vk+1i = 1 (2.3)

tbn

i
< 0 ∆ vk+1i = ≠1 (2.4)

where i = 1, ..., nk+1.
B. Output Block fout(vd) = y
1) Linear Layer

qlin

i
= Èvd, wjÍ + bi (2.5)

where vd œ {≠1, 1}nd , wj is the jth column œ Rnd◊s, b œ Rs is the bias vector.
2) Argmax

yi = 1 … i = arg max(qlin) (2.6)

the input from the {≠1, 1} domain to the boolean domain, xi = 2x(b)
i

≠1, i œ {1, 2, 3},
resulting in the following constraint: 2(x(b)

1 + x(b)
2 + x(b)

3 ) ≠ 3 Ø ≠0.87. We use a
sound approximation for the constant on the right side to get rid of the real values
and obtain x(b)

1 + x(b)
2 + x(b)

3 Ø Á1.065Ë = 2. For notational simplicity the variables
x1, x2, x3 in Figure 2.1 are boolean variables (since x = 1 … x(b) = 1).

To place this in the context of the security application in Section 2.3, we examine
the e�ect of two arbitrary trojan attack procedures. Their aim is to manipulate the
output of a given neural network, f , to a target class for inputs with a particular
trigger. Let us consider the trigger to be x3 = 1 and the target class y = 0 for two
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Table 2.2. Encoding for a binarized neural network BNN(x) to cardinality con-
straints, where v1 = x. MILP stands for Mixed Integer Linear Programming, ILP
stands for Integer Linear Programming.

A. fblkk
(vk, vk+1) to BLKk(v(b)

k
, v(b)

k+1)

MILPblk:
Eq (1), Eq (2), Eq (3), –ki > 0

Èvk, wiÍ Ø ≠ ‡ki
–ki

· “ki + µki ≠ bi, i = 1, ..., nk+1

ILPblk:
–ki > 0

Èvk, wiÍ Ø Ci … vk+1i = 1, i = 1, ..., nk+1
Èvk, wiÍ < Ci … vk+1i = ≠1, i = 1, ..., nk+1
Ci = Á≠ ‡ki

–ki
· “ki + µki ≠ biË

Cardblk:
v(b) = 2v ≠ 1, v œ {≠1, 1}

BLKk(v(b)
k

, v(b)
k+1) = q

jœw
+
ki

v(b)
kj

+ q
jœw

≠
ki

vkj
(b) Ø C Õ

i
+ |w≠

ki
| … v(b)

k+1i
= 1, C Õ

i
= Á(Ci + qnk

j=1 wji)/2Ë

B. fout(vd, y) to OUT(v(b)
d

, ord, y)

Order:
ordij œ {0, 1}

qlin

i
Ø qlin

j
… ordij = 1

MILPout:
Eq (5), Eq (Order)

Èvd, wi ≠ wjÍ Ø bj ≠ bi … ordij = 1
ILPout: Èvd, wi ≠ wjÍ Ø Ábj ≠ biË … ordij = 1

Cardout:
v(b) = 2v ≠ 1, v œ {≠1, 1}

OUT(v(b)
d

, ord, y) =
31 q

pœw
+
i flw

≠
j

v(b)
dp

≠ q
pœw

≠
i flw

+
j

v(b)
dp

Ø ÁEij/2Ë
2

… ordij · q
s

i=1 ordij = s … yi = 1
4

,

Eij = Á(bj ≠ bi + qnd
p=1 wip ≠ qnd

p=1 wjp)/2Ë

C. fi to BNN

BNN(x(b), y, v(b)
2 , . . . , v(b)

d
, ord) = BLK1(x(b), v2

(b))
d≠1fi

k=2

3
BLKk(v(b)

k
, v(b)

k+1)
4

· OUT(v(b)
d

, y, ord)

trojaned neural nets, f1 and f2 (shown in Figure 2.1). Initially, f outputs class 0
for only one input that has the trigger x3 = 1. The first observation is that f1 is
equivalent to f , even though its parameters have changed. The second observation
is that f2 changes its output prediction for the input x1 = 0, x2 = 1, x3 = 1 to
the target class 0. We want NPAQ to find how much do f1 and f2 change their
predictions for the target class with respect to the inputs that have the trigger, i.e.,
|R(Ï1)| < |R(Ï2)|, where Ï1, Ï2 are trojan property specifications (property P2 as
outlined Section 2.3).

Encoding Details. The details of our encoding in Table 2.2 are similar to [156].
We first encode each block to mixed integer linear programming and implication
constraints, applying the MILPblk rule for the internal block and MILPout for the
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outer block (Table 2.2). To get rid of the reals, we use sound approximations to
bring the constraints down to integer linear programming constraints (see ILPblk

and ILPout in Table 2.2). For the last step, we define a 1:1 mapping between
variables in the binary domain x œ {≠1, 1} and variables in the boolean domain
x(b) œ {0, 1}, x(b) = 2x ≠ 1. Equivalently, for x œ {≠1, 1} there exists a unique
x(b): (x(b) … x = 1) · (x(b) … x = ≠1). Thus, for every block fblkk

(vk) = vk+1,
we obtain a corresponding formula over booleans denoted as BLKk(v(b)

k
, v(b)

k+1), as
shown in rule Cardblk (Table 2.2). Similarly, for the output block fout we obtain
OUT(vd, ord, y). We obtain the representation of y = fi(x) as a formula BNN
shown in Table 2.2. For notational simplicity, we denote the introduced intermediate
variables v(b)

k
= [v(b)

k1 , . . . , v(b)
knk

], k = 2, . . . , d and ord = [ordi, . . . , ordnd·nd
] as aV .

Since there is a 1:1 mapping between x and x(b) we use the notation x, when
it is clear from context which domain x has. We refer to BNN as the formula
BNN(x, y, aV ).

Lemma 3. Given a binarized neural net fi : {≠1, 1}n æ {0, 1}s over inputs x and
outputs y, and a property P, let Ï be the specification for P, Ï(x, y) = (y = fi(x)) ·
P(x, y), where we represent y = fi(x) as BNN(x, y, aV ). Then Ï is equicardinal to
BNN(x, y, aV ).

For the ease of proof of Lemma 3, we first introduce the notion of independent
support.

Independent Support. An independent support ind for a formula F (x) is a
subset of variables appearing in formula F, ind ™ x, that uniquely determine the
values of the other variables in any satisfying assignment [28]. In other words, if
there exist two satisfying assignments ·1 and ·2 that agree on ind then ·1 = ·2.
Then R(F) = R(F) ¿ ind.

Proof. We observe that the intermediate variables for each block in the neural net-
work, namely vk for the kth block, are introduced by double implication constraints.
Hence, not only are both part (a) and part (b) of definition 4 true, but the satisfying
assignments for the intermediate variables aV are uniquely determined by x. This is
the main idea behind the proof, which we show through the introduced independent
support. We prove that R(Ï) = R(Ï) ¿ x by showing that x is an independent
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support for BNN. This follows directly from the construction of BNN. If x is an
independent support then the following has to hold true:

G =
3

BNN(x, y, aV ) · BNN(xÕ, yÕ, aÕ
V

) · (x = xÕ) ∆

(y = yÕ) · (aV = aÕ
V

)
4

As per Table 2.2, we expand BNN(x, y):

G =
3

(BLK1(x, v(b)
2 ) · BLK2(v(b)

2 , v(b)
3 ) · . . . · OUT(v(b)

d
, ord, y)

· (BLK1(xÕ, vÕ(b)
2 ) · BLK2(vÕ(b)

2 , vÕ(b)
3 ) · . . . · OUT(vÕ(b)

d
, ord, yÕ)

· (x = xÕ) ∆ (y = yÕ) · (aV = aÕ
V

)
4

G is valid if and only if ¬G is unsatisfiable.

¬G =
3

(BLK1(x, v(b)
2 ) · . . . · OUT(v(b)

d
, y))

· (BLK1(xÕ, vÕ(b)
2 ) · . . . · OUT(vÕ(b)

d
, yÕ) · (x = xÕ) · ¬(y = yÕ)

4

‚
3

BLK1(x, v(b)
2 ) · . . . · OUT(v(b)

d
, y)

· (BLK1(xÕ, vÕ(b)
2 ) · . . . · OUT(vÕ(b)

d
, yÕ) · (x = xÕ) · ¬(aV = aÕ

V
)
4

The first block’s formula’s introduced variables v(b)
2 are uniquely determined by x.

For every formula BLKk corresponding to an internal block the introduced variables
are uniquely determined by the input variables. Similarly, for the output block
(formula OUT in Table 2.2). If x = xÕ then v(b)

2 = vÕ(b)
2 , . . . ∆ aV = aÕ

V
, so the

second clause is not satisfied. Then, since v(b)
d

= vÕ(b)
d

∆ y = yÕ. Thus, G is a valid
formula which implies that x forms an independent support for the BNN formula
∆ R(Ï) = R(Ï) ¿ x.

2.6.2 Cardinality Constraints to CNF

Observe that we can express each block in BNN as a conjunction of cardinal-
ity constraints [214, 7, 3]. Cardinality constraints are constraints over boolean
variables x1, . . . , xn of the form x1 + . . . + xn—c , where — œ {=, Æ, Ø}. More
specifically, by applying the Cardblk rule (Table 2.2), we obtain a conjunction over
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cardinality constraints Ski , together with a double implication: BLKk(v(b)
k

, v(b)
k+1) =

wnk+1
i=1 Ski(v

(b)
k

) … v(b)
k+1i

. We obtain a similar conjunction of cardinality constraints
for the output block (Cardout, Table 2.2). The last step for obtaining a Boolean
formula representation for the BNN is encoding the cardinality constraints to CNF.

We choose cardinality networks [7, 3] to encode the cardinality constraints to
CNF formulas and show for this particular encoding that the resulting CNF is
equicardinal to the cardinality constraint. Cardinality networks implement several
types of gates, i.e., merge circuits, sorting circuits and 2-comparators, that compose
to implement a merge sort algorithm. More specifically, a cardinality constraint
of the form S(x) = x1 + . . . + xn Ø c has a corresponding cardinality network,
Cardc =

3
(Sortc(x1, . . . , xn) = (y1, . . . , yc)) · yc

4
, where Sort is a sorting circuit. As

shown by [7, 3], the following holds true:

Proposition 1. A Sortc network with an input of n variables, outputs the first c

sorted bits. Sortc(x1, . . . , xn) = (y1, . . . , yc) where y1 Ø y2 Ø . . . Ø yc.

We view Cardc as a circuit where we introduce additional variables to represent
the output of each gate, and the output of Cardc is 1 only if the formula S is true.
This is similar to how a Tseitin transformation [236] encodes a propositional formula
into CNF.

Running Example. Revisiting our example in Section 2.6.1, consider f2’s cardi-
nality constraint corresponding to v1, denoted as SÕ

1 = x1 + x3 Ø 2. This constraint
translates to the most basic gate of cardinality networks, namely a 2-comparator [14,
7] shown in Figure 2.2. Observe that while this e�cient encoding ensures that S1 is
equi-satisfiable to the formula 2-Comp · y2, counting over the CNF formula does
not preserve the count, i.e., it over-counts due to variable y1. Observe, however,
that this encoding is equicardinality and thus, a projected model count on {x1, x3}
gives the correct model count of 1. The remaining constraints shown in Figure 2.1
are encoded similarly and not shown here for brevity.

Lemma 4 (Substitution). Let F be a Boolean formula defined over the variables Vars
and p œ Vars. For all satisfying assignments · |= F ∆ · |Vars≠{p} |= F [p ‘æ · [p]].

Lemma 5. For a given cardinality constraint, S(x) = x1 + . . . + xn Ø c, let
Cardc be the CNF formula obtained using cardinality networks, Cardc(x, aC) :=
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x1 y1
2-

C
om

p
x3 y2

2-Comp Clauses x1 x3 y1 y2 2-Comp · y2

x1 ∆ y2
x3 ∆ y2
x1 · x3 ∆ y1

0 0 0 0 0
0 1 0/1 0 0
1 0 0/1 0 0
1 1 0/1 0/1 1

Figure 2.2. Cardinality networks encoding for x1 + x3 Ø 2. For this case, cardi-
nality networks amount to a 2-comparator gate. Observe there are two satisfying
assignments for 2-Comp · y2 due to the “don’t care” assignment to y1.

(Sortc(x1, . . . , xn) = (y1, . . . , yc)·yc), where aC are the auxiliary variables introduced
by the encoding. Then, Cardc is equicardinal to S.

(a) ’· |= S ∆ ÷‡, ‡ |= Cardc · ‡|x = · .

(b) ’‡ |= Cardc ∆ ·3|x |= S.

Proof. (a) Let · |= S ∆ there are least c xi’s such that · [xi] = 1, i Ø c. Thus,
under the valuation ·1 to the input variables x1, . . . , xn, the sorting network
outputs a sequence y1, . . . , yc where yc = 1, where y1 Ø . . . Ø yc (Proposition 1).
Therefore, Cardc[x ‘æ · ] = (Sortc(x1 ‘æ · [x1], . . . , xn ‘æ · [xn]) = (y1, . . . , yc)·
yc) is satisfiable. This implies that ÷‡, ‡ |= Cardc · ‡|x = · .

(b) Let ‡ |= Cardc ∆ ‡[yc] = 1. By Lemma 4, ‡|x |= Cardc[yi

‘æ ‡[yi]], ’yi œ aC . From Proposition 1, under the valuation ‡, there are at
least c xi’s such that ‡[xi] = 1, i Ø c. Therefore, ‡|x |= S.

For every Ski , k = 1, . . . , d, i = 1, . . . , nk+1, we have a CNF formula Cki . The final
CNF formula for BNN(x, y, aV ) is denoted as C(x, y, a), where a = aV

t
d

k=1
tnk+1

i=1 aki
C

and aki
C

is the set of variables introduced by encoding Ski .

Encoding Size. The total CNF formula size is linear in the size of the model. Given
one cardinality constraint S(vk), where |vk| = n, a cardinality network encoding
produces a CNF formula with O(n log2 c) clauses and variables. The constant c is
the maximum value that the parameters of the BNN can take, hence the encoding
is linear in n. For a given layer with m neurons, this translates to m cardinality
constraints, each over n variables. Hence, our encoding procedure produces O(m◊n)
clauses and variables for each layer. For the output block, s is the number of output
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classes and n is the number of neurons in the previous layer. Due to the ordering
relation encoding the arg max, there are O(s ◊ s ◊ n) clauses and variables for
the output block. Therefore, the total size for a BNN with l layers of the CNF is
O(m ◊ n ◊ l + s ◊ s ◊ n), which is linear in the size of the original model.

Alternative Encodings. Besides cardinality networks, there are many other
encodings from cardinality constraints to CNF [7, 3, 2, 214, 48] that can be used as
long as they are equicardinal. We do not formally prove here but we strongly suspect
that adder networks [48] and BDDs [2] have this property. Adder networks [48]
provide a compact, linear transformation resulting in a CNF with O(n) variables
and clauses. The idea is to use adders for numbers represented in binary to compute
the number of activated inputs and a comparator to compare it to the constant
c. A BDD-based [48] encoding builds a BDD representation of the constraint. It
uses O(n2) clauses and variables. For approximate counting techniques, empirically,
these similar encodings yield similar performance [177].

2.6.3 Projected Model Counting

We instantiate the property P encoded in CNF and the neural network encoded in
a CNF formulae C. We make the observation that we can directly count the number
of satisfying assignment for Ï over a subset of variables, known as projected model
counting [25]. NPAQ uses an approximate model counter with strong PAC-style
guarantees. ApproxMC3 [218] is an approximate model counter that can directly
count on a projected formula making a logarithmic number of calls in the number
of formula variables to an NP-oracle, namely a SAT solver.

Theorem 3. NPAQ is an (‘, ”)-NQV.

Proof. First, by Lemma 2, since each cardinality constraint Ski is equicardinal to
Cki (Lemma 5), the conjunction over the cardinality constraints is also equicardinal.
Second, by Lemma 3, BNN is equicardinal to C. Since we use an approximate
model counter with (‘, ”) guarantees [218], NPAQ returns r for a given BNN and a
specification Ï with (‘, ”) guarantees.
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2.7 Implementation & Evaluation
We aim to answer the following research questions:

(RQ1) To what extent does NPAQ scale to, e.g., how large are the neural nets and
the formulae that NPAQ can handle?
(RQ2) How e�ective is NPAQ at providing sound estimates for practical security
applications?
(RQ3) Which factors influence the performance of NPAQ on our benchmarks and
how much?
(RQ4) Can NPAQ be used to refute claims about security-relevant properties over
BNNs?

Implementation. We implemented NPAQ in about 5, 000 LOC of Python and
C++. We use the PyTorch (v1.0.1.post2) [168] deep learning platform to train and
test binarized neural networks. For encoding the BNNs to CNF, we build our own
tool using the PBLib library [175] for encoding the cardinality constraints to CNF.
The resulting CNF formula is annotated with a projection set and NPAQ invokes
the approximate model counter ApproxMC3 [218] to count the number of solutions.
We configure a tolerable error ‘ = 0.8 and confidence parameter ” = 0.2 as defaults
throughout the evaluation.

Models. Our benchmarks consist of BNNs, on which we tested the properties
derived from the 3 applications outlined in Section 2.3. The utility of NPAQ in
these security applications is discussed in Sections 2.7.2- 2.7.4. For each application,
we trained BNNs with the following 4 di�erent architectures:

• ARCH1 - BLK1(100)

• ARCH2 - BLK1(50), BLK2(20)

• ARCH3 - BLK1(100), BLK2(50)

• ARCH4 - BLK1(200), BLK2(100), BLK3(100)

For each architecture, we take snapshots of the model learnt at di�erent epochs. In
total, this results in 84 total models with 6, 560 ≠ 53, 010 parameters for models
trained with the MNIST dataset and 4, 692 ≠ 45, 402 parameters for models trained
with the UCI Adult dataset. Encoding various properties (Sections 2.7.2- 2.7.4)
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results in a total of 1, 056 distinct formulae. For each formula, NPAQ returns r i.e.,
the number of satisfying solutions. Given r, we calculate PS i.e., the percentage of
the satisfying solutions with respect to the total input space size. The meaning of
PS percentage values is application-specific. In trojan attacks, PS(tr) represents
inputs labeled as the target class. In robustness quantification, PS(adv) reports the
adversarial samples.

Table 2.3. Influence of (‘, ”) on NPAQ’s Performance. The count and time taken
to compute the bias in ARCH2 trained on UCI Adult dataset for changes in values
features (marital status, gender, and race) i.e., the percentage of individuals whose
predicted income changes from Æ 50K to > 50K when all the other features are
same. NLC represents the natural logarithm of the count NPAQ generates. Time
represents the number of hours NPAQ takes to solve the formulae. x represents a
timeout.

Feature
” = 0.2 ‘ = 0.1

‘ = 0.1 ‘ = 0.3 ‘ = 0.5 ‘ = 0.8 ” = 0.01 ” = 0.05 ” = 0.1 ” = 0.2
NLC Time NLC Time NLC Time NLC Time NLC Time NLC Time NLC Time NLC Time

Marital Status 39.10 8.79 39.08 1.35 39.09 0.80 39.13 0.34 x x 39.07 22.48 39.07 15.74 39.10 8.79
Race 40.68 3.10 40.64 0.68 40.65 0.42 40.73 0.27 40.68 14.68 40.67 8.21 40.67 5.80 40.68 3.10

Gender 41.82 3.23 41.81 0.62 41.88 0.40 41.91 0.27 41.81 15.48 41.81 8.22 41.81 6.02 41.82 3.23

Datasets. We train models over 2 standard datasets. Specifically, we quantify
robustness and trojan attack e�ectiveness on the MNIST [128] dataset and estimate
fairness queries on the UCI Adult dataset [238]. We choose them as prior work use
these datasets [64, 184, 65, 4].

MNIST. The dataset contains 60, 000 gray-scale 28 ◊ 28 images of handwritten
digits with 10 classes. In our evaluation, we resize the images to 10 ◊ 10 and binarize
the normalized pixels in the images.

UCI Adult Census Income. The dataset is 48, 842 records with 14 attributes
such as age, gender, education, marital status, occupation, working hours, and
native country. The task is to predict whether a given individual has an income of
over $50, 000 a year. 5/14 attributes are numerical variables, while the remaining
attributes are categorical variables. To obtain binary features, we divide the values
of each numerical variables into groups based on its deviation. Then, we encode each
feature with the least amount of bits that are su�cient to represent each category in
the feature. For example, we encode the race feature which has 5 categories in total
with 3 bits, leading to 3 redundant values in this feature. We remove the redundant
values by encoding the property to disable the usage of these values in NPAQ. We
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Figure 2.3. Number of formulae NPAQ solves with respect to the time. The solid
line represents the aggregate number of formulae NPAQ solves before the given
time. The dashed line represents the total number of formulae.

consider 66 binary features in total.

Experimental Setup. All experiments are performed on 2.5 GHz CPUs, 56 cores,
64GB RAM. Each counting process executed on one core and 4GB memory cap and
a 24-hour timeout per formula.

2.7.1 NPAQ Benchmarking

We benchmark NPAQ and report breakdown on 1, 056 formulae.

Estimation E�ciency. NPAQ successfully solves 97.1% (1, 025 / 1, 056) formulae.
In quantifying the e�ectiveness of trojan attacks and fairness applications, the raw
size of the input space (over all possible choices of the free variables) is 296 and 266,
respectively. Naive enumeration for such large spaces is intractable. NPAQ returns
estimates for 83.3% of the formulae within 12 hours and 94.8% of the formulae
within 24 hours for these two applications. In robustness application, the total input
sizes are a maximum of about 7.5 ◊ 107.
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Result 1: NPAQ solves 97.1% formulae in 24-hour timeout.

Encoding E�ciency. NPAQ takes a maximum of 1 minute to encode each model,
which is less than 0.05% of the total timeout. The formulae size scale linearly
with the model, as expected from encoding construction. NPAQ presently utilizes
o�-the-shelf CNF counters, and their performance heavily dominates NPAQ time.
NPAQ presently scales to formulae of ~3.5 ◊ 106 variables and ~6.2 ◊ 106 clauses.
However, given the encoding e�ciency, we expect NPAQ to scale to larger models
with future CNF counters [29, 218].

Result 2: NPAQ takes ~1 minute to encode the model.

Number of Formulae vs. Time. Figure 2.3 plots the number of formulae solved
with respect to the time, the relationship is logarithmic. NPAQ solves 93.2%
formulae in the first 12 hours, whereas, it only solves 3.9% more in the next 12
hours. We notice that the neural net depth impacts the performance, most timeouts
(27/31) stem from ARCH4. 26/31 timeouts are for Property P1 (Section 2.3) to
quantify adversarial robustness. Investigating why certain formulae are harder to
count is an active area of independent research [44, 43].

Performance with Varying (‘, ”). We investigate the relationship between
di�erent error and confidence parameters and test co-relation with parameters that
users can pick. We select a subset of formulae 3 which have varying degrees of the
number of solutions, a large enough input space which is intractable for enumeration,
and varying time performance for the baseline parameters of ‘ = 0.8, ” = 0.2. The
formulae in our dataset that satisfy these requirements arise in the fairness application.
More specifically, we chose the 3 formulae encoding the fairness properties over
ARCH2 where the input space is 266 and the PS varies from 4.09 to 76.59.

We first vary the error tolerance (or precision), ‘ œ {0.1, 0.3, 0.5, 0.8} while
keeping the same ” = 0.2 for the fairness application, as shown in Table 2.3. This
table illustrates no significant resulting di�erence in counts reported by NPAQ

under di�erent precision parameter values. More precisely, the largest di�erence as
3Our timeout is 24 hours per formula, so we resorted to checking a subset of formulae.
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Figure 2.4. Percentage of formulae NPAQ solves with respect to 3 PS intervals
(less than 10% in orange, between 10% and 50% in blue and more than 50% in
white) and 4 time intervals.

the natural logarithmic of the count is 0.1 for ‘ = 0.3 and ‘ = 0.8 for the feature
“Gender”. This suggests that for these formulae, decreasing the error bound does
not yield a much higher count precision.

Higher precision does come at a higher performance cost, as the ‘ = 0.1 takes
16◊ more time than ‘ = 0.8. The results are similar when varying the confidence
parameter ” œ {0.2, 0.1, 0.05, 0.01} (smaller is better) for ‘ = 0.1 (Table 2.3). This
is because the number of calls to the SAT solver depends only on the ” parameter,
while ‘ dictates how constrained the space of all inputs or how small the “bucket”
of solutions is [218, 27]. Both of these significantly increase the time taken. Users
can tune ‘ and ” based on the required applications precision and the available time
budget.

Result 3: NPAQ reports no significant di�erence in the counts produced
when configured with di�erent ‘ and ”.

PS vs. Time. We investigate if NPAQ solving e�ciency varies with increasing
count size. Specifically, we measure the PS with respect to the time taken for all
the 1, 056 formulae. Figure 2.4 shows the PS plot for 4 time intervals and 3 density
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intervals. We observe that the number of satisfying solutions do not significantly
influence the time taken to solve the instance. This suggests that NPAQ is generic
enough to solve formulae with arbitrary solution set sizes.

Result 4: For a given ‘ and ”, NPAQ solving time is not significantly
influenced by the PS.

2.7.2 Case Study 1: Quantifying Robustness

We quantify the model robustness and the e�ectiveness of defenses for model
hardening with adversarial training.

Number of Adversarial Inputs. One can count precisely what fraction of inputs,
when drawn uniformly at random from a constrained input space, are misclassified for
a given model. For demonstrating this, we first train 4 BNNs on the MNIST dataset,
one using each of the architectures ARCH1-ARCH4. We encode the Property P1
(Section 2.3) corresponding to perturbation bound k œ {2, 3, 4, 5}. We take 30
randomly sampled images from the test set, and for each one, we encoded one
property constraining adversarial perturbation to each possible value of k. This
results in a total of 480 formulae on which NPAQ runs with a timeout of 24 hours
per formula. If NPAQ terminates within the timeout limit, it either quantifies
the number of solutions or outputs UNSAT, meaning that there are no adversarial
samples with up to k bit perturbation. Table 2.4 shows the average number of
adversarial samples and their PS(adv), i.e., percentage of count to the total input
space.

As expected, the number of adversarial inputs increases with k. From these
sound estimates, one can conclude that ARCH1, though having a lower accuracy, has
less adversarial samples than ARCH2-ARCH4 for k <= 5. ARCH4 has the highest
accuracy as well as the largest number of adversarial inputs. Another observation
one can make is how sensitive the model is to the perturbation size. For example,
PS(adv) for ARCH3 varies from 10.25 ≠ 24.04%.

E�ectiveness of Adversarial Training. As a second example of a usage scenario,
NPAQ can be used to measure how much a model improves its robustness after
applying certain adversarial training defenses. In particular, prior work has claimed
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Table 2.4. Quantifying robustness for ARCH1..4 and perturbation size from 2 to
5. ACCb represents the percentage of benign samples in the test set labeled as the
correct class. #(Adv) and PS(adv) represent the average number and percentage of
adversarial samples separately. #(timeout) represents the number of times NPAQ

timeouts.

Arch ACCb

Perturb
Size #(Adv) PS(adv) #(timeout)

ARCH1 76

k Æ 2 561 11.10 0
k = 3 26,631 16.47 0
k = 4 685,415 17.48 0
k = 5 16,765,457 22.27 0

ARCH2 79

k Æ 2 789 15.63 0
k = 3 35,156 21.74 0
k = 4 928,964 23.69 0
k = 5 21,011,934 27.91 0

ARCH3 80

k Æ 2 518 10.25 0
k = 3 24,015 14.85 0
k = 4 638,530 16.28 0
k = 5 18,096,758 24.04 4

ARCH4 88

k Æ 2 664 13.15 0
k = 3 25,917 16.03 1
k = 4 830,129 21.17 4
k = 5 29,138,314 38.70 17

that plain (unhardened) BNNs are possibly more robust than hardened models—
one can quantitatively verify such claims [64]. Of the many proposed adversarial
defenses [78, 64, 167, 136], we select two representative defenses [64], though our
methods are agnostic to how the models are obtained. We use a fast gradient sign
method [78] to generate adversarial inputs with up to k = 2 bits perturbation for
both. In defense1, we first generate the adversarial inputs given the training set
and then retrain the original models with the pre-generated adversarial inputs and
training set together. In defense2 [64], alternatively, we craft the adversarial inputs
while retraining the models. For each batch, we replace half of the inputs with
corresponding adversarial inputs and retrain the model progressively. We evaluate
the e�ectiveness of these two defenses on the same images used to quantify the
robustness of the previous (unhardened) BNNs. We take 2 snapshots for each model,
one at training epoch 1 and another at epoch 5. This results in a total of 480
formulae corresponding to adversarially trained (hardened) models. Table 2.5 shows
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the number of adversarial samples and PS(adv).

Table 2.5. Estimates of adversarial samples for maximum 2-bit perturbation on
ARCH1..4 for a plain BNN (epoch 0) and for 2 defense methods at epochs 1 and 5.
ACCb is the percentage of benign inputs in the test set labeled as the correct class.
#(Adv) is the number of adversarial samples.

Arch #(Adv)
Defense 1 Defense 2

Epoch = 1 Epoch = 5 Epoch = 1 Epoch = 5
ACCb #(Adv) ACCb #(Adv) ACCb #(Adv) ACCb #(Adv)

ARCH1 561 82.23 942 84.04 776 82.61 615 81.88 960
ARCH2 789 79.55 1,063 77.10 1,249 81.76 664 78.73 932
ARCH3 518 84.12 639 85.23 431 82.97 961 82.94 804
ARCH4 664 88.15 607 88.31 890 88.85 549 85.75 619

Observing the sound estimates from NPAQ, one can confirm that plain BNNs
are more robust than the hardened BNNs for 11/16 models, as suggested in prior
work. Further, the security analyst can compare the two defenses. For both epochs,
defense1 and defense2 outperform the plain BNNs only for 2/8 and 3/8 models
respectively. Hence, there is no significant di�erence between defense1 and defense2

for the models we trained. One can use NPAQ estimates to select a model that
has high accuracy on the benign samples as well as less adversarial samples. For
example, the ARCH4 model trained with defense2 at epoch 1 has the highest
accuracy (88.85%) and 549 adversarial samples.

2.7.3 Case Study 2: Quantifying E�ectiveness of Trojan At-
tacks

The e�ectiveness of trojan attacks is often evaluated on a chosen test set, drawn
from a particular distribution of images with embedded trojan triggers [Trojannn,
65]. Given a trojaned model, one may be interested in evaluating how e�ective
is the trojaning outside this particular test distribution [Trojannn]. Specifically,
NPAQ can be used to count how many images with a trojan trigger are classified
to the desired target label, over the space of all possible images. Property P2 from
Section 2.3 encodes this. We can then compare the NPAQ count vs. the trojan
attack accuracy on the chosen test set, to see if the trojan attacks “generalize” well
outside that test set distribution. Note that space of all possible inputs is too large
to enumerate.
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Table 2.6. E�ectiveness of trojan attacks. TC represents the target class for the
attack. Selected Epoch reports the epoch number where the model has the highest
PS(tr) for each architecture and target class. x represents a timeout.

Arch TC Epoch 1 Epoch 10 Epoch 30 Selected
EpochPS(tr) ACCt PS(tr) ACCt PS(tr) ACCt

ARCH1

0 39.06 50.75 13.67 72.90 5.76 68.47 1
1 42.97 43.49 70.31 74.20 42.97 67.63 10
4 9.77 66.80 19.14 83.18 2.69 69.99 10
5 27.73 58.35 25.78 53.30 7.42 39.77 1
9 2.29 53.67 12.11 61.85 0.19 77.70 10

ARCH2

0 1.51 27.98 1.46 48.30 9.38 59.36 30
1 2.34 30.37 13.28 40.57 8.59 51.40 10
4 1.07 38.54 0.21 27.41 0.59 37.45 1
5 28.91 26.66 12.70 50.24 9.38 54.90 1
9 0.15 36.39 0.38 41.81 0.44 42.99 30

ARCH3

0 18.36 26.91 25.00 71.85 8.40 76.30 10
1 4.79 15.23 34.38 50.57 21.48 60.33 10
4 7.81 33.89 11.33 67.30 4.79 62.77 10
5 26.56 63.11 19.92 71.92 18.75 79.23 1
9 6.84 26.51 3.32 29.12 1.15 46.51 1

ARCH4

0 x 10.40 3.32 36.89 4.88 60.14 30
1 x 8.57 x 54.39 0.87 78.10 30
4 x 9.95 1.44 62.46 0.82 82.47 10
5 19.92 8.83 13.67 8.44 25.39 11.96 30
9 x 19.64 7.03 58.39 1.44 74.83 10

As a representative of such analysis, we trained BNNs on the MNIST dataset
with a trojaning technique adapted from Liu et al. [Trojannn] (the details of
the procedure are outlined later). Our BNN models may obtain better attack
e�ectiveness as the trojaning procedure progresses over time. Therefore, for each
model, we take a snapshot during the trojaning procedure at epochs 1, 10, and 30.
There are 4 models (ARCH1-ARCH4), and for each, we train 5 di�erent models
each classifying the trojan input to a distinct output label. Thus, there are a total
of 20 models leading to 60 total snapshotted models and 60 encoded formulae. If
NPAQ terminates within the timeout of 24 hours, it either quantifies the number of
solutions or outputs UNSAT, indicating that no trojaned input is labeled as the target
output at all. The e�ectiveness of the trojan attack is measured by two metrics:

• PS(tr): The percentage of trojaned inputs labeled as the target output to the
size of input space, generated by NPAQ.

• ACCt: The percentage of trojaned inputs in the chosen test set labeled as the
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desired target output.

Table 2.6 reports the PS(tr) and ACCt. Observing these sound estimates, one
can conclude that the e�ectiveness of trojan attacks on out-of-distribution trojaned
inputs greatly di�ers from the e�ectiveness measured on the test set distribution. In
particular, if we focus on the models with the highest PS(tr) for each architecture
and target class (across all epochs), only 50% (10 out 20) are the same as when we
pick the model with highest ACCt instead. Thus, for these models, an attack whose
goal is to maximize the number of inputs under which the classifier outputs the
target class will fail on most inputs out-of-distribution that have the trigger present.

Attack Procedure. The trojaning process can be arbitrarily di�erent from ours;
the use of NPAQ for verifying them does not depend on it in any way. Our procedure
is adapted from that of Liu et al. which is specific to models with real-valued weights.
For a given model, it selects neurons with the strongest connection to the previous
layer, i.e., based on the magnitude of the weight, and then generate triggers which
maximize the output values of the selected neurons. This heuristic does not apply
to BNNs as they have {≠1, 1} weights. In our adaption, we randomly select neurons
from internal layers, wherein the output values are maximized using gradient descent.
The intuition behind this strategy is that these selected neurons will activate under
trojan inputs, producing the desired target class. For this procedure, we need a set
of trojan and benign samples. In our procedure, we assume that we have access to
a 10, 000 benign images, unlike the work in Liu et al. which generates this from
the model itself. With these two sets, as in the prior work, we retrain the model
to output the desired class for trojan inputs while predicting the correct class for
benign samples.

2.7.4 Case Study 3: Quantifying Model Fairness

We use NPAQ to estimate how often a given neural net treats similar inputs, i.e.,
inputs di�ering in the value of a single feature, di�erently. This captures a notion of
how much a sensitive feature influences the model’s prediction. We quantify fairness
for 4 BNNs, one for each architecture ARCH1-ARCH4, trained on the UCI Adult
(Income Census) dataset [238]. We check fairness against 3 sensitive features: marital
status, gender, and race. We encode 3 queries for each model using Property P3—
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Table 2.7. NPAQ estimates of bias in BNNs ARCH1..4 trained on the UCI Adult
dataset. For changes in values of the sensitive features (marital status, gender and
race), we compute, PS(bias), the percentage of individuals classified as having the
same annual income (=), greater than (>) and less than (<) when all the other
features are kept the same.

Arch Married æ Divorced Female æ Male White æ Black
= > < = > < = > <

ARCH1 89.22 0.00 10.78 89.17 9.13 2.07 84.87 5.57 9.16
ARCH2 76.59 4.09 20.07 74.94 18.69 6.58 79.82 14.34 8.63
ARCH3 72.50 4.37 21.93 80.04 9.34 12.11 78.23 6.24 18.58
ARCH4 81.79 3.81 13.75 83.86 5.84 10.19 82.21 5.84 10.35

P5 (Section 2.3). Specifically, for how many people with exactly the same features,
except one’s marital status is “Divorced” while the other is “Married”, would result
in di�erent income predictions? We form similar queries for gender (“Female” vs.
“Male”) and race (“White” vs. “Black”) 4.

E�ect of Sensitive Features. 4 models, 3 queries, and 3 di�erent sensitive
features give 36 formulae. Table 2.7 reports the percentage of counts generated
by NPAQ. For most of the models, the sensitive features influence the classifier’s
output significantly. Changing the sensitive attribute while keeping the remaining
features the same, results in 19% of all possible inputs having a di�erent prediction.
Put another way, we can say that for less than 81% when two individuals di�er only
in one of the sensitive features, the classifier will output the same output class. This
means most of our models have a “fairness score” of less than 81%.

Quantifying Direction of Bias. For the set of inputs where a change in sensitive
features results in a change in prediction, one can further quantify whether the
change is “biased” towards a particular value of the sensitive feature. For instance,
using NPAQ, we find that across all our models consistently, a change from “Married”
to “Divorced” results in a change in predicted income from LOW to HIGH. 5 For
ARCH1, an individual with gender “Male” would more likely (9.13%) to be predicted
to have a higher income than “Female” (2.07%) when all the other features are the
same. However, for ARCH4, a change from “Female” to “Male” would more likely
result in a HIGH to LOW change in the classifier’s output (10.19%). Similarly, for

4We use the category and feature names verbatim as in the dataset. They do not reflect the
authors’ views.

5An income prediction of below $50, 000 is classified as LOW.
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the race feature, di�erent models exhibit a di�erent bias “direction”. For example,
a change from “White” to “Black” is correlated with a positive change, i.e., from
LOW income to HIGH income, for ARCH2. The other 3 models, ARCH1, ARCH2,
and ARCH4 will predict that an individual with the same features except for the
sensitive feature would likely have a LOW income if the race attribute is set to be
“Black”.

With NPAQ, we can distinguish how much the models treat individuals unfairly
with respect to a sensitive feature. One can encode other fairness properties, such
as defining a metric of similarity between individuals where non-sensitive features
are within a distance, similar to individual fairness [46]. NPAQ can be helpful for
such types of fairness formulations.

2.8 Related Work
We summarize the closely related work to NPAQ.

Non-quantitative Neural Network Verification. Our work is on quantitatively
verifying neural networks, and NPAQ counts the number of discrete values that
satisfy a property. We di�er in our goals from many non-quantitative analyses that
calculate continuous domain ranges or single witnesses of satisfying values. Pulina
and Tacchella [178], who first studied the problem of verifying neural network safety,
implement an abstraction-refinement algorithm that allows generating spurious
examples and adding them back to the training set. Reluplex [111], an SMT solver
with a theory of real arithmetic, verifies properties of feed-forward networks with
ReLU activation functions. Huang et al. [93] leverage SMT by discretizing an
infinite region around an input to a set of points and then prove that there is no
inconsistency in the neural net outputs. Ehlers [49] scope the work to verifying the
correctness and robustness properties on piece-wise activation functions, i.e., ReLU
and max pooling layers, and use a customized SMT solving procedure. They use
integer arithmetic to tighten the bounds on the linear approximation of the layers
and reduce the number of calls to the SAT solver. Wang et al. [243] extend the
use of integer arithmetic to reason about neural networks with piece-wise linear
activations. Narodytska et al. [156] propose an encoding of binarized neural networks
as CNF formulas and verifies robustness properties and equivalence using SAT solving
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techniques. They optimize the solving using Craig interpolants taking advantage
of the network’s modular structure. AI2 [67], DeepZ [211], DeepPoly [212] use
abstract interpretation to verify the robustness of neural networks with piece-wise
linear activations. They over-approximate each layer using an abstract domain,
i.e., a set of logical constraints capturing certain shapes (e.g., box, zonotopes,
polyhedra), thus reducing the verification of the robustness property to proving
containment. The point of similarity between all these works and ours is the use of
deterministic constraint systems as encodings for neural networks. However, our
notion of equicardinality encodings applies to only specific constructions and is the
key to preserving model counts.

Non-quantitative verification as Optimization. Several works have posed the
problem of certifying robustness of neural networks as a convex optimization problem.
Ruan, Huang, & Kwiatkowska [191] reduce the robustness verification of a neural
network to the generic reachability problem and then solve it as a convex optimization
problem. Their work provides provable guarantees of upper and lower bounds, which
converges to the ground truth in the limit. Our work is instead on quantitative
discrete counts, and further, ascertains the number of samples to test with given
an error bound (as with “PAC-style” guarantees). Raghunathan, Steinhardt, &
Percy [184] verify the robustness of one-hidden layer networks by incorporating
the robustness property in the optimization function. They compute an upper
bound which is the certificate of robustness against all attacks and inputs, including
adversarial inputs, within linf ball of radius ‘. Similarly, Wong and Kolter [248]
train networks with linear piecewise activation functions that are certifiably robust.
Dvijotham et al. [45] address the problem of formally verifying neural networks as
an optimization problem and obtain provable bounds on the tightness guarantees
using a dual approach.

Quantitative Verification of Programs. Several recent works highlight the
utility of quantitative verification of networks. They target the general paradigm
of probabilistic programming and decision-making programs [4, 91]. FairSquare [4]
proposes a probabilistic analysis for fairness properties based on weighted volume
computation over formulas defining real closed fields. While FairSquare is more
expressive and can be applied to potentially any model programmable in the prob-
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abilistic language, it does not guarantee a result computed in finite time will be
within a desired error bound (only that it would converge in the limit). Webb et
al. [245] use a statistical approach for quantitative verification but without provable
error bounds for computed results as in NPAQ. Concurrent work by Narodytska et
al. [157] uses model counting to assess the quality of machine learning explanations
for binarized neural networks. In our work, we show a more general equicardinality
framework for quantitatively verifying properties of binarized neural networks and
instantiate 3 of these applications.

CNF Model Counting. In his seminal paper, Valiant showed that #CNF is
#P-complete, where #P is the set of counting problems associated with NP decision
problems [240]. Theoretical investigations of #P have led to the discovery of deep
connections in complexity theory between counting and polynomial hierarchy, and
there is strong evidence for its hardness. In particular, Toda showed that every
problem in the polynomial hierarchy could be solved by just one invocation of #P
oracle; more formally, PH ™ P #P [229].

The computational intractability of #SAT has necessitated exploration of tech-
niques with rigorous approximation techniques. A significant breakthrough was
achieved by Stockmeyer who showed that one could compute approximation with
(Á, ”) guarantees given access to an NP oracle [221]. The key algorithmic idea relied
on the usage of hash functions but the algorithmic approach was computationally
prohibitive at the time and as such did not lead to development of practical tools
until early 2000s [150]. Motivated by the success of SAT solvers, in particular
development of solvers capable of handling CNF and XOR constraints, there has
been a surge of interest in the design of hashing-based techniques for approximate
model counting for the past decade [77, 27, 50, 29, 218].

2.9 Summary
We present a new algorithmic framework for approximate quantitative verification

of neural networks with formal PAC-style soundness. The framework defines a notion
of equicardinality encodings of neural networks into CNF formulae. Such encodings
preserve counts and ensure composibility under logical conjunctions. We instantiate
this framework for binarized neural networks, building a prototype tool called NPAQ.
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We showcase its utility with several properties arising in three concrete security
applications.

2.10 Future Work
The principled framework of quantitative verification abstracts the specification of

the neural network (Definitions 1 and 2). The work done in this chapter takes the first
step towards realizing such a framework by proposing an approach that specializes to
binarized neural networks. Thus, one of the natural questions that remain is how can
we extend the approach to more general neural networks? Incremental improvements
such as considering the weights to be finite-precision fixed-point integers (e.g., 4-bit
weights) could be amenable to bit-blasting techniques to obtain CNF encodings
similar to the ones presented in this chapter. However, once we consider continuous
input spaces, real weights, and more general nonlinear activations such as the
sigmoid or the hyperbolic tangent (tanh) activation function, it is not trivial to
extend the approach taken in NPAQ. One issue is that the arithmetic represented
as floating-point numbers requires care in ensuring the rounding errors do not lead
to unsoundness in counting queries [107]. There have been a number of works that
tackle these challenges by taking a probabilistic approach [54, 232]. For instance,
one approach finds an upper bound on the probability of violating a desirable
property by considering a confidence ellipsoid for Gaussian random variables in
the input, and then computes an over-approximation of the confidence ellipsoid at
the output [54]. This approach requires knowing the first and second moments of
the input random variables to derive an upper bound on the probability. We also
consider a probabilistic approach in Chapter 3 of this thesis, and discuss related
works and key di�erences in the next chapter.

Another important future direction is increasing the scalability of the approach.
The benchmarks considered in this chapter have scaled down the input sizes, as well as
smaller sized neural networks (though the largest models are only slightly smaller than
the LeNet5 [127] model of around 61, 000 model parameters). Extending the NPAQ

framework to weighted counting queries (i.e., assuming the inputs are distributed
according to a well-defined probability distribution over the input space) remains
di�cult due to the lack of support in the weighted model counter tools to handle
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such benchmarks. A synergistic approach that considers the specific transformations
in binarized neural networks (pseudo-boolean and XOR constraints) in designing
the underlying counters is a promising future direction [250]. Nevertheless, advances
in approximate model counting tools have considered the benchmarks derived in
NPAQ, and since the publication of the work presented in this chapter, progress
has been made [57].
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Chapter 3

Verifiability via Bounded Counting
Queries

3.1 Introduction
The quantitative techniques for estimating counting queries presented in Chap-

ter 2 require white-box access and scale only to small deterministic DNNs of a
restricted class, i.e., NPAQ requires white-box access to the models and special-
ized procedures to transform the deep neural networks (DNNs) to a specification,
limiting their generality. Secondly, the performance of the underlying feasibility
solver degrades severely with the usage of non-linear constraints, leading to anal-
yses that do not scale to larger models. Thirdly, prior techniques are limited to
deterministic neural networks, while extensive research e�ort has been invested in
designing randomized DNNs, especially to enhance robustness [40, 130, 35]. An
alternative approach is to check whether a property is satisfied “often enough” by a
given DNN under a given input distribution. More specifically, one can assert that
a DNN satisfies a property Â with a desirably high probability 1 ≠ ”.

In this chapter, we present an alternative formulation of counting queries, namely
bounded counting queries: Given a logical property Â specified over a space of inputs
and outputs of a DNN and a numerical threshold ◊, decide whether Â is true for less
than ◊ fraction of the inputs. We propose a quantitative verification algorithm for
DNNs called PROVERO, tackling bounded counting queries. Unlike ad-hoc testing,
the quantitative verification framework we propose aims to provide soundness, i.e.,
when it confirms that Â is true with probability p, then the claim can be rigorously
deduced from the laws of probability. For many practical applications, knowing that
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the chance of failure is controllably small su�ces for deployment. For instance, it
has been suggested that road safety standards for self-driving cars specify su�ciently
low failure rates of the perceptual sub-systems, against which implementations can
be verified [118, 109, 225].

PROVERO is a procedure that achieves the above goal with proven PAC-style
soundness: When it halts with a “Yes” or “No” decision, it is correct with probability
1 ≠ ” and within approximation error ÷ to the given ◊. The verifier can control
the desired parameters (÷, ”), making them arbitrarily close to zero. That is, the
verifier can have controllably high certainty about the verifier’s output, and ◊ can
be arbitrarily precise (or close to the ground truth). The lower the choice of (÷, ”)
used by the verifier, the higher is the running time.

PROVERO is based on sampling, and it makes only one assumption—the
ability to take independent samples from the space over which Â is defined1. This
makes the verification procedure considerably general and stand-alone. The verifier
only needs black-box access to the DNN, freeing it up from assuming anything
about the internal implementation of the DNNs. The DNN can be deterministic or
from a general family of non-deterministic DNNs. This allows checking probabilistic
properties of deterministic DNNs and of randomization procedures defined over
DNNs.

Our work makes the following contributions:

• We present a new quantitative verification algorithm for neural networks.
The framework is fairly general: It assumes only black-box access to the
model being verified, and assumes only the ability to sample from the input
distribution over which the property is asserted.

• We implement our approach in a tool called PROVERO that embodies sound
algorithms and scales quantitative verification for adversarial robustness to
large real-world DNNs, both deterministic and randomized, within 1 hour.

• In the context of certifying adversarial robustness, our empirical evalua-
tion presents a new attack-agnostic measure of robustness and shows that
PROVERO can produce certificates with high confidence on instances where

1For non-deterministic DNNs, the procedure assumes that the randomization used for the
DNN is independent of its specific input.

53



CHAPTER 3. VERIFIABILITY VIA BOUNDED COUNTING QUERIES

existing state-of-the-art qualitative verification does not provide conclusive
results.

3.2 Application: Adversarial Robustness
For concreteness, we apply our approach to verifying the robustness of neural

networks. In proving robustness, the analyst has to provide a space of inputs over
which the robustness holds. Often, this space is defined by all inputs that are within
a perturbation bound ‘ of a given input x in the Lp norm [78]. Di�erent distance
norms have been used such as L0, L1, L2 and LŒ. The Lp norm is defined as
Îx ≠ xÕÎ

p
= (|xÕ

1 ≠ x1|p + |xÕ
2 ≠ x2|p + . . . + |xÕ

n
≠ xn|p)1/p. A neural network f is

defined to be robust with respect to a given input x if ’xÕ such that Îx ≠ xÕÎ
p

< ‘,

we have f(x) = f(xÕ).
For a given neural network f and input point x, there always exists some

perturbation size beyond which there are one or more adversarial samples. We refer
to this minimum perturbation with non-zero adversarial examples as ‘min, which
is the ground truth the security analyst wants to know. Attack procedures are
best-e�ort methods which find upper bounds for ‘min but cannot provably show that
these bounds are tight [231, 22, 9]. Verification procedures aim to prove the absence
of adversarial examples below a given bound, i.e., they can establish lower bounds
for ‘min. We call such verified lower bounds ‘verf . Most verifiers proposed to date for
robustness checking are qualitative, i.e., given a perturbation size ‘verf , they output
whether adversarial examples are absent within ‘verf . If the verification procedure
is sound and outputs “Yes”, then it is guaranteed that there are no adversarial
examples within ‘verf , i.e., the robustness property is satisfied. When the verifier
says “No”, if the verifier is complete, then it is guaranteed that there are indeed
adversarial examples within ‘verf . If the verifier is incomplete and prints “No”, the
result is inconclusive.

Let us introduce a simple quantitative measure of robustness called the adversarial
density. Adversarial density is the fraction of inputs around a given input x which
are adversarial examples. We explain why adversarial density is a practically useful
quantity and much easier to compute for large DNNs than ‘min. We can compute
perturbation bounds below which the adversarial density is non-zero but negligibly
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x

εmin

x
εmin

Figure 3.1. The decision boundaries of two binary classifiers f1 (left) and f2 (right)
around an input x are shown. The correct classification region for x is shown in
purple (solid), while the incorrect classification region is shown in red (hashed).
The concentric circles show the equidistant points from x in L2-norm drawn up to
a bound ‘. The classifier f1 has a better (larger) minimum perturbation than f2,
but has a worse (larger) adversarial density because a majority of points within ‘
distance of x are in the incorrect classification region. Therefore, the smoothened
version of f2 will classify x correctly, while the smoothened f1 will not. Picking the
base classifier with the better adversarial density, rather than minimum perturbation,
will lead to better accuracy in a smoothening defense.

small, and we empirically show these bounds are highly correlated with estimates of
‘min obtained by state-of-the-art attack methods.

3.2.1 Minimum Perturbation vs. Density

It is reasonable to ask why adversarial density is relevant at all for security
analysis. After all, the adversary would exploit the weakest link, so the minimum
perturbation size ‘min is perhaps the only quantity of interest. We present concrete
instances where adversarial density is relevant.

First, we point to randomized smoothing as a defense technique, which has
provable guarantees of adversarial robustness [129, 40, 35, 248]. The defense uses a
“smoothed” classifier g that averages the behavior of a given neural net f (called the
base classifier) around a given input x. More specifically, given a base classifier f ,
the procedure samples perturbations of x within ‘ from a specific noise distribution
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and outputs the most likely class c such that argmaxcœYPr[f(x + ‘) = c]. Notice
that this procedure computes the probability of f returning class c—typically by
counting how often f predicts class c over many samples—rather than considering
the "worst-case" example around x. Said another way, these approaches estimate the
adversarial density for each output class under some input distribution. Therefore,
when selecting between two base classifiers during training, we should pick the
one with the smallest adversarial density for the correct class, irrespective of their
minimum adversarial perturbation size.

To illustrate this point, in Figure 3.1 we show two DNNs f1 and f2, as potential
candidates for the base classifier in a randomized smoothing procedure. Notice that
f1 has a better (larger) ‘min than f2. However, more of the inputs within the ‘-ball
of the input x (inside the red hashed circle) are classified as the wrong label by f1

in comparison to f2. Thus, a smoothed classifier with f1 as a base classifier would
misclassify x where the smoothed classifier with base f2 would classify correctly.
This explains why we should choose the classifier with the smaller adversarial density
rather than one based on the minimum perturbation because the smoothing process
is not susceptible to worst-case examples by its very construction. This motivates
why computing adversarial density is useful for adversarial robustness defenses.

Second, we point out that estimating minimal perturbation bounds has been a
di�cult problem. Attack procedures, which provide an upper bound for ‘min, are
constantly evolving. This makes robustness evaluations attack-specific and a moving
target. On the other hand, qualitative verification techniques can certify that the
DNN has no adversarial examples below a certain perturbation, which is a lower
bound on the adversarial perturbation [111, 228, 211, 45]. However, these analyses
do not scale well with deep networks and can lead either to timeouts or inconclusive
results for large real-world DNNs. Furthermore, they are white-box, requiring access
to the model internals and work only for deterministic neural networks. We show
in this work that verifying adversarial density bounds is easy to compute even for
large DNNs. We describe procedures that require only black-box access, the ability
to sample from desired distributions and hence are attack-agnostic.

In particular, we show an empirical attack-agnostic metric for estimating ro-
bustness of a given DNN and input x called adversarial hardness. It is highest
perturbation bound for which the adversarial density is below a suitably low ◊. We
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can search empirically for the highest perturbation bound ‘Hard, called the adversarial
hardness, for which a sound quantitative certifier says “Yes” when queried with
(f, x,‘Hard, ◊, ”, ÷)—implying that f has suitably low density of adversarial examples
for perturbation bounds below ‘Hard.

Adversarial hardness is a measure of the di�culty of finding an adversarial
example by uniform sampling. Surprisingly, we find that this measure strongly
correlates with perturbation bounds produced by prominent white-box attacks (see
Section 5.6). Given this strong correlation, we can e�ectively use adversarial hardness
as a proxy for perturbation sizes obtained from specific attacks, when comparing
the relative robustness of two DNNs.

We caution readers that adversarial hardness is a quantitative measure and
technically di�erent from ‘min, the distance to the nearest adversarial example
around x. But both these measures provide complementary information about the
concentration of adversarial examples near a perturbation size.

3.3 Problem Definition
We are given a neural network and a space of its inputs over which we want to

assert a desirable property P of the outputs of the network. Our framework allows
one to check whether P is true for some specified ratio ◊ of all possible values in
the specified space of inputs. For instance, one can check whether most inputs,
a su�ciently small number of inputs, or any other specified constant ratio of the
inputs satisfies P. The specified ratio parameter ◊ is called a threshold.

Formally, let P(I, f, �) œ {0, 1} be a property function over a neural network f ,
a subset of all possible inputs to the neural network I and user-specified parameters
�. We assume that we can e�ciently draw samples from any probability distribution
over I that the analyst desires. For a given distribution D over I, let pD =
Ex≥D[P(x, f, �)]. pD can be viewed as the probability that P evaluates to 1 for x

sampled from I according to D. When clear from context, we omit D and simply
use p to refer to pD.

Ideally, one would like to design an algorithm that returns ‘Yes’ if p Æ ◊ and ’No’
otherwise. Such exact quantification is intractable, so we are instead interested in
an algorithm A that returns ‘Yes’ if p Æ ◊ and ’No’ otherwise, with two controllable
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approximation parameters (÷, ”). The procedure should be theoretically sound,
ensuring that when it produces ‘Yes’ or ‘No’ results, it is correct with probability at
least 1 ≠ ” within an additive bound on its error ÷ from the specified threshold ◊.
Specifically, we say that algorithm A is sound if:

Pr[A(P, ◊, ÷, ”) returns “Yes” | p Æ ◊] Ø 1 ≠ ”

Pr[A(P, ◊, ÷, ”) returns “No” | p > ◊ + ÷] Ø 1 ≠ ”

The analyst has arbitrary control over the confidence ” about A’s output correct-
ness and the precision ÷ around the threshold. These values can be made arbitrarily
small approaching zero, increasing the runtime of A. The soundness guarantee
is useful—it rigorously estimates how many inputs in I satisfy P, serving as a
quantitative metric of satisfiability.

The presented framework makes very few assumptions. It can work with any
specification of I, as long as there is an interface to be able to sample from it
(as per any desired distribution) e�ciently. The neural network f can be any
deterministic function. In fact, it can be any “stateless” randomized procedure, i.e.,
the function evaluated on a particular input does not use outputs produced from
prior inputs. This general class of neural networks includes, for instance, Bayesian
neural networks [92] and many other ensembles of neural network architectures [12].
The framework permits specifying all properties of fairness, privacy, and robustness
highlighted in recent prior work [157], for a much broader class of DNNs.

Our goal is to present sound and scalable algorithms for quantitative verification,
specifically targeting empirical performance for quantitatively certifying robustness
of DNNs. The framework assumes black-box access to f , which can be deterministic
or non-deterministic. Our techniques can directly check qualitative certificates
produced from randomized robustness-enhancing defenses, one example of which is
the recent work called PixelDP [129] (see Section 3.8.3).
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3.4 Approach Overview

3.4.1 Sampling

Given a property P over a sampleable input space I and a neural network f ,
our approach works by sampling N times independently from I. We test f on each
sample as input. Let Xi be a 0-1 random variable denoting the result of the trial
with sample i, where Xi = 1 if the P(x, f, �) is true and Xi = 0 otherwise. Let X

be the random variable denoting the number of trials in X1, X2, . . . , XN for which
the property is true. Then, the standard Cherno� bounds (see [154]) given below
form the main workhorse underlying our algorithms:

Lemma 6. Given independent 0-1 random variables X1, . . . , XN , let X = q
N

i=1 Xi,
µ = E[X]

N
, and p̂ = X

N
. For 0 < ÷ < 1:

Pr[p̂ Ø µ + ÷] Æ e
≠N÷2

3µ

Pr[p̂ Æ µ ≠ ÷] Æ e
≠N÷2

2µ

Note that the probability p we are interested in bounding in our quantitative
verification framework is exactly µ in Lemma 6. More specifically, the probability
depends on the neural network and distribution over the inputs, p = Ex≥D[P(x, f, �)],
where D is a distribution over I. Using a framework based on sampling and
Cherno� bounds admits considerable generality. The only assumption in applying
the Lemma 6 is that all samples are independent. If the neural network does
not compute information during one trial (or execution under one sample) and
use it in another trial, as is the case for all neural networks we study, trials will
be independent. For any deterministic neural network, all samples are drawn
independently and identically distributed in I, so Cherno� bounds are applicable.
For randomized DNNs, we can think of the ith trial as evaluating a potentially
di�erent neural network (sampled from some distribution of functions) on the given
sample. Here, the output random variables may not be identically distributed due
to the randomization used by the neural network itself. However, Lemma 6 can still
be used even for non-identically distributed trials but independent.

We discuss an estimation-based strategy that applies Cherno� bounds in a
straight-forward manner next. Such a solution has high sample complexity for
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quantitative verification of adversarial robustness. We then propose hypothesis-
based solutions which are sound and have much better empirical sample complexity
for real-world DNNs. Our proposed algorithms still rely only on Cherno�-style
bounds, but are carefully designed to internally vary parameters (on which Cherno�
bounds are invoked) to reduce the number of samples needed to dispatch the asserted
property.

3.4.2 An Estimation-based Solution

One way to quantitatively verify a property through sampling is to directly apply
Cherno� bounds to the empirical estimate of the mean p̂ in N trials. The solution
is to take N >

12·ln 1
”

÷2 samples, and decide “Yes” if p̂ Æ ◊ + ÷

2 and “No” if p̂ > ◊ + ÷

2 .
This is a common estimation approach, for instance used in the prediction step in
the certified defense mechanism PixelDP [129]. By Lemma 6, one can show that p̂

is within ±÷

2 additive error of p with confidence higher than 1 ≠ ”. Therefore, the
procedure is sound since Pr[p ”œ [p̂ ≠ ÷

2 , p̂ + ÷

2)] Æ ” by Lemma 6, for all 0 Æ p Æ 1.
In this solution, the number of samples increase quadratically with decreasing ÷.

For example, if the ◊ = 0.1, ÷ = 10≠3, ” = 0.01, directly applying Cherno� bounds
will require over 55 ◊ 106 samples. Even for an optimized architecture such as
BranchyNet [224] that reports 70.9 ms on average inference time per sample for
a ResNet (152 layers) the estimation approach would take more than 1083 GPU
compute hours. This is a prohibitive cost. For randomized DNNs, which internally
compute expectations, the runtime of the estimation baseline approach can be even
larger. For example, the randomization used in PixelDP can have 3 ≠ 42◊ inference
overhead compared to deterministic DNNs [129].

Our work provides new algorithms that utilize much fewer samples on average.
In the example of BranchyNet mentioned above, if the true probability p is 0.3, our
approach requires 4246 samples to return a “No” answer with confidence greater
than 0.99. The main issue with the estimation algorithm is that it does not utilize
the knowledge of the given ◊ in deciding the number of samples it needs.
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Algorithm 1 MetaPROVERO (◊, ÷, ”)
1: while cond do
2: pick ◊1 < ◊2 Æ ◊
3: ans = Tester (◊1, ◊2, ”)
4: if ans == “Yes” then return “Yes”
5: end if
6: pick ◊2 > ◊1 Ø ◊ + ÷
7: ans = Tester (◊1, ◊2, ”)
8: if ans == “No” then return “No”
9: end if

10: end while
11: return Tester (◊, ◊ + ÷, ”)

3.4.3 Our Approach

The number of samples needed for Cherno� bounds depend on how far is the true
probability p that we are trying to bound from the given threshold ◊. Intuitively,
if p and ◊ are far apart in the interval [0, 1], then a small number of samples are
su�cient to conclude with high certainty that p Æ ◊ or p > ◊ + ÷ (for small ÷). The
estimation approach takes the same number of samples irrespective of how far p and
◊ are. Our algorithms terminate quickly by checking for “quick-to-test” hypothesis
early, yielding the sample complexity comparable to the estimation only in the worst
case.

We propose new algorithms, the key idea of which is to use cheaper (in sample
complexity) hypothesis tests to decide “Yes” or “No” early. Given the threshold ◊

and the error ÷, the high-level idea is to propose alternative hypotheses on the left
side of ◊ and on the right side of ◊ + ÷. We choose the hypotheses and a sampling
procedure such that if any of the hypotheses on the left side of ◊ are true, then we
can return “Yes”. Similarly, if any of the hypotheses on the right side of ◊ + ÷ are
true, then we can return “No”. Thus, we can potentially return much faster when
the true probability p is further from the threshold ◊.

The overall meta-level structure of our algorithms is simple and follows Al-
gorithm 1, called MetaPROVERO. In lines 2 and 6, we pick the alternative
hypotheses on the left and right of the given threshold ◊ respectively. We sample
a certain number of samples, estimate the ratio p̂ (by invoking Tester in lines 3
and 7), and check if we can prove that conditions involving the alternative interme-
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Algorithm 2 Tester (◊1, ◊2, ”)

1: N = (
Ô

3◊1+
Ô

2◊2)2

(◊2≠◊1)2 ln1
”

2: ÷1 = (◊2 ≠ ◊1)
3

1 +
Ò

2
3

◊2
◊1

4≠1

3: ÷2 = ◊2 ≠ ◊1 ≠ ÷1
4: sample N times
5: p̂ = 1

N

q
N

i=1 Xi Û Xi - samples that satisfy the property
6: if p̂ Æ ◊1 + ÷1 then return “Yes”
7: end if
8: if p̂ > ◊2 ≠ ÷2 then return “No”
9: end if

10: return None

diate thresholds (◊1 and ◊2) are satisfied with the desired input parameters (÷, ”)
using Cherno� bounds. If the check succeeds, the algorithm can return “Yes” or
“No”; otherwise, the process repeats until a condition which guarantees soundness is
met.

The internal thresholds are picked so as to soundly prove or refute that p lies
in certain ranges in [0, 1]. This is done by testing certain intervals p is (or is
not) in. For instance, MetaPROVERO tests a pair of hypotheses p Æ ◊1 and
p > ◊2 simultaneously (line 3). Notice that for the intervals on the left side of ◊

(◊1 < ◊2 Æ ◊, chosen in line 2 in Alg. 1), the call to Tester can result in proving
that p Æ ◊1 with desired confidence ” and error tolerance ÷. In this case, since
◊1 < ◊, we will have proven the original hypothesis p Æ ◊ and the algorithm can
return “Yes” soundly. We call such intervals, which are to the left of ◊, as proving
intervals. Conversely, refuting intervals are on the right side of ◊ + ÷. The choice of
◊1 and ◊2 on line 6 in Alg. 1 is such that they are larger than ◊ + ÷. When we can
prove that p > ◊2, i.e., the Tester call on line 7 returns “No”, then we can soundly
return “No” because ◊2 > ◊ + ÷ implies p > ◊ + ÷.

In Fig. 3.2, we consider an example run of MetaPROVERO given that the true
probability p = 0.3 (highlighted in blue) and the input parameters are ◊ = 0.1, ÷ =
10≠3, ” = 0.01. MetaPROVERO picks the proving interval (◊1l, ◊2l) = (0.03, 0.06)
on the left of ◊ and calls Tester which returns “No”. This means that the true
probability is greater than ◊1l with high confidence. MetaPROVERO then picks
an interval (◊1r, ◊2r) = (0.15, 0.25) on the right-side of ◊ + ÷. Here Tester returns
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0 1

p Æ ◊ p > ◊ + ÷

p◊1l
◊2l ◊1r ◊2r

Figure 3.2. Example run of MetaPROVERO (0.1, 10≠3, 0.01) given that p = 0.3.
On the left-hand side, MetaPROVERO cannot prove that p Æ ◊ since p is greater
than left-side ◊2l

. Next, MetaPROVERO chooses the refuting interval on the
right-hand side. Since p > ◊2r , Tester returns “No” and MetaPROVERO can
prove that p > ◊ + ÷.

with confidence higher than 1 ≠ ” that p > ◊2r. Since ◊2r > ◊ + ÷ we can conclude
that the true probability is greater than ◊ with error ÷.

The key building block of this algorithm is the Tester sub-procedure (Algo-
rithm 2), which employs sampling to check hypotheses. Informally, the Tester does
the following: Given two intermediate thresholds, ◊1 and ◊2, if the true probability
p is either smaller than ◊1 or greater than ◊2, it returns “Yes” or “No” respectively
with high confidence. If p œ (◊1, ◊2) then the tester does not have any guarantees.
Notice that a single invocation of the Tester checks two hypotheses simultaneously,
using one set of samples. The number of samples needed are proven su�cient in
Section 3.5.2.

One can directly invoke Tester with ◊1 = ◊ and ◊2 = ◊ + ÷ but that might lead
to a very large number of samples, O(1/÷2). Thus, the key challenge is to judiciously
call the Tester on hypotheses with smaller sample complexity such that we can
refute or prove faster in most cases. To this end, notice that MetaPROVERO

leaves out two algorithmic design choices: stopping conditions and the strategy for
choosing the proving and refuting hypotheses (highlighted in Alg. 1). We propose and
analyze an adaptive binary-search-style algorithm where we change our hypotheses
based on the outcomes of our sampling tests (Section 3.5.1). We show that our
proposed algorithm using this strategy is sound. When p is extremely close to ◊,
these algorithms are no worse than estimating the probability, requiring roughly the
same number of samples.
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3.5 Algorithms
We provide an adaptive algorithm for quantitative certification that narrows

the size of the intervals in the proof search, similar to a binary-search strategy
(Section 3.5.1). This algorithm build on the base of the Tester primitive which we
explain in Section 3.5.2.

3.5.1 The BinPCertify Algorithm

We propose an algorithm BinPCertify (Algorithm 3) where instead of fixing
the intervals beforehand we narrow our search by halving the intervals. The user-
specified input parameters for BinPCertify are the threshold ◊, the error bound
÷ and the confidence parameter ”. The interval creation strategy is o�-loaded to
the CreateInterval procedure outlined in Algorithm 4. The interval size –

is initially set to the largest possible as Tester would require less samples on
wider intervals (Algorithm 4, lines 2-6). Then, the BinPCertify algorithm calls
internally the procedure CreateInterval to create proving intervals (on the left
side of ◊, Alg. 3, line 6) and refuting intervals (on the right side of ◊ + ÷, Alg. 3,
line 12). Note that for the refuting intervals, we keep the left-side fixed, ◊1 = ◊ + ÷

and for the proving intervals we keep the right-side fixed, i.e., ◊2 = ◊ . For each
iteration of BinPCertify, the strategy we use is to halve the intervals by moving
the outermost thresholds closer to ◊ (Alg. 4, lines 8-11). For these intermediate
hypotheses, Tester checks if it can prove or disprove the assert p Æ ◊ (lines 8
and 14). It continues to do so alternating the proving and refuting hypotheses until
the size of both intervals becomes smaller than the error bound ÷ (line 18). If only
on one side of the threshold CreateInterval returns intervals with size – > ÷,
BinPCertify checks those hypotheses. If the size of the proving and refuting
intervals returned by CreateInterval is ÷, then the final check is directly invoked
on (◊, ◊ + ÷) and returned to the user (line 19).

The algorithm BinPCertify returns “Yes” or “No” with soundness guarantees
as defined in Section 3.3. We give our main theorem here and defer the proof to
Section 5.3:

Theorem 4. For an unknown value p œ [0, 1], a given threshold ◊ œ [0, 1], ÷ œ
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(0, 1), ” œ (0, 1], BinPCertify returns a “Yes” or “No” with the following guaran-
tees:

Pr[BinPCertify returns “Yes” | p Æ ◊] Ø 1 ≠ ”

Pr[BinPCertify returns “No” | p > ◊ + ÷] Ø 1 ≠ ”

Algorithm 3 BinPCertify (◊, ÷, ”)
1: ◊1l

= ◊2l
= 0

2: ◊1r = ◊2r = 0
3: n = 3 + max(0, log( ◊

÷
)) + max(0, log(1≠◊≠÷

÷
))

4: ”min = ”/n Û minimum confidence per call to Tester

5: while True do
6: ◊1l

, ◊2l
= CreateInterval(◊, ◊1l

, ◊2l
, ÷, True)

7: if ◊2l
≠ ◊1l

> ÷ then
8: ans = Tester(◊1l

, ◊2l
, ”min)

9: if ans == “Yes” then return “Yes”
10: end if
11: end if
12: ◊1r , ◊2r = CreateInterval(◊, ◊1r , ◊2r , ÷, False)
13: if ◊2r ≠ ◊1r > ÷ then
14: ans = Tester(◊1r , ◊2r , ”min)
15: if ans == “No” then return “No”
16: end if
17: end if
18: if ◊2r ≠ ◊1r Æ ÷ and ◊2l

≠ ◊1l
Æ ÷ then

19: return Tester(◊, ◊ + ÷, ”min)
20: end if
21: end while
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Algorithm 4 CreateInterval (◊, ◊1, ◊2, ÷, left)
1: if ◊ == 0 and left then return (◊, ◊ + ÷)
2: end if
3: if ◊1 == 0 and ◊2 == 0 and left then: return (0, ◊)
4: end if
5: if ◊1 == 0 and ◊2 == 0 and ¬left then: return (◊ + ÷, 1)
6: end if
7: – = ◊2 ≠ ◊1
8: if left then
9: return (◊2 - max(÷, –/2), ◊2)

10: end if
11: return (◊1, ◊1 + max(÷, –/2))

3.5.2 Tester Primitive

The tester takes as input two thresholds ◊1, ◊2 such that ◊1 < ◊2 and confidence
parameter ” and returns “Yes” when p Æ ◊1 with confidence higher than 1 ≠ ” and
“No” when p > ◊2 with confidence higher than 1 ≠ ”. If p œ (◊1, ◊2] the Tester

returns without guarantees.
The procedure for implementing the Tester is simple. Following the procedure

outlined in Algorithm 2, we take N = (
Ô

3◊1+
Ô

2◊2)2

(◊2≠◊1)2 ln1
”

number of independent
samples and estimate the ratio of these 0-1 trials as p̂. The Tester returns “Yes”
if p̂ Æ ◊1 + ÷1 and “No” if p̂ > ◊2 ≠ ÷2 where ÷1 and ÷2 are error parameters (lines 2
and 3). If ◊1 + ÷1 < p̂ < ◊2 ≠ ÷2, our implementation returns “None”. The following
lemma establishes the soundness of the tester, and follows directly from applying
Cherno� bounds on p̂.

Lemma 7. Given the thresholds (◊1, ◊2) and confidence parameter ”, Tester has
following soundness guarantees:

Pr[Tester returns “Yes” | p Æ ◊1] Ø 1 ≠ ”

Pr[Tester returns “No” | p > ◊2] Ø 1 ≠ ”

Proof. The proof follows directly the Cherno� bounds.

Using the estimated probability p̂, Tester returns “Yes” if p̂ Æ ◊1 + ÷1 and “No”
if p̂ Ø ◊2 ≠ ÷2 with probability greater than 1 ≠ ”. Otherwise, it returns “None”.
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◊1 ◊20 1t

÷1 ÷2

each bounded by ”return “Yes” return “No”

Figure 3.3. Tester considers the boundary t = ◊1 + ÷1 = ◊2 ≠ ÷2 that allows to
distinguish p Æ ◊1 or p > ◊2.

We want to choose values ÷1, ÷2 œ (0, 1) such that Pr[p̂ Ø ◊1 + ÷1 | p Æ ◊1] Æ ” and
Pr[p̂ Æ ◊2 ≠ ÷2 | p > ◊2] Æ ”.

To derive the minimum number of samples for the estimated p̂, the key idea is to
use one set of samples to check two hypotheses, p Æ ◊1 and p > ◊2, simultaneously.
To do so, we find a point t œ (◊1, ◊2) which serves as a decision boundary for the
estimate probability p̂. We illustrate this in Figure 3.3: it shows (t, ÷1, ÷2) and
the two probability distributions for p̂ given p = ◊1 and p = ◊2, respectively. The
distributions for the case p < ◊1 will be shifted further to the left, and the case
p > ◊2 will be shifted further to the right; so these are extremal distributions to
consider. It can be seen that t is chosen such that Pr[p̂ > t|p Æ ◊1] as well as
Pr[p̂ < t|p > ◊2] are bounded (shaded red) by probability ”. Using the additive
Cherno� bounds (Lemma 6), for a given ◊1 and ◊2, the number of samples N is the
maximum of 3◊1

1
÷

2
1
ln1

”
and 2◊2

1
÷

2
2
ln1

”
.

Taking the maximum ensures that the probabilities of the both the hypotheses,
p < ◊1 and p > ◊2, are being simultaneously upper bounded.

3.6 Soundness
In this section, we prove that our proposed algorithm satisfies soundness as defined

in Section 3.3. BinPCertify uses the Tester primitive on certain intervals in
sequence. Depending on the strategy, the size of the intervals and the order of testing
them di�ers. But, the algorithm terminates immediately if the Tester returns “Yes”
on a proving interval or “No” on a refuting one. The meta-algorithm captures this
structure on line 2-5 and BinPCertify algorithm instantiates this general structure.
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When none of these optimistic calls to Tester are successful, the algorithm makes
a call to the Tester on the remaining interval in the worst case. Given the same
basic structure of algorithms as per the meta-algorithm MetaPROVERO, we now
prove the following key theorem:

Lemma 8. Let E be the event that the algorithm A œ {BinPCertify} fails, then
Pr[E] Æ ”.

Proof. Fix any input to A, and consider the execution of A under those inputs.
Without loss of generality, we can order the intervals tested by A in the sequence
that A invokes the Tester on them in that execution. Let the sequence of intervals
be numbered from 1, . . . , i, for some value i.

Now, let us bound the probability of the event Ei, which is when A tests intervals
1, . . . , i and fails. To do so, we consider events associated with each invocation of
Tester j œ [1, i]. Let Rj be the event that A returns immediately after invoking
the Tester on the j-th interval. Let Cj denote the event that Tester returns a
correct answer for the j-th interval. If Ei is true, then A terminates immediately
after testing the i-th interval and fails. This event happens only if two conditions
are met: First, A did not return immediately after testing intervals 1, . . . , i ≠ 1; and
second, A returns a wrong answer at i-th interval and does terminate. Therefore,
we can conclude that the event Ei = C̄i fl Ri fl R̄i≠1 fl . . . fl R̄1. The probability of
failure Pr[Ei] for each event Ei is upper bounded by Pr[C̄i].

Lastly, let E be the total failure probability of A. We can now use a union
bound over possible failure events E1, . . . , En, where n is the maximum number of
intervals A can possibly test under any given input. Specifically:

Pr[E] = Pr[E1 fi E2 . . . fi En] Æ
nÿ

i=1
Pr[Ei] Æ

nÿ

i=1
Pr[C̄i]

By analyzing q
n

i=1 Pr[C̄i] in the context of our specific algorithm BinPCertify,
we show that the quantity is bounded by ” (Lemma 9).

Lemma 9. Under any given input (◊, ÷, ”), let Ci be the event that i-th call made
by BinPCertify to the Tester is correct and let n be the total number of calls to
Tester by BinPCertify. Then, q

n

i=1 Pr[C̄i] Æ ”.
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Proof. We can upper bound the number of proving intervals on the left by nl Æ
1 + log ◊

÷
. Similarly, for the right side of ◊ + ÷, number of refuting intervals is

nr Æ 1 + log 1≠◊≠÷

÷
. Lastly, there is only 1 call to the Tester on the interval ÷

(line 19, Alg. 3). The total number of intervals tested in any one execution of
BinPCertify is at most n = 3 + log ◊

÷
+ log 1≠◊≠÷

÷
. Each call to the Tester is done

with confidence parameter ”min = ”

n
, therefore by Lemma 7, the failure probability

of any call is at most ”

n
. It follows that the Pr[C̄i] Æ n · ”

n
= ”

3.7 Sample Complexity Analysis
We now provide an upper bound on the number of samples required by Bin-

PCertify. Throughout the analysis, for an interval of size –, the number of samples
needed by i≠th call to the Tester for the interval of size – is si(–, ”) Æ (

Ô
3+

Ô
2)2

–2 ln1
”
.

The BinPCertify algorithm halves the interval size on each iteration (call
to CreateInterval, lines 6 and 11 in Alg. 3) until the interval size for both
the proving and refuting intervals become smaller than ÷. When that happens,
BinPCertify calls the Tester on the interval (◊, ◊ + ÷) and returns directly
from there, lines 16–18, Alg. 3. The CreateInterval method starts by creating
intervals of size ◊ for the proving intervals and 1 ≠ ◊ ≠ ÷ for the refuting intervals.

Theorem 5. The number of samples required by BinPCertify is upper bounded
by O(k1 + k2 + k3), where

1. k1 = 4
3( 1

◊2 ≠ 1
÷2 )(

Ô
3 +

Ô
2)2lnn

”

2. k2 = 4
3( 1

◊2 ≠ 1
4(1≠◊≠÷)2 )(

Ô
3 +

Ô
2)2lnn

”

3. k3 = (
Ô

3◊+
Ô

2(◊+÷))2

÷2 lnn

”
.

and n = 3 + max(0, log ◊

÷
) + max(0, log 1≠◊≠÷

÷
).

Proof. Let Zi denote the number of samples required by the BinPCertify during
the i-th iteration of the loop. An iteration is generally introduced in the meta-
algorithm in Algorithm 1, i.e., we select the proving and refuting hypotheses and
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call the Tester to try to disprove them. Note that BinPCertify first invokes
Tester for the interval (0, ◊), therefore, we have

Z1 Æ s1(◊, ”min) + Pr[R̄1]s2(
◊

2 , ”min)

For all the rest of the iterations until the final iteration, i.e., when the condition
in line 18 is satisfied, we have the following bounds on Zi.

Zi Æs2i≠1(
◊

2i≠1 , ”min)+

s2i(
1 ≠ ◊ ≠ ÷

2i
, ”min)Pr[R̄2i≠1]

Let Zf denote the number of samples by Tester in line 19. We have Zf Æ
sn( ◊

2n , ”min). Finally, observe that

Z = Z1 + Pr[R̄2]Z2 + Pr[R̄2(i≠1)]Z3 + · · · + Pr[R̄n≠1]Zf

Also, the number of proving intervals before the last call is nl Æ 1 + log ◊

÷
and,

respectively, nr Æ 1 + log 1≠◊≠÷

÷
refuting intervals. Therefore,

Z Æ s1(◊, ”min) +
nlÿ

i=2
s2i≠1(

◊

2i≠1 , ”min)
2i≠2Ÿ

j=1
Pr[R̄j]+

nrÿ

i=1
s2i(

1 ≠ ◊ ≠ ÷

2i≠1 , ”min)
2i≠1Ÿ

j=1
Pr[R̄j]+

sn( ◊

2n
, ”min)

n≠1Ÿ

j=1
Pr[R̄j],

where nl Æ 1 + log
◊

÷
, nr Æ 1 + log

1 ≠ ◊ ≠ ÷

÷
.

The following bounds can be obtained by simple algebraic computations:

1. qnl
i=2 s2i≠1( ◊

2i≠1 , ”min) Æ 4
3( 1

◊2 ≠ 1
÷2 )(

Ô
3 +

Ô
2)2ln 1

”min

2. q
nr
i=1 s2i(1≠◊≠÷

2i≠1 , ”min) Æ 4
3( 1

◊2 ≠ 1
4(1≠◊≠÷)2 )(

Ô
3 +

Ô
2)2ln 1

”min

3. sn( ◊

2n , ”min) = (
Ô

3◊+
Ô

2(◊+÷))2

÷2 ln 1
”min

.

The statement of the theorem follows directly from the above bounds and by
noting Pr[R̄i] Æ 1 and ”min = ”/n

The above analysis is conservative and an interesting direction of future work
would be to analyze Pr[R̄i] under given distribution of p.
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Table 3.1. Neural network architectures used in our evaluation.

Dataset Arch Description #Hidden
Units

MNIST(BM1)

FFNN 6-layer feed-forward 3010
convSmall 2-layer convolutional 3604
convMed 3-layer convolutional 4804
convBig 6-layer convolutional 34688
convSuper 6-layer convolutional 88500
skip residual 71650

ImageNet (BM2)

VGG16 16-layer convolutional 15,086,080
VGG19 19-layer convolutional 16,390,656
ResNet50 50-layer residual 36,968,684
Inception_v3 42-layer convolutional 32,285,184
DenseNet121 121-layer convolutional 49,775,084

3.8 Evaluation
• Scalability: For a given timeout, what is the largest model that PROVERO

and existing qualitative analysis tools can produce conclusive results.

• Utility in attack evaluations: How does adversarial hardness computed with
PROVERO compare with the e�cacy of state-of-the-art attacks?

• Applicability to randomized models: Can PROVERO certify properties of
randomized DNNs?

• Performance. How many samples are needed by our new algorithms vis-a-vis
the estimation approach (Section 3.4.2)?

We implement our algorithms in a prototype tool called PROVERO and
evaluate the robustness of 38 deterministic neural networks trained on 2 datasets:
MNIST [128] and ImageNet [193]. For MNIST, we evaluate on 100 images from the
model’s respective test set. In the case of ImageNet, we pick from the validation set
as we require the correct label. Table 3.1 provides the size statistics of these models.
In addition, we evaluate the randomized model publicly provided by PixelDP [129],
which has a qualitative certificate of robustness.

ERAN Benchmark (BM1) Our first benchmark consists of 33 moderate size neu-
ral networks trained on the MNIST dataset. These are selected to aid a comparison
with a state-of-the-art qualitative verification framework called ERAN [211]. We
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selected all the models which ERAN reported on. These models range from 2-layer
neural networks to 6-layer neural networks with up to about 90K hidden units. We
use the images used to evaluate the ERAN tool.

Larger Models (BM2) The second benchmark consists of 5 larger deep-learning
models pretrained on ImageNet: VGG16, VGG19, ResNet50, InceptionV3 and
DenseNet121. These models were obtained via the Keras framework with Tensorflow
backend. These have about 15 ≠ 50M hidden units.

All experiments were run on GPU (Tesla V100-SXM2-16GB) with a timeout of
600 seconds per image for the MNIST, 2000 seconds for ImageNet models, and 3600
seconds for the randomized PixelDP model.

3.8.1 Utility in Attack Evaluation

PROVERO can be used to directly certify if the security analyst has a threshold
they want to check, for example, obtained from an external specification. Another
way to understand its utility is by relating the quantitative bounds obtained from
PROVERO with those reported by specific attacks. When comparing the relative
robustness of DNNs to adversarial attacks, a common evaluation methodology today
is to find the minimum adversarial perturbation with which state-of-the-art attacks
can produce at least one successful adversarial example. If the best known attacks
perform worse on one DNN versus another, on a su�ciently many test inputs, then
the that DNN is considered more robust.

PROVERO o�ers a new capability: we can measure the ratio of adversarial
samples within a specified perturbation bound of a given test input x (see Section 3.2).
Specifically, we can compute the adversarial density by uniformly sampling in
the Lp ball of x, and checking if the ratio of adversarial samples is very small
(below ◊ = 10≠3). By repeating this process for di�erent perturbations bounds, we
empirically determine the adversarial hardness (or ‘Hard)—the largest perturbation
bound below which PROVERO certifies the adversarial density to be that small
(returns “Yes”) and above which PROVERO does not (returns “No”). We use
density threshold ◊ = 10≠3, error tolerance ÷ = 10≠3, and confidence parameter
” = 0.01.

PROVERO computes the adversarial hardness with black-box access. As a
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Table 3.2. Attack correlation for the PGD and C&W attack for the models in BM1
and BM2 using Pearson’s coe�cient (fl). For all, statistical significance p < 0.01.

Models fl (PGD) fl (C&W)
convBigRELU__Di�AI 0.9617 0.7509
convMedGRELU__PGDK_w_0.1 0.8143 0.6686
convMedGRELU__PGDK_w_0.3 0.7699 0.6715
convMedGRELU__Point 0.8461 0.982
convMedGSIGMOID__PGDK_w_0.1 0.8533 0.8903
convMedGSIGMOID__PGDK_w_0.3 0.9394 0.913
convMedGSIGMOID__Point 0.9424 0.9605
convMedGTANH__PGDK_w_0.1 0.9521 0.9334
convMedGTANH__PGDK_w_0.3 0.9567 0.8718
convMedGTANH__Point 0.7592 0.9817
convSmallRELU__Di�AI 0.9504 0.5127
convSmallRELU__PGDK 0.7803 0.6411
convSmallRELU__Point 0.893 0.9816
convSuperRELU__Di�AI 0.687 0.3856
DenseNet-res 0.7168 0.4879
�nnRELU__PGDK_w_0.1_6_500 0.8932 0.9577
�nnRELU__PGDK_w_0.3_6_500 0.7039 0.6496
�nnRELU__Point_6_500 0.954 0.9788
�nnSIGMOID__PGDK_w_0.1_6_500 0.8706 0.8955
�nnSIGMOID__PGDK_w_0.3_6_500 0.9402 0.9201
�nnSIGMOID__Point_6_500 0.8906 0.9489
�nnTANH__PGDK_w_0.1_6_500 0.8156 0.9508
�nnTANH__PGDK_w_0.3_6_500 0.9104 0.9485
�nnTANH__Point_6_500 0.8998 0.8435
mnist_conv_maxpool 0.9664 0.9699
mnist_relu_3_100 0.9668 0.9448
mnist_relu_3_50 0.9702 0.9298
mnist_relu_4_1024 0.8945 0.9723
mnist_relu_5_100 0.7472 0.9629
mnist_relu_6_100 0.9845 0.9868
mnist_relu_6_200 0.9699 0.9412
mnist_relu_9_100 0.979 0.9725
mnist_relu_9_200 0.8165 0.9652
ResNet50 0.7929 0.6932
skip__Di�AI 0.7344 0.6298
VGG16 0.8064 0.8297
VGG19 0.7224 0.7335
Inception-v3 0.5806 0.4866
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comparison point, we evaluate against two white-box attacks — PGD [145] for LŒ

and C&W [24] for L2 implemented in CleverHans [164] (v3.0.1) — 2 prominent
attacks that are recommended for the Lp norms we consider [19]. White-box attacks
enable the attacker complete access to internals; therefore, they are more powerful
than black-box attacks today. Both PGD and C&W are gradient-based adversarial
attacks. For PGD, we perform 30 attacks on di�erent values of ‘ to identify the
minimum value that an adversarial input can be identified. For C&W, we identify
the best ‘ it is able to identify for a given amount of resource (iterations).

Our main empirical result in this experiment is that ‘Hard is strongly correlated
with ‘min. Figure 3.4 and Figure 3.5 show the correlation visually for two models:
it shows that the perturbation bounds found by these two separate attacks are
di�erent, but both correlate with the adversarial hardness of the certification instance
produced by PROVERO. The Pearson correlation for all models is reported in
Table 3.2 for all cases where the compared white-box attacks are successful The
average Pearson correlation between the perturbation found by PGD, ‘P GD, and
‘Hard over all models is 0.858 and between the perturbation found by C&W, ‘C&W ,
and ‘Hard is 0.8438. We take 25 images per model to calculate the correlation. The
significance level is high (p-value is below 0.01 for all cases).

Recall that PROVERO is sound, so the estimate of adversarial hardness ‘Hard

is close to the ground truth with high probability (99%). This metric is an attack-
agnostic metric, computed by uniform sampling and without white-box access to the
model. The strong correlation shows that PGD and C&W attacks find smaller ‘min

for easier certification instances, and larger ‘min for harder instances. This suggests
that when comparing the robustness of two models, one can consider adversarial
hardness as a useful attack-agnostic metric, complementing evaluation on specific
attacks.

3.8.2 Scalability

We test PROVERO on 38 models, which range from 3K≠50M hidden units. We
select 100 input images for each model and retain all those inputs for which the model
correctly classifies. We tested 11 perturbation size (LŒ) from 0.01 to 0.25 for BM1
and 4 perturbation size (L2) from 2/255 to 14/255 for BM2. This results in a total
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Figure 3.4. Correlation graph between
LŒ bounds provided by PROVERO and
PGD for a fully connected feedforward
with sigmoid (FFNN) on MNIST.
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Figure 3.5. Correlation graph between
L2 bounds provided by PROVERO and
C&W for a fully connected feedforward
(FFNN) with sigmoid on MNIST.
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Figure 3.6. PROVERO and ERAN verified robustness per perturbation size for
BM1 for threshold ◊ = 0.0001, error ÷ = 0.001 and confidence ” = 0.01.

of 36971 test images for 38 models. We run each test image with PROVERO with
the following parameters: (◊ = 0.0001, ÷ = 0.001 and ◊ = 0.01, ÷ = 0.01, ” = 0.01)
(for BM1) (◊ = 0.001, ÷ = 0.001 and ◊ = 0.01, ÷ = 0.01, ” = 0.01) (for BM2). We
find that PROVERO scales producing answers within the timeout of 600 seconds
for BM1 and 2000 seconds for BM2 per test image. Less than 2% input cases for
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BM2 and less than 5% for BM1 return “None”, i.e., PROVERO cannot certify
conclusively that there are less or more than than the queried thresholds. For all
other cases, PROVERO provides a “Yes” or “No” results.

As a comparison point, while NPAQ provides direct estimates rather than the
“Yes” or “No” answers PROVERO produces, NPAQ supports only a sub-class of
neural networks (BNNs) and of much smaller size. Hence, it cannot support or scale
for any of the models in our benchmarks, BM1 and BM2.

Secondly, we tested ERAN which is considered as the most scalable qualitative
verification tool. ERAN initially was not able to parse these models. After direct
correspondence with the authors of ERAN, the authors added support for requisite
input model formats. After applying these changes, we confirmed that the current
implementation of ERAN time out on all the BM2 models. PROVERO finishes
on these within a timeout of 2000 seconds.

We successfully run ERAN on BM1, which are smaller benchmarks that ERAN

reported on. There are total of 4 analyses in ERAN. We evaluate on the DeepZono
and DeepPoly domains but for the DeepPoly, on our evaluation platform, ERAN

runs out of memory and could not analyze the neural networks in BM1. The
remaining analyses, RefineZono and RefinePoly are known to achieve or improve
the precision of the DeepZono or DeepPoly domain at the cost of larger running
time by calling a mixed-integer programming solver [213]. Hence, we compare with
the most scalable of these 4 analyses, namely the DeepZono domain.

Figure 3.6 plots the precision of ERAN against PROVERO for all 11 per-
turbation sizes. We find that for a perturbation size of more than 0.05, ERAN’s
results are inconclusive, i.e., the analysis reports neither “Yes” nor “No” for more
than 50% of the inputs, likely due to imprecision in over-approximations of the
analysis. Figure 3.6 shows that the verified models reduces for higher perturbations
‘. This is consistent with the findings in the ERAN paper: ERAN either takes
longer or is more imprecise for non-robust models and higher ‘ values [213]. In all
cases where ERAN is inconclusive, PROVERO successfully finishes within the
600 second timeout for all 35431 test images and values of ‘. In above 95% of these
cases, PROVERO produces high-confidence “Yes” or “No” results.

As a sanity check, on cases where ERAN conclusively outputs a “Yes”, PROVERO

also reports “Yes”. With comparable running time, PROVERO is able to obtain
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quantitative bounds for all perturbation sizes. From these experimental results,
we conclude PROVERO is a complementary analysis tool that can be used to
quantitatively certify larger models and for larger perturbation sizes, for which
our evaluated qualitative verification framework (ERAN) is inconclusive. To the
best of our knowledge, this is the first work to give any kind of sound quantitative
guarantees for such large models.

3.8.3 Applicability to Randomized DNNs

So far in our evaluation we have focused on deterministic DNNs, however,
PROVERO can certify the robustness of randomized DNNs. To demonstrate this
generality, we take a model obtained by a training procedure called PixelDP that
adds di�erentially private noise to make the neural network more robust. The
inference phase of a PixelDP network uses randomization: instead of picking the
label with the maximum probability, it samples from the noise layer and calculates
an expectation of the output value. PixelDP also produces a certified perturbation
bound for which it guarantees the model to be robust for a given input image. Note
that qualitative verification tools such as ERAN require white-box access and work
with deterministic models, so they would not be able to verify the robustness of
randomized PixelDP DNNs.

We contacted the authors to obtain the models used in PixelDP [130]. The
authors pointed us to the PixelDP ResNet28-10 model trained on CIFAR10 2 as
the main representative of the technique. We randomly select 25 images in the
CIFAR10 dataset and for each image we obtain the certified perturbation bound
‘pixeldp produced by PixelDP itself. We configure PixelDP to internally estimate
‘pixeldp using 25 samples from the noise layer as recommended in their paper. This
bound, ‘P ixelDP , is the maximum bound for which PixelDP claims there are no
adversarial samples within the L2 ball.

We use PROVERO to check the certificate ‘P ixelDP produced by PixelDP, using
the following parameters ◊ = 0.01, ÷ = 0.01, ” = 0.01. PROVERO reports “Yes”,
implying that the model has adversarial density under these bounds. Under the
same threshold ◊ = 10≠2, ÷ = 10≠2 we tested for larger perturbation sizes: from

2available to download from https://github.com/columbia/pixeldp
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‘ = 0.1 to 0.25.
Our findings in this experiment are that PROVERO can certify low adversarial

density for perturbation bounds much larger than the qualitative certificates produced
by PixelDP. In particular, PROVERO certifies that for ‘ = 5 ◊ ‘P ixelDP , the
PixelDP model has less than 10≠2 adversarial examples with confidence at least 99%.
PROVERO o�ers complimentary quantitative estimates of robustness for PixelDP.

3.8.4 Performance

Our estimation solution outlined in Section 3.4.2 applies Cherno� bounds directly.
For a given precision parameter ÷, it requires a large number of samples, within
a factor of 1/÷2. While we do not escape from this worst case, we show that our
proposed algorithms improve over the estimation baseline empirically. To this end,
we record the number of samples taken for each test image and compare it to the
number of samples as computed for the estimation approach.

We find that PROVERO requires 27◊ less samples than the estimation approach
for values of ÷ = 0.01, ◊ = 0.01 and 687◊ less samples for values of ÷ = 0.001, ◊ =
0.0001 for BM1. For larger models in BM2 and values of ÷ = 0.001, ◊ = 0.001,
PROVERO requires 74◊ less samples than the estimation solution and ÷ = 0.01, ◊ =
0.01.

In our implementation, we use a batch-mode to do the inference for models in
BM1 and BM2, speeding up the running time of the sampling process by a factor of
3◊. This leads to average times of 29.78 seconds per image for BM1 for a batch size
of 128. For the models in BM2 we used di�erent batch sizes so we report the average
time per sample as 0.003 seconds which can be used to derive the running time based.
For (◊ = 0.0001, ÷ = 0.001) and all values of ‘, the average number of samples over
all images is 80, 424 (median value is 83, 121, standard deviation is 14, 303). For
VGG16 the average number of samples is around 657, 885, for VGG19 it is around
644, 737 and for InceptionV3 664, 397 samples, respectively, for ◊ = 0.001, ÷ = 0.001.
For both ◊ = 0.01, ÷ = 0.01 and ◊ = 0.001, ÷ = 0.001, for VGG16 the average
number of samples is 737, 297, for VGG19 it is 722, 979 and for InceptionV3 744, 792
average number of samples, resulting in about 74◊ less samples than the estimation
approach.
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For the PixelDP model, PROVERO takes 20, 753 samples. Since PixelDP
models internally take 25 samples from the noise layer, the time taken for inference
on one given input itself is higher. PROVERO reports an average running time
per test image of roughly 1, 500 seconds.

3.9 Related Work
Qualitative verification methodologies have sought to exploit the advances in

combinatorial solving, thereby consisting of satisfiability modulo theories (SMT)
solvers-based approaches [93, 111, 112, 49, 156] or integer linear programming ap-
proaches [228, 138, 31]. Despite singficiant progress over the years, the combinatorial
solving-based approaches do not scale to deep neural networks.

Consequently, techniques to address scalability often sacrifice completeness:
abstract interpretation-based techniques [67, 211, 213, 212] are among the most
scalable verification procedures that over-approximate the activation functions with
abstract domains. Similarly, optimization-based approaches [248, 184, 45] produce
a certificate of robustness for a given input: a lower bound on the minimum
perturbation bound ‘min such that there are no adversarial examples within that
a ‘min ball. These techniques are, however, incomplete and catered to only ReLU
activations [248] and fully-connected layers [259, 79].

A promising line of incomplete techniques has been proposed employing two
complementary techniques: Lipschitz computation and linear approximations. Hein
and Andriushchenko [89] propose an analytical analysis based on the Lipschitz
constant, but the approach assumes that a di�erentiable activation function (thus
excluding ReLU activations) and can handle only two layers. Boopathy et al [16],
Weng et al. [246], Zhang et al [259] have further improved the scalability of these
techniques but they are still limited to 80, 000 hidden units. While the lower and
upper bounds are sound, their tightness is not guaranteed. In another line of
work, Weng et al. [247] employ extreme value theory to estimate a lower bound on
‘min albeit without theoretical guarantees of the soundness of the obtained bounds.
PROVERO di�ers fundamentally from classical verification approaches in our focus
on the development of a quantitative verification framework with rigorous guarantees
on computed estimates.
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Webb et al. [245] proposed a Monte Carlo-based approach for rare events to
estimate the ratio of adversarial examples. In this work, we take a property testing
approach wherein we ask if the proportion of inputs that violate a property is less
than a given threshold (in which case we say yes) or it is ÷-far from the threshold (in
which case we say no). While both approaches are black-box and rely on sampling,
PROVERO returns a yes or no answer with user-specified high confidence, whereas
the statistical approach proposed by Webb et al. does not provide such guarantees.
A related area is statistical model checking [124, 122, 123] that relies on sampling
schemes [242] to accept a given hypothesis. PROVERO algorithm is similar
to a sequential sampling plan [256] but PROVERO’s insight is that each test
checks “cheaper” hypotheses in a binary-search manner. In particular, in case of
PROVERO, we design hypothesis in a manner that more expensive hypothesis
tests are delayed as much as possible. In multi-armed bandit games, algorithms that
identify best arm procedures with a fixed confidence budget bear some similarity to
PROVERO. Such procedures must control for the number of samples to ensure
that the best arm (with unknown mean payo�) is returned even when the second
best arm (with unknown mean payo�) is arbitrarily close [102]. The derived sample
complexity in such approaches is with respect to the gap between the best arm’s
expected mean and the second best. In our approach, the sample complexity is with
respect to the fixed and apriori known thresholds, and so our sampling strategy is
also di�erent.

3.10 Summary
PROVERO introduces an algorithm for verifying quantitative properties of

neural networks, assuming only black-box access, and with much better test sample
complexity than compared baselines. Our algorithm o�ers, in particular, a power-
ful new attack-agnostic way of evaluating adversarial robustness for deep neural
networks.
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3.11 Future Work
One future work direction is how to lower the sample complexity which would e�ec-

tively reduce the running time of approaches based on sampling such as PROVERO.
We could consider a “grey” approach that is aware of part of the internal workings
of the model (or an over-approximation), or through better analysis and sampling.
Since the publication of the work presented in this chapter, a number of works
improved the sample complexity, but there is a natural limitation when the estimated
events are rare [227, 110].

Another future direction is how to extend sampling to other Lp norms than the one
considered in this chapter (L2 and LŒ). For instance, Wasserstein distance has been
hypothesized to better capture perceptual similarity between images, and has led to
improving a number of applications such as image retrieval [192], image generation [6,
182, 197, 197], image-to-image translation [100], or multi-label classification [62].
We can define a multidimensional probability distribution over images and consider
only images similar to ones in a test set. Computing Wasserstein distance over
multidimensional probability distributions is computationally expensive though
there are improvements when considering projecting in smaller dimensions [115, 30].
Having access to an e�cient sampler over perceptually similar images (inputs) would
benefit the statistical verification of semantic robustness.

It is also natural to consider integrating into training techniques that add
adversarial examples or perceptually close inputs into training (adversarial training)
to improve robustness [174, 244, 80]. Despite progress in this space, there is still a
gap between the robust accuracy (i.e., how many test samples are certifiably robust
up to some perturbation in some norm) and the standard accuracy. What might be
interesting for future research is to explore how to guide training via the more precise
characterization of the decision boundary via the density of adversarial examples.
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Chapter 4

Reasoning about Training with Causal
Queries

4.1 Introduction
Privacy has become a key concern in machine learning [51] with several classes

of attacks being discovered. Membership inference (MI) attacks, which have led to a
flurry of works recently [144, 34, 98, 142, 258, 206, 142, 135, 216, 215, 85, 159, 158,
260, 140], capture the advantage of an adversary in distinguishing samples used for
training from those that were not. There is clear empirical evidence that MI attacks
are e�ective and many new attack variants are emerging. At the same time, there is
currently no systematic framework to understand why standard training procedures
leave deep nets susceptible to MI attacks.

There are two incumbent approaches to understanding why deep networks are
susceptible to MI attacks [254, 194, 215, 142, 234]. The first tries to o�er fully
mechanistic explanations derived from theoretical analysis. For instance, a line of
work tries to mathematically model the stochastic mechanism of training models
(e.g., using stochastic gradient descent (SGD)) with enough precision [194]. The
most commonly accepted mechanistic explanation is that ML models leak training
data because they fail to generalize, measured through quantities like overfitting
gap, accuracy gap, and so on [254, 194]. This approach is appealing and is actively
progressing, but at the same time, modeling the training process with closed-form
mathematical expressions is an inherently di�cult problem. Predictions from these
mechanistic explanations often do not agree with observations in experiments,
because the approximations or assumptions made in the analysis may not hold in
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practice [254]. Furthermore, generalization o�ers a one-way explanation: if models
generalize almost perfectly in a particular sense, then MI attacks are expected to
be ine�ective on average. It does not say how well MI attacks will work for models
that may have not generalized perfectly, which is often the case in practice. As
a result, there have been many di�erent hypothesized root causes that go beyond
direct measures of classical generalization, such as model capacity and architecture.
In short, no single coherent mechanistic explanation today predicts the average
performance of existing MI attacks well.

A second approach to explaining MI attacks is based on statistical testing of
hypotheses: Researchers intuit about the root cause, run experiments, and then
report statistical correlations between the hypothesized cause and the performance
of the MI attacks [207, 234, 142, 133, 215]. For example, several works have
suggested that the empirically observed overfitting gap or the accuracy di�erence
between training and testing sets explain MI attacks. This approach, while being
important in its own right, fails to provide satisfactory explanations often as well.
Guessing which root causes are really responsible for attacks is di�cult; after all,
the stochastic process of standard training procedures is complex and is a�ected by
multiple possible sources of randomness, hyper-parameter selection, and sampling
bias. Furthermore, correlation is not always causation. Confusing the two can
result in overly simplistic explanations of the true phenomenon at hand and lead to
paradoxes. Lastly, the purely empirical approach leaves no room to accommodate
mechanistic axioms (things we know that ought to be true from our theoretical
understanding)—if the observations do not correlate with mechanistically derived
facts, then they remain unexplained.

Our approach. We propose a new approach that explains MI attacks through a
causal model. A causal model is a graph where nodes are random variables that
abstractly represent properties of the underlying stochastic process and edges denote
cause-e�ect relationships between them. We can model the process of sampling data
sets, picking hyper-parameters like the size of the neural network, output vectors,
generalization parameters like bias and variance, and predictions from MI attack
procedures as random variables. These random variables can be measured empirically
during experiments. We can then both encode and infer causal relationships between
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nodes quantitatively through equations. Edges in our causal model are of two types:
1) mechanistically derived edges denote known mathematical facts derived from
domain knowledge (prior work, definitions, etc.); and 2) relations inferred from
experimental observations using causal discovery techniques.

Our causal approach is substantially di�erent from prior works and enables much
deeper and principled analysis. The causal model, once learnt, acts like a predictive
model—one can ask what will be the expected performance of a particular MI attack
if the “root causes” (random variables in the model) were to have certain values not
observed during prior experiments. Such estimation can be done without running
expensive experiments. A causal model allows us to “single out” the e�ect of one
variable on the MI attack performance. Such queries go beyond just observing
statistical correlations because they need to reason about other variables that might
a�ect both the cause and the outcome (the attack performance). To carefully solve
these queries, we leverage the principled framework of causal reasoning known as do-
calculus. It allows us to perform systematic refutation tests, which avoids confusing
causation with correlation. Such tests quantitatively tell us how well the model
fits the observed data and answer “what if” style of questions about surmised root
causes. Further, we can compare causal models obtained for two di�erent attacks to
understand how their manifestation di�ers, or compare models with and without an
intervention (e.g., by applying a defense) for a given attack to understand which
root causes it neutralizes. Causal models o�er a more principled and interactive way
of examining MI attacks.

Resulting Findings. To showcase the utility of our approach, we study 6 well-
known MI attacks and 2 defenses for deep neural networks trained using standard
SGD training procedures. We analyze a list of intuitive “root causes” which have
been suggested in prior works and formally specify them as 9 causal hypotheses. We
analyze each of these 9 hypotheses for ML models with 2 types of loss functions, so we
evaluate on 18 formalized hypotheses. Several salient findings have resulted from our
causal analysis. First, we refute 7/18 previously hypothesized causes, highlighting
the perils of understanding MI attacks purely from intuition or from statistical
correlational analysis. Second, we find that di�erent causes contribute di�erently to
the average attack accuracy, dispelling the idea that a single explanation su�ces for
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all 6 MI attacks we study. Our causal approach also models the attacks well (0.90),
i.e., predict the observed attack accuracy. This betters prior single-cause explanations
by 3 ≠ 22% in 17/24. Third, we show that two stochastic parameters inherent in the
training process, namely Bias and Variance, govern both generalization achieved
by ML models [108, 251, 161] and MI attack accuracy. This o�ers a more nuanced
lens to connect generalization and MI attack accuracy from that o�ered by prior
works [254, 144, 20]. Fourth, we show that defenses against MI attacks based on
regularization reduce the influence of some of root causes, but fail to completely
remove their e�ect.

Summary of Contributions. We propose the first use of causal analysis for
studying membership inference attacks on deep neural networks. We derive causal
models for 6 MI attacks by combining both known domain-specific assumptions and
observations made from experiments. Our key contribution is a new quantitative
connection between MI attacks and generalization, which enables refuting claims
about causation with finer accuracy.

Availability

Our prototype implementation is publicly available on GitHub1.

4.2 Motivation
Many intuitive explanations for privacy leakage have been put forward in prior

works. The most widely accepted claim is that “overfitted classifiers are more
susceptible to MI attacks”, which has been backed by experimental correlational
analyses [207, 234, 133, 142, 144, 132, 254, 194]. To evaluate the level of overfitting
though, two di�erent metrics have been proposed: the di�erence in the loss of
training and non-training samples [254, 194], as well as the train-to-test accuracy
gap [207, 234, 133, 142, 144, 132]. However, empirical evidence to the contrary has
also been observed–both MI attacks and extraction attacks have been reported on
well-generalized models [20, 23, 144]. Other potential contributing factors, such as
model complexity / structure [207, 215, 159], the size of the training set [207, 159],
the diversity of the training samples [207], how close a target model to attack is to

1At https://github.com/teobaluta/etio.
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the shadow model [196], and so on have been proposed, creating an unclear picture
of why MI attack arise. We highlight 9 common hypotheses claimed in prior works
below:

(H1) The overfitting gap is the cause of MI attacks that use multiple shadow models
in the inference [207].

(H2) “The main idea behind our shadow training technique is that similar models
trained on relatively similar data records using the same service behave in a
similar way” [207].

(H3) Beyond overfitting, model complexity influences the membership inference
attack accuracy [207].

(H4) The size of the training set is a contributing factor to the success of MI
attacks [207].

(H5) The shadow model attack works even if the attack uses only one shadow
model [196].

(H6) “If a model is more overfitted, then it is more vulnerable to membership
inference attack.” - for MI attacks that use a single shadow model [196].

(H7) There is no di�erence in the attack accuracy if we use the top-3 predictions in
descending order vs. the whole prediction vectors [196].

(H8) Shadow model-based attacks transfer when there is a clear decision boundary
between members and non-members [196].

(H9) The average generalization error explains the advantage of the threshold-
based adversary (even when this attack assumes that the error is normally
distributed) [254].

It is natural to ask: To what extent are these explanations correct? Do these
hypothesized factors universally explain all MI attacks equally? What does achieving
a certain level of generalization (eliminating overfitting) imply towards reducing MI
attacks? Answering such queries requires a principled framework for reasoning even
to phrase the right statistical quantities to measure—it is something that is easily
prone to fallacious reasoning.
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Arch=resnet34

Arch=densenet161

Figure 4.1. High train-to-test accuracy gap correlates with high attack accuracy
in general, but if clustered on architecture type, an inverse relationship is visible.

4.2.1 Pitfalls of Testing with Correlations

Let us consider two of the prior work hypotheses: (H1) Higher di�erence between
train and test accuracy leads to higher MI attacks; and (H3) An increase in model
complexity increases privacy leakage, i.e., larger models are more susceptible. One of
the most prominent approaches to validating such hypotheses today is experimental
validation through statistical correlation analysis [234, 207, 144, 142]. The analysis
proceeds by observing how the train-test accuracy gap and attack accuracy for a
chosen MI attack changes under di�erent choices of model complexity (number of
model parameters). For concrete illustration, we run a small-scale experiment for
the multiple shadow model attack [207]. We train 2 deep nets with varying number
of parameters on CIFAR10 dataset. We average the observed training and testing
accuracy of the deep neural networks under multiple samples of the training datasets.
For each of these models, we also run the shadow model attack separately [207],
using a disjoint part of the training dataset for the shadow model training.

Hidden Causes. In Fig. 4.1, on the X-axis we plot the average train-to-test
accuracy gap against the attack accuracy on the Y-axis. The overall trend of the
relationship between train-to-test accuracy gap and the attack accuracy is positive,
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i.e., the larger the train-to-test accuracy gap, the higher the attack accuracy. But
this trend is not seen in Fig. 4.1, when we group the trained neural nets by other
criteria such as model complexity and architecture. We observe they are clumped
into two clusters. Within those clusters, the observed trend is the reverse: the larger
the accuracy gap, the lower the attack accuracy! This turns out to be a fallacious
conclusion, because it fails to account for the e�ect of other factors such as model
complexity or architecture indirectly on train-to-test accuracy gap or directly on
the attack accuracy.

This paradox arises because there are confounding factors or confounders [172,
210] wherein di�erent sub-populations of the data have contradictory statistical
properties. Similar paradoxes can arise due to selection bias [172, 18, 13] or collider
bias [15, 172]. Without resolving such issues, it is di�cult to decide whether one
should try reducing the train-to-test accuracy gap or model complexity.

Singling Out. When we want to decide which factors influence the end outcome
more than the others, such as when designing practical defenses, one would like
to “single out” the main causes and quantify how much they a�ect the expected
MI attack accuracy. In our running example, the model complexity a�ects both
variables, the train-to-test accuracy gap as well as the MI attack accuracy. It would
be di�cult to quantify how much it a�ects attack accuracy directly and how much
indirectly via train-to-test accuracy gap without a more principled analysis of the
observed data.

To understand the challenge, let us say we want to estimate how changing
the train-to-test accuracy gap from a = 0.007 to b = 0.914 (which we observe in
practice) a�ects the MI attack accuracy. Let us assume we train more NNs and
that we now know that the model complexity is a confounding factor for both.
A naive way to analyze this is to statistically estimate the following quantity:
E1 = E[MIAcc|AccDiff ¥ 0.9] ≠ E[MIAcc|AccDiff ¥ 0] where the MIAcc is the
attack accuracy and the AccDiff is the train-to-test accuracy gap. Fig. 4.2 shows
our new experimental observations and conditional probability estimates from data
which reveals that the estimated expected e�ect is E1 = 0.47. It is misleading to
conclude that a change in train-to-test accuracy gap will have a large impact on the
attack performance since we know that there is a confounder.
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NumParams AccDiff MIAcc
12704 0.007 0.5
84542 0.104 0.564
203264 0.102 0.633
101632 0.102 0.632
9835146 0.109 0.567

…
9881316 0.914 0.880

![MIAcc|AccDiff=0.007] ≈ 0.50
![MIAcc|AccDiff=0.914] ≈ 0.97
Þ Effect is E1=0.47
Þ Adjusted E2=0.3

![MIAcc|NumParams=12704] ≈ 0.58
![MIAcc|NumParams=1334618] ≈ 0.94
Þ Effect is E3=0.36
Þ Adjusted E4=0.08

Figure 4.2. Reporting average conditional probabilities is not always correct. For
example, if we are to estimate the e�ect of train-to-test accuracy gap on the MI
attack accuracy from the data shown, the conditional over-estimates the e�ect by
0.17. For measuring the e�ect of model size though, the second estimate shown is
correct since over-controlling for the AccDiff incorrectly decreases the e�ect to 0.08
from 0.36.

If we want to single out the e�ect of changes in train-to-test accuracy gap, the
correct way is the following: Find samples with the same values for the model
complexity but di�erent values of train-to-test accuracy gap, from which we then
compute the di�erence these produce on the attack accuracy. This is called ana-
lytically “controlling” for the confounding factor2. This corresponds to analytically
computing how the system would behave under randomized values of model com-
plexity. Such randomization “nullifies” or “smoothens out” the e�ect of model
complexity. If we do this carefully, it turns out that the actual estimated e�ect E2

when AccDiff ranges from a to b is expressed by the following quantity:

E2 =
ÿ

z

E[MIAcc|AccDiff = a, NumParams = z]Pr(NumParams = z)

≠
ÿ

z

E[MIAcc|AccDiff = b, NumParams = z]Pr(NumParams = z)

This leads to an estimated e�ect of E2 = 0.3, as per our data (Section 5.6)—
significantly lower than the naive analysis above.

Avoiding Over-controlling. It may be tempting to control for all factors that may
influence the outcome. But arbitrarily controlling for variables leads to fallacious
reasoning as well. For example, if we want to estimate the e�ect of the model
complexity on the attack accuracy, should we now control for the train-to-test

2Controlling for a variable means binning data according to measured values of the variable
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accuracy gap? If we were to control for the train-to-test accuracy gap, then the
estimated e�ect E4 when NumParams varies from aÕ to bÕ is given by (also shown in
Fig. 4.2):

E4 =
ÿ

z

E[MIAcc|NumParams = aÕ, AccDiff = z]Pr(AccDiff = z)

≠
ÿ

z

E[MIAcc|NumParams = bÕ, AccDiff = z]Pr(AccDiff = z)

The above expression is analogous to the case where we controlled for model
complexity, except we are controlling for the train-to-test accuracy gap now. The
estimated value from experiments for this statistic is E4 = 0.08. This is, however,
an incorrect analysis. If we analytically control for the train-to-test accuracy gap,
then we are actually biasing the total e�ect that the model complexity has on the
attack, as we are “blocking” (failing to distinguish) its indirect e�ect through the
train-to-test accuracy gap. The correct statistical quantity, in this case, turns out to
be E3 = E[MIAcc|NumParams = aÕ] ≠ E[MIAcc|NumParams = bÕ], i.e., the total e�ect
model complexity has on the attack accuracy. The estimated e�ect is E3 = 0.36—a
lot higher than that obtained from the incorrect analysis, and corresponds to the
second unadjusted estimate in Fig. 4.2. Another similar example of bad control
or over-controlling is the bias amplification problem or pre-treatment control [171]
(illustrated later in Fig. 4.3). The main takeaway is that a principled framework
would tell us which quantities to estimate, avoiding over-controlling in experiments
and false conclusions.

Large Number of Possible Factors. When moving beyond a couple of factors
to consider, the reasoning can become more complicated. To build on our previous
example, let us now introduce another factor, related to (H8): the separation between
members and non-members. Our hypothesis is that the separation between members
and non-members is influenced by both the model complexity and the train-to-test
accuracy gap, and in turn it influences the attack accuracy. How does changing the
separation then a�ect the attack accuracy? To answer this question, notice that
the separation is influenced by the model complexity and the train-to-test accuracy
gap, both of which influence the attack accuracy. Similar to what we described so
far, one will then have to make sure to randomize these factors in order to obtain
the e�ect of the separation on the MI attack accuracy. For every additional factor,

90



CHAPTER 4. REASONING ABOUT TRAINING WITH CAUSAL QUERIES

NumParams 
(Z)

AccDiff 
(X)

MIAcc 
(Y)

Separation 
(W)

(a)

NumParams 
(Z)

AccDiff 
(X)

MIAcc 
(Y)

Separation 
(W)

(b)

Figure 4.3. The query to estimate varies by assumptions chosen. If we assume that
separation score influences the MI attack accuracy (Fig. 4.3a), we should control for
two confounding factors, the separation score and the number of parameters. The
resulting e�ect is 0.12. If we assume otherwise (Fig. 4.3b), we should not “control”
for the separation score, otherwise it results in a much larger e�ect of 0.68.

though, we need to do enough experiments to “randomize” our estimates so that
they correctly compute the e�ect on the attack accuracy. It is easy to see that the
number of experiments one needs to run quickly starts to grow large as the number
of factors considered increases.

Importance of Specifying Assumptions. So far, we have considered cases where
certain causal relationships exist and we are trying to correctly estimate the e�ect
of certain factors on the outcome. But, how can we start to test our assumptions,
i.e., whether a causal relationship exists at all? Such refutation is hard to do, in
general. A practical recourse is that one can specify their assumed beliefs and hope
to refute quantitatively under the assumptions. The choice of assumptions matters
critically to the outcome. To illustrate this, consider the hypothesis (H8) again,
which introduces a separation score that measures the distance between members
and non-members as a factor for the single shadow model MI attack [196] (so far,
we have considered the multiple shadow one [207]). Deciding whether the separation
score has any direct influence on the MI attack is critically important—if we choose
to assume so, we get one set of conclusions, if we do not, we get another. When
the separation has a direct influence on MI attack, then the principled analysis to
estimate the e�ect of train-to-test accuracy gap is similar to the case of estimating
the model complexity. We estimate the e�ect on the attack accuracy is 0.12 on our
set of experiments (the details of our experimental setup are in Section 4.6.1). In
the alternative scenario, the correct quantity to estimate is below, leading to the
estimated e�ect of the train-to-test accuracy gap to be E5 = 0.68 when it varies
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from the a to b.

E5 =
ÿ

z

E[MIAcc|AccDiff = a, NumParams = z]Pr(NumParams = z)

≠
ÿ

z

E[MIAcc|AccDiff = b, NumParams = z]Pr(NumParams = z)

We illustrate the di�erences in the two sets of assumptions in Fig. 4.3 which
exacerbates the bias amplification problem. We point out that prior works do not
specify such assumptions or beliefs explicitly, making it impossible to refute or
validate such hypotheses.

Goodness of Explanations. Given the subjectivity of assumptions and computa-
tional limits on the number of experiments one can run, it is di�cult to analytically
argue that a given explanation is “correct” or certain hypothesis is conclusively
“incorrect”. How then can we measure how good or correct is an explanation? A
practical way to do so is look at the predictive power of a given explanation, i.e.,
measure how accurately it can predict the outcome (MI attack accuracy) under
experimental settings not seen during creating the explanation. The highlighted
prior hypothesis (H1)-(H9) often have predicted power well below 85% on average,
o�ering less satisfying results. In contrast, our approach has predictive power of
3 ≠ 22% higher than the prior work hypotheses, for most attacks we study.

4.3 The Causal Modelling Approach
The prior common hypotheses, some of which are derived from mechanistic

explanations or theoretical analyses, provide a good starting point to reason about
potential factors of the MI attacks. But, as shown throughout Section 4.2, there are
several pitfalls in identifying the factors and estimating their e�ect. Our aim is to
infer a model defined over a set of potential factors and a given MI attack, not just a
simple correlation of each factor separately with the MI attack. The model explicitly
defines relationships between factors and the MI attack and between themselves. It
should also provide a query interface for the following query types:

• Prediction Queries: Given some observed values a1, . . . , an of the potential fac-
tors X1, . . . , Xn, what is the predicted MI attack accuracy Y : E[Y |X1 = a1, . . . , Xn = an]?
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(1) Learn Model
(User-validation + 

Traces)

(2) Query 
Analysis

Input:
Traces (!),
Constraints (")

Output:
Causal Model,
Estimates

Modify "?In
te

ra
ct

iv
e

Causal Model
Input: Queries (#)

Figure 4.4. The user provides the domain knowledge „ and the traces T . The
traces contain observations of the values that the factors of interest take for the
training algorithm A and attack A. After an interactive step, the user fixes on a
causal graph on which the input queries are analyzed.

• Interventional Queries: What is average e�ect of a potential factor on the
attack accuracy if that factor had taken a di�erent value from the observed
one?

The prediction query consists of a set of assignments of observed (from running
experiments) values for a set of factors, and the target variable Y . The output of
this query is the expected MI attack accuracy conditioned on the observed values.
Such queries help us measure how well the causal model agrees with observations
in experiments. The interventional query is a “what if” query. It consists of two
variables: the potential cause variable, called the treatment variable X, and the
desired outcome variable Y . For instance, to estimate the e�ect of the train-to-test
accuracy gap on the attack, we ask if the train-to-test accuracy gap had taken the
value 0.1 compared to having no train-to-test accuracy gap, what is the expected
MI attack accuracy? We want our causal model to be 1) Accurate, i.e., to have a
goodness of fit, and 2) Principled, i.e., the estimated e�ect is rigorously computed.

We introduce a novel methodological shift: Our approach proposes to use causal
reasoning to disambiguate potential factors of MI attacks while satisfying the goals
highlighted above. We combine mechanistic explanations from domain knowledge
with automated inferences from empirical data to infer a causal model. Specifically,
causal models are directed acyclic graphs (DAGs) defined over a set of variables and
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a set of directed edges3 where each directed edge from variable X to Y represents
a “X causes Y ” relationship. On top of the graph structure, causal models are
quantitative: each node in the graph has associated an equation that describes the
cause-and-e�ect relationship between the node and its parents. Our approach is
necessarily synergistic: without domain knowledge constraints, purely observational
data cannot distinguish cause-and-e�ect; and without observational data, we cannot
test our intuitions or extract more insights from experiments. The whole process
is interactive and it is illustrated in Fig. 4.4. Initially, the user identifies potential
factors or variables of interest of the underlying training and attack procedure such
as training hyper-parameters, train-to-test accuracy gap and the outcome MI attack
accuracy. We model these as “random variables” that can be observed and measured.
The user generates the set of observations for these variables which we call traces T ,
by e�ectively running experiments and recording the values of the variables. The
domain knowledge constraints („) formally describe the mechanistic explanations,
facts or assumptions that stem from the data-generating process, e.g., the training
and attack procedures. Given the traces and the domain constraints, we output a
causal graph which the user can choose to further refine (Modify „ step in Fig. 4.4).
Finally, the causal models encode cause-and-e�ect relationships by construction and
can support the 2 types of queries. The user can specify these queries (Q) formally
and obtain estimates on the inferred causal graph (step (2) in Fig. 4.4).
Inputs & Outputs. We have prototyped our approach in an interactive tool
called Etio and envision model practitioners and researchers as its main users.
Etio minimally requires a set of traces corresponding to the runs of a specific
training algorithm (A) over the training dataset (D). These traces record values
of a set of properties about the training algorithm, model, and the performance
metrics of the attack procedure (A)–all of which we call variables (V ). The user
additionally specifies a set of domain knowledge constraints which encode knowledge
that two variables are not in a causal relationship, e.g., if they are caused by the
same unmeasurable/confounder variable (which we denote as Forbid constraints)
or that there is a causal relationship between two variables (denoted as Enforce

constraints). Then the domain constraints „ are a concatenation of the Forbid and
3We thus interchangeably use causal model and causal graph.
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Figure 4.5. Two causal models that are not identifiable (distinguishable) from
observations, since both result in the same conditional (in)dependence relations, but
require di�erent quantities to estimate in a causal analysis.

Enforce sets of constraints. For the studied MI attacks, we describe the variables
of interest V in Section 4.4.1 and our domain constraints „ in Section 4.4.2 in detail.
In addition to the inputs necessary to infer the causal model, Etio allows the user
to pose well-reasoned queries about potential factors of MI attacks, as per the query
interface.

4.3.1 Learning the Causal Model

Despite the clear advantage of explicitly expressing assumptions in the form of
an interpretable causal graph, constructing one is challenging. The fundamental
issue is that while associations or correlational analysis are useful for predicting
outcome, they do not always reflect the causal relationship. Associations can at
most reveal relationships of dependence or (conditional) independence.

To illustrate this point, we show two models that describe the same conditional
independence relationships in Fig. 4.5, but are causally di�erent. In Fig. 4.5a, the
model encodes that the model complexity a�ects the train-to-test accuracy gap
which in turn influences the MI attack accuracy. In contrast, the model in Fig. 4.5b
describes that the accuracy di�erence a�ects both the model complexity and the MI
attack accuracy. The models in Fig. 4.5a and 4.5b, though, are indistinguishable
from one another purely from observations, they both encode that NumParams ‹‹
MIAcc|AccDiff. But, in Fig. 4.5b, the model complexity has no causal e�ect on
the MI attack, whereas in Fig. 4.5a the model complexity causes the MI attack to
change through the train-to-test accuracy gap. In fact, from how the experiment
is set up, the second relationship does not have any real-world interpretation, i.e.,
the model complexity is decided beforehand as a hyper-parameter to the training
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process. Thus, our approach must rely on domain knowledge, a specification of
which is missing in prior works in the literature.

Formally, causal models (G, ◊) consist of (a) a DAG G = (V, E) called a causal
graph, over a set V of vertices and (b) a joint probability distribution P◊(V ),
parameterized by ◊ over the variables in V 4. The set of variables V can take
either discrete or continuous values. Our framework is orthogonal to the underlying
representation of parameters. We choose a linear model to represent the relationship
between the nodes of the graph. For predictive queries, the parameters have
a probabilistic interpretation P◊(V ) = �iPr(Xi|paXi), Xi œ V . Each node has
associated with it a probability function based on its parent nodes paXi. In this
work, we utilize the linear Gaussian model: Xi is a linear Gaussian of its parents
Xj: Xi = —0 + q

j —jXj + ‘ where Xj œ paXi and ‘ ≥ N (0, ‡2).
Note that our choice of linear equations and Gaussian probability functions

are not fundamental—these can be changed if necessary. These choices have been
su�cient to create causal models with good predictive power for the attacks we
analyze (see Section 4.6.2).

To learn the causal graph, there are two sub-steps: (a) learning the structure
of the graph G = (V, E) from the traces T and constraints „ and (b) learning the
parameters of the causal graph. Conceptually, the first sub-goal is to maximize
the posterior probability Pr(G|T ) = Pr(G)Pr(T |G), where Pr(G) is a prior on the
graph (i.e., G contains the edges represented by the Enforce list and all graphs
with edges that are part of the Forbid have 0 probability) and Pr(T |G) is the
predictive probability of the graph G. Ideally, the posterior probability concentrates
around a single structure GMAP , the optimal directed acyclical graph. Learning the
optimal DAG though is intractable for most problems as the number of DAGs is
super exponential with the number of nodes O(n!2(n

2)) [189]. In fact, recovering the
optimal DAG with a bounded in-degree Ø 2 has been shown to be NP-hard [32].

We choose to instantiate our approach with a standard hill-climbing algo-
rithm [249, 37], an iterative Greedy approach that starts from the graph with
nodes representing the variables V and the edges that are part of the Enforce.
The algorithm does not guarantee that the produced graph is the optimal one but it

4To simplify notation, we denote the vertex and its corresponding variable the same.

96



CHAPTER 4. REASONING ABOUT TRAINING WITH CAUSAL QUERIES

is scalable. Since our goal is to disambiguate between many di�erent possible factors
(see Section 4.2), this technique allows the user to add new variables of interest
and has a good predictive accuracy (goodness of fit) in practice. The algorithm
iteratively tries to add, remove, or reverse the direction of a directed edge from
the graph at the previous step. It uses a scoring function to choose between these
operations. The scoring function maps a graph to a numeric value. We use a type of
score based on log-likelihood LL(G|T ) but that prefers simpler graphs (LL(G|T )≠p,
where p is a penalizing term that grows with more complex causal models with
more parameters). This is known as Bayesian Information Criterion [199]. For
each such operation, the hill-climbing algorithm computes the change in the score if
that operation had been performed. It then picks the operation that results in the
best score and stops when no further improvements are possible. Moreover, several
distinct graphs G can have similarly high posterior probabilities which is common
when the data size is small compared to the domain size [61]. This is in part due to
the causal ambiguity of learning from data.

Instead of learning a single graph, Etio uses a bootstrapping technique [60].
The bootstrapping process resamples the traces T with replacement. It then returns
a set S of multiple bootstrap datasets S. For each bootstrap dataset, Etio uses
the graph learning algorithm to learn the structure of the graph GÕ. For every arc
present in the set of graphs AG, Etio estimates the strength or confidence that each
possible edge ei is present in the true DAG as p̂ei = 1

|S|
q

bœS {eiœEb}, where {eiœEb}

returns 1 if ei œ Eb, else returns 0. The purpose is to prune out the edges that are
below a certain confidence threshold t. There are existing techniques to estimate
the confidence threshold such as the L1 estimator [201] which Etio uses to fix the
confidence threshold. Using the most significant arcs, Etio constructs a graph that
contains all of the significant arcs (the averaged graph G). Our approach does not
guarantee that the obtained graph represents the true causal graph–inferring one
in our setup is infeasible. Thus, we take the practical approach and aim to infer a
graph with a good predictive power.
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4.3.2 Answering Queries

Predictive queries ask what is the output of the model given that certain input
factors have certain values. Given a set of previously unseen set of assignments
for the variables {Xi = ai}, Xi œ V , the outcome corresponding to the MI attack
node Y œ V is computed by the expression E[Y |paY ]. This expression is recursively
expanded until it is conditioned on the Xi values and can be evaluated with the
given concrete values. To learn the coe�cients associated with each node, we use a
standard maximum likelihood estimation approach to fit each node’s observed data
conditioned on its parents.

In principle, we can answer interventional queries, which measure how much
changes in an factor’s value a�ects the outcome, by conducting experiments where
we manipulate the training process such that input variables take desired values.
Such manipulations are called interventions. Formally, given a set of variables
V = {X1, . . . , Xn}, an intervention on a set W µ V of the variables is an experiment
where the experimenter controls each variable w œ W to take a value of another
independent (from other variables) variable u, i.e., w = u. This operation, and how
it a�ects the joint distribution, has been formalized as the do operator by Pearl [170].
For example, in Fig. 4.5a, we can intervene on the model complexity independently
of the other variables. However, in some cases modifying variables directly is not
feasible in practice (e.g., the train-to-test accuracy gap) as it requires knowledge
of the data distribution that the model is trying to learn in the first place. So, we
cannot really conduct such interventional experiments.

The key insight to answer intervention queries is that we can reason about such
queries with only the causal graph and the data– Etio applies the principles of
do-calculus to analytically compute the causal relationship expressed by the do-query.
The do-calculus rules have been proven to be sound and complete [208, 95]. They
are complete in that if repeated application of the rules of do-calculus cannot obtain
a conditional probability, then the algorithm outputs that the causal relationship
cannot be identified without additional assumptions. If we do obtain an ordinary
conditional probability, then we say that the causal estimate can be identified, i.e.,
the graph has enough assumptions or no ambiguity. Then, the obtained expression
(called the estimand) represents the correct translation of the causal query to a
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Figure 4.6. Importance of selecting the right control variables to avoid selection
bias. T and Z are both in adjustment set for X in 4.6a. In Fig. 4.6b, to estimate
the e�ect of separation score (W ), we can control for T , Z or X but controlling for
the train-to-test accuracy gap (X) introduces selection bias.

conditional probability (soundness). Such guarantees are powerful tools: Given
the formal query and the causal model, this approach avoids paradoxes that might
arise from over-controlling or not controlling (Section 4.2). We will explain a small
fragment of this calculus through an example.
Example: Backdoor Paths. Let us consider the examples in Fig. 4.6. In Fig. 4.6a,
the query (Q1) is to estimate the e�ect of train-to-test accuracy gap on the MI
attack accuracy, given only observations of the variables of interest. In Fig. 4.6b, we
introduce a new variable, the separation score between members and non-members
(H8), which is caused by the train-to-test accuracy gap. The query (Q2) asks to
estimate the e�ect of the separation distance on the attack accuracy. The causal
model in Fig. 4.6a was previously discussed in Section 4.2—the expected attack
accuracy is computed over both of the confounding factors, the model complexity, and
the training set size. From the graph structure, observe that the confounding happens
because of the two undirected paths from the node corresponding to the train-to-test
accuracy gap to the MI attack node (fi1 : AccDiff Ω NumParams æ MIAcc and
fi2 : AccDiff Ω TrainSize æ MIAcc). Such paths are called backdoor paths. A
backdoor path is a non-causal path from X to Y . This is a path that would exist in
the graph even if we were to remove the outgoing edges from the node of interest.
When there are backdoor paths, there are sources of association (which we can
observe statistically) in addition to the causal ones. In Fig. 4.6b, it seems the query
(Q2) requires a similar control as in Fig. 4.6a. However, which of the nodes on
the paths fi1 and fi2 paths, should we control for? The node corresponding to the
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train-to-test accuracy gap is one such candidate. Notice though that unlike other
nodes on the backdoor paths, it has two incoming edges, meaning that controlling
for it biases the observed relationship between its parents. Such nodes are called
“colliders” and can introduce bias (see Section 4.2). One has to carefully determine
exactly when to control for colliders.

There is a set of principled rules to “block” backdoor paths. We summarize these
rules informally here but interested readers can refer to [170, 171] for more thorough
background. A path is blocked if 1) we control for a non-collider on that path or 2)
we do not control for a collider on that path. For any given path, only one of these
conditions is required to block the path. So, if there exists a path between X and Y

that contains an uncontrolled collider, that path is blocked without controlling on
any other variables. Guided by these rules (called the backdoor criteria), in (Q2) we
should control for X when estimating the e�ect of W on the MI attack.

Estimating the Causal E�ect. Recall that we are interested in the average
treatment e�ect, which is the average di�erence in the outcomes given that the
treatment takes two values: the treatment value and the control value. A straight-
forward way to compute the average treatment e�ect (ATE) is by using the di�erence
in the mean of the outcome conditioned on the treatment variable (E[Y |X = a] ≠
E[Y |X = b]). However, this method of computation su�ers from statistical pitfalls,
such as sampling bias and confounding bias which we highlighted in Section 4.2.
Instead, what we want to quantify is the average treatment e�ect as a do-query as
defined below.

Definition 5 (Average Treatment E�ect). The average treatment e�ect of a variable
of interest X (called the treatment) on the target variable Y (called the outcome) is:

ATE(X, Y, a, b) = E[Y |do(X = a)] ≠ E[Y |do(X = b)],

where a, b are constants for which X is defined. We omit the constants when the
query is over the domain of X.

Etio will translate the do-query E[Y |do(X = a)] into an ordinary (conditional)
expectation expression from given the causal model (e.g., using the backdoor criteria).
It then learns an estimator that allows computing the ordinary expectation using
the available data. We choose a linear regression model to estimate the quantities of
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interest. Its estimates are interpretable: a positive ATE(X, Y ) value means that
an increase of the feature X causes an increase in the MI attack accuracy Y , and
vice-versa for negative ATE(X, Y ).

In summary, we have described a methodology encapsulated in Etio to analyze
causally potential factors. While our methodology uses techniques standard in
causality, we have carefully laid out the technical choices that allow us to achieve
our goals: 1) used linear equations to capture causal e�ects; 2) combined Greedy
structured algorithm with bootstrapping to scale the creation of models; and 3)
defined the average treatment e�ect as our measured outcome.

Remark. Our approach assumes acyclicity and causal su�ciency, i.e., there are no
hidden variables that are common causes of two or more observed variables. There
are causal discovery algorithms that allow one to make inferences about the causal
graph without the causal su�ciency assumption, but the resulting causal graphs may
have undirected edges hence limiting what queries could be answered [198, 220]. We
utilize domain knowledge to make up for these ambiguities and limitations of causal
discovery from observations. We consider what variables might be confounders for
observed variables and discuss these in the next section.

4.4 Connecting MI and Generalization
Our main technical novelty is how use Etio to study the connection between

MI attacks and classical generalization in ML. We now show how to create causal
models for 6 di�erent attacks and formalize hypotheses (H1)-(H9) made in prior
works.

4.4.1 Variables of Interest

The generalization notions and other potential causes identified in H1-H9 (Sec-
tion 4.2) are properties of the training algorithm. The training algorithm A takes
as input a training dataset D consisting of N samples D = {(x1, y1), . . . , (xN , yN)},
D ≥ P N , each independently identically drawn from P where P is a distribution
over X ◊ Y , X is the input space and Y is the output space. The training algorithm
also takes as input a set of training hyperparameters fi and the loss function l. The
training algorithm produces a model f : X æ Y . All of the prior works have studied
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MI attacks on neural networks trained with stochastic gradient descent (SGD), so
we focus on SGD primarily in this work.

The generalization error is a measure of how well a learned model f can correctly
predict previously unseen data samples. For a given a model f and a sample
z = {x, y} ≥ P , the generalization error is defined as Ez≥P [l(f, z)]. The learned
model f depends on the drawn training dataset D. As a result, the generalization
error of A is TestLoss = Ez≥P,D[l(fD, z)]. We denote the generalization error as
TestLoss since if we were to sample z ≥ P it would be highly unlikely for that
sample to belong to the training set D.

Bias-variance decomposition. A fundamental principle to understand gener-
alization in machine learning models is the bias-variance decomposition [114, 69,
251], which establishes that the generalization error directly factors into Bias
and Variance as shown in Table 4.1. The bias represents how well the hypothesis
class H to which the model f belongs to fits the true data Y, while the variance
represents how much the model varies across di�erent samples of data. For example,
with su�cient training time, a model that is overly-parametrized can have a low
bias (since it fits the data very well) and high variance (because it can fit all the
“accidental regularities” or idiosyncrasies of the sampled data). Our causal models
use bias and variance as variables and therefore these serve as a new lens to explain
how they a�ect MI attacks in addition to generalization in the same representation.
To compute the bias and variance, we follow the methodology outlined in prior
work [251]. We first compute an (unbiased) estimator for the variance term in
the bias-variance decomposition. Next, from the generalization error (or loss), we
subtract the variance to derive the bias. The full mathematical formulation of bias
and variance is in Section 4.5.

MI Attack Accuracy. (H1)-(H9) are claims relating the e�ect of potential causes
on the MI attack susceptibility. To measure susceptibility, we consider the random
variable corresponding to the MI attack accuracy, for each prior work attack. In
total, we study three MI attacks: the multiple shadow model (ShadowAcc) [207],
the single shadow model attack (MLLeakTop3Acc) [196], and threshold-based attack
(ThreshAcc) [254]. We additionally perform similar attacks to [196] where we use
one shadow model (MLLeakAcc). We take the whole prediction vector for CIFAR10,
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and the top-10 predictions for CIFAR100 as input features to train the attack model.
Other considered variants of this attack include the correct label in the input features
of the attack model. We denote these as MLLeakTop3Acc-l and MLLeakAcc-l. For
each learned network fD, we evaluate the MI attack on members œ D and a dataset
of previously unseen samples, non-members ”œ D. The final result is the expected
accuracy on members and non-members averaged over multiple samples fD.
Other Model Properties. Some of the hypotheses in prior work involve training
hyperparameters and model properties such as training set size (H4) and model
complexity (H3). For H3, we use the number of parameters in the model to measure
model complexity. Specifically, we count the number of parameters (e.g., weights
and biases) that are updated during the training phase.

The potential factors that appear in H1-H9 are summarized in Table 4.1. Our
aim is to infer a causal model over these variables. Next, we require traces, so we
run the training algorithm to collect observations of these variables. We leave the
detailed process to generate traces of these variables for Section 4.6.1. Besides traces,
we formulate domain knowledge constraints as input to Etio.

4.4.2 Domain Knowledge as Constraints

As our domain-specific constraints, we leverage simple insights that force the
hill-climbing algorithm to infer models that have causal meaning. For instance, one
constraint encodes that the root nodes of the model should correspond to variables
that are part of the training algorithm’s hyper-parameters such as TrainSize and
NumParams. This constraint belongs to the Forbid list. In addition to these, we
have identified the following constraints:

• There are no outgoing edges from the attack node. Without this constraint,
the structure learning algorithm could learn that the attack causes one of the
features–the direction of the edge cannot be inferred by observations only.

• There is no edge from a node that is neither a root node nor TrainVar nor
TrainLoss to TrainBias. We add this constraint because the TrainBias is
computed from the TrainLoss and TrainVar. Any influence on TrainBias

should be mediated by its two parents.
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Table 4.1. Summary of variables we consider when building our causal graphs to
answer queries Q1-Q9. We build the causal graphs for each MI attack A [207, 196,
254]. For a given sample z, the MI attack outputs whether it is a member (m) or
not (¬m). We illustrate the variance term only for MSE where f̄(x) = ED[f(x, D)].

Variables Formula
TrainAcc Ez≥D,D[fD(x) = y]
TestAcc Ez≥P,D[fD(x) = y]
AccDiff TrainAcc- TestAcc
TrainLoss Ez≥D,D[l(fD, z)]
TrainVar Ex≥D,D[

...fD(x) ≠ f̄(x)
...

2
]

TrainBias TrainLoss-TrainVar
TestLoss Ez≥P,D[l(fD, z)]
TestVar Ex≥P,D[

...fD(x) ≠ f̄(x)
...

2
]

TestBias TestLoss- TestVar
LossDiff TestLoss- TrainLoss
NumParams |fD|
TrainSize œ {1k, 5k}
ShadowAcc Ez,D[A(z) = m|z ≥ D · A(z) = ¬m|z ≥ P ]
MLLeakAcc,

MLLeakTop3Acc
Ez,D[A(z) = m|z ≥ D · A(z) = ¬m|z ≥ P ]

ThreshAcc Ez,D[A(z) = m|z ≥ D · A(z) = ¬m|z ≥ P ]
CentroidDist ED[ÎC(D) ≠ C(P )Î]

• There is no edge from a node that is not a root node to TrainVar. The variance
on training samples is computed directly on the prediction vectors.

• There is no edge from a node that is neither a root node, TestVar nor TestLoss
to TestBias. We add this constraint because the TestBias is computed from
the TestLoss and TestVar. Any influence on TestBias should be mediated
by its two parents.

• There is no edge from a node that is not a root node to TestVar. The variance
on testing samples is computed directly on the prediction vectors.

• Constraints in Enforce. There is an edge from TrainAcc to AccDiff and
TestAcc to AccDiff. There is an edge from TrainLoss to LossDiff and
TestLoss to LossDiff.
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• There are no edges from the CentroidDist to TestLoss and, respectively,
TestAcc. We add this edge because the direction of influence should be the
other way around, if such edges are inferred.

• There is no edge from the TestVar to TestLoss. Similarly, these two quantities
are computed from the prediction vector for TestVar and, prediction vectors
and labels for TestLoss, so there is no edge between them.

In total, we have 19 Forbid and Enforce constraints. Such constraints are
easy to derive, as they either stem from the definitions in Table 4.1 or from the
data-generating process.

4.4.3 From Hypotheses to Queries

We can obtain a causal model from the traces and the domain knowledge
constraints using Etio. The last step is to formulate queries on the causal models.
Hypotheses H1-H9 can all be formally described as interventional queries Q1-Q9
respectively, as follows.
(H1,H6,H9) æ (Q1,Q6,Q9): Generalization Metrics. Existing work uses two
di�erent metrics to quantify generalization precisely: the train-to-test accuracy gap
(AccDiff in Table 4.1) and the average generalization error (LossDiff in Table 4.1).
We use the metric that was cited by the respective original works to determine the
query for each of the studied attacks.
(H2) æ (Q2): Formalizing “Closeness”. We first quantify “closeness” more
formally between a shadow model and a target model when these have the same
architecture, as is the case for the MI attack by Shokri et al. [207]. Our observation is
that the variance term in the generalization error is a metric of “closeness”. Intuitively,
since the shadow model is a realization of a di�erent subset Di of D, the variance
is a measure of the expectation of whether training on di�erent sampled training
sets (of the same size) from the data distribution outputs neural networks with
very “di�erent” prediction vectors. Since this particular MI attack trains shadow
models with the same architecture as the target model, the larger the variance, the
more likely we are to obtain a shadow model that is on average more “distant” from
the target model. Hence, H2 can be reformulated to check if the variance of the
learning algorithm is a cause of the attack. We consider the variance of A on the

105



CHAPTER 4. REASONING ABOUT TRAINING WITH CAUSAL QUERIES

members (training samples, denoted as TrainVar) and the variance of A on non-
members (testing samples, denoted as TestVar), separately. The causal query asks if
TrainVar, and, respectively, TestVar, a�ect the MI attack accuracy ShadowAcc, i.e.,
if a change in TrainVar (or TestVar) causes the ShadowAcc to change. Formally,
the hypothesis translates to two do-queries (Q2): ATE(ShadowAcc, TrainVar) and
ATE(ShadowAcc, TestVar).
(H5) æ (Q5): Single Shadow Model. We want to check if the closeness (as
measured by TrainVar and TestVar) is a cause for the single shadow model attack.
If it does not contribute to the attack, the hypothesis is correct.
(H7) æ (Q7): Di�erent Causes. Prior work showed that in terms of MI attack
performance there is no significant di�erence between the performance of attack
models trained on the top three predictions of the prediction output vs. the whole
prediction vector [196] (page 5, Fig.4). We denote the attack using the whole
prediction vector as MLLeakAcc. Here, we are interested if the attack model’s
performance changes with the target model for the variants of the attack. Thus, we
formalize it as checking whether TestVar and TrainVar are causes for MLLeakAcc

(-l) and MLLeakTop3Acc (-l).
(H8) æ (Q8): Formalizing Decision Boundaries. A few works give credit to
the clear decision boundary between members and non-members for the success of
shadow model-based attacks [196]. To quantify the “distinguishability” between
members and non-members, we first compute the centroid of members (C(D))
and non-members (C(P )) as the following: C(D) = Ez≥D[fD(z)] and C(P ) =
Ez≥P [fD(z)]. Then, we use the Euclidean distance between the above two centroids
to measure the distinguishability for the given training set. For each training setup
(A, fi and architecture), we compute the averaged centroid distance over multiple
di�erent training sets. Note that the user can specify any such existing statistic as
a distinguishability measure between the training and testing set as input to Etio.

Implementation. Our implementation consists of two parts: generating the traces,
i.e., training models and running attacks, and implementing Etio. For the traces,
we use the standard machine learning library PyTorch 1.7.1+cu110 [169] to train
the models and run the attacks. For Etio, we use two libraries for analyzing the
MI attacks. First, we use the R library called bnlearn 4.7 [200] to infer the causal
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models. This library o�ers several o�-the-shelf algorithms for structured learning
and Bayesian inference. Second, we use dowhy 0.7.0 [204, 203] to implement the
average treatment e�ect queries.

4.5 Bias-Variance Decomposition
Generalization is defined as the expected error on all possible samples and all

possible datasets, i.e., Ex,yED[l(fD(x), y)].

MSE loss. We first consider that the neural network was trained using squared
error loss. The expected error or generalization error is [251, 69]:

Ex,yED[(y ≠ fD(x))2]

= Ex,yED[y2 ≠ 2yfD(x) + fD(x)2]

= Ex,y[y2 ≠ 2yED[f(x, D)] + ED[fD(x)2]

= Ex,y[y2 ≠ 2yf̄(x) + f̄(x)2] + V ar[fD(x)]

= Ex,y[(y ≠ f̄(x))2] + Ex,y[V ar[fD(x)]]

= Ex,y[(y ≠ f̄(x))2] + Ex,yED[(fD(x) ≠ f̄(x))2],

where f̄(x) = ED[fD(x)] are the averaged predictions over di�erent training sets.
The first term Ex,y[(y≠f̄(x))2] is the bias and the second term Ex,yED[(fD(x) ≠ f̄(x))2]
represents the variance.

Cross-entropy Loss. We follow prior work’s generalized decomposition for the
cross-entropy loss [251]. Let fi0(x) œ Rc be the one-hot encoding of the ground
truth label. The cross-entropy is H(fi, fi0) = q

c

l=1 fi0[l] log fi[l], wherefi[l] is the l-th
element of fi.

E[H(fi0, fi]D = DKL(fi0||fî) + E[DKL(fî||fi)]D,

where fî is the average of log-probability after normalization: fî[l] ¥ exp(E[log fi[l]])
for l = 1, . . . , c.
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Estimating the Bias and Variance. For MSE loss, we use the following unbiased
estimator for variance:

‰V ar(x, D) = 1
n ≠ 1

nÿ

j=1

....fDi(x) ≠
nÿ

j=1
fDj (x)

....

The final value of bias and variance, TrainBias and TrainVar, are obtained by
taking the average over the members x œ D. Similarly, the TestBias and TestVar

are averaged over the non-members x ≥ P . We repeat this computation with
N = 3 di�erent random disjoint splits and take the average of the estimate to
decrease the variance of the estimator. In total, for each model architecture Mw

(e.g., M =Resnet34 with width w = 2), we train n · N fD over a given dataset D.

4.6 Evaluation
We evaluate Etio on two grounds:

• (EQ1) Goodness of fit: Are the causal models predicting the MI attack more
accurately on unseen samples than correlational analyses?

• (EQ2) Utility: Is Etio useful in refuting or confirming prior hypotheses? Does
it provide useful insights to how MI attacks connect to generalization and how
defenses work?

We study 6 MI attacks: multiple shadow model [207], 4 variations of the single
shadow model [196] and threshold-based [254]. We present the results with respect
to the 9 queries for two loss functions, so in total we have 18 prior work hypotheses.
In addition, we study 2 practical defenses proposed in prior work. The first is
L2-regularization (also known as weight decay) that was proposed as a mitigation
strategy for the multiple shadow model attack [207]. It has been used as a baseline
for other defenses [158]. The second defense we consider is MemGuard [106], a
defense that changes the prediction vectors without changing the accuracy of the
model. We choose this defense as it is e�ective against the attacks we also considered
in this work [207, 196]. The causal models for all of the evaluated attacks and
defenses are available in Apppendix A.2.

We present details later and summarize our key findings below:
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• There is no one-size-fits-all explanation for the 6 MI attacks—the factors
contribute di�erently in di�erent attacks.

• Our analysis refutes 7/18 prior hypothesis we formalized, and confirms 9/18
as valid.

• Our causal models have predictive accuracy of 0.90 for unobserved experiments,
which are not used for causal model creation. This is comparable or better by
3 ≠ 22% than simple correlational analysis between the single cause and the
MI attack, in all cases we study.

• Bias and Variance observed during training can quantitatively predict both
generalization measures (e.g., TestLoss, TestBias, and TestAcc) and MI
attack performance, providing new insights. These factors play a dispropor-
tionately larger role in explaining MI attack performance, compared to other
factors such as model complexity, dataset size, or even generalization measures
themselves.

• Defenses reduce certain causes of the MI attack, but not all and not completely.
They reduce the e�ect of variance, but fail to eliminate factors such as the
train-to-test accuracy gap or the distance between members and non-members.

4.6.1 Experimental Setup

Datasets. We select 3 common image datasets: MNIST, CIFAR10, and CIFAR100.
MNIST has 60k training and 10k testing samples of 28◊28 grayscale images of hand-
written digits. CIFAR10 and CIFAR100 have 50k training and 10k testing samples
of 32 ◊ 32 color images uniformly distributed in 10 and 100 classes, respectively.
Models. For each dataset, we train multiple models with di�erent architectures
and hyperparameters. For MNIST, we use multilayer perceptron (MLP) with one
hidden layer to build the target model. We change the number of units used in the
hidden layer ({16, 32, 64, 128, 256}) to change the width or the model complexity.
For CIFAR10 and CIFAR100, we use various convolutional neural network (CNN)
architectures: AlexNet, DenseNet161, and ResNet34. For changing the width, we
vary the number of filters of these models. The widths considered for AlexNet were
{16, 32, 64, 128, 256}, and for DenseNet161 and ResNet34 they were {2, 4, 8, 16, 32}.
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Training Algorithms. We trained all models using stochastic gradient descent
(SGD) with momentum 0.9, two weight-decay rates {5 ◊ 10≠4, 5 ◊ 10≠3} and two
kinds of loss functions: mean squared error (MSE) and cross entropy (CE). The
higher weight decay models are used to evaluate L2-regularization. We summarize
the training configurations we considered in Appendix, Table 4. For the models
trained with the scheduler, we used the step learning rate scheduler with the learning
rate decay factor of 10 and for 200 epochs.
Variables of Interest. To estimate the variables of interest for each training
setup, we follow the procedure proposed by Yang et al. [251]. Specifically, we
randomly generate disjoint splits of training samples D = D1 fi . . . fi Dn, where size
of each |Di| = s. We train n models for each architecture width fDi over di�erent
training sets Di. For CIFAR10 and CIFAR100, we use n œ {10, 50} and, respectively,
s œ {5000, 1000}, while we use n œ {12, 60} for MNIST because MNIST has a larger
training set.
Attacks. The shadow model training size is equal to the training size of the target
model, i.e., either 1000 or 5000. This set forms the member set for the attack model.
Additionally, an equal-sized set is used to form the non-member training set for the
attack model. The evaluation set for the attack model consists of the 1000 or 5000
training samples of the target model and an equal-sized set not previously seen by
either target and shadow models. For each architecture and width, we perform the
attack 30 times for di�erent samples of the datasets from the original training set
D. The same splits are used for all datasets and single shadow model attacks.

4.6.2 Predictive Power of Causal Models

To evaluate the predictive accuracy of the graphs on unseen observations, we
use two metrics regularly used in evaluating Bayesian nets: 1) mean predictive
correlation and 2) mean squared error (MSE). We compute these two metrics using
standard cross-validation over multiple runs (20). For each run, we use a 80/20 split
of the observations for the train-test sets. For each run of the cross-validation, the
predictive correlation measures the (linear) correlation between the observed and
the predicted values for the MI attack node.
Baseline. We use a simple baseline that can predict the accuracy of the attack: we
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Table 4.2. The graphs that Etio generates have consistently equal or better
predictive power than simple correlations. Best Corr. stands for the Pearson
correlation coe�cient, and Etio Pred. stands for predictive correlation.

Normal / High Weight Decay

Loss Attack Best Corr.
Variable

Best Corr.
Value

Etio
Pred.

Etio
MSE

ce MLLeakAcc AccDiff
0.8543 0.9358 2.31E-03
0.8621 0.9083 2.54E-03

mse MLLeakAcc AccDiff
0.8493 0.9170 1.80E-03
0.8675 0.9033 9.55E-05

ce MLLeakAcc-l AccDiff
0.8209 0.9685 1.17E-03
0.8414 0.9486 2.05E-03

mse MLLeakAcc-l AccDiff
0.9397 0.9740 7.30E-04
0.9371 0.9694 6.72E-05

ce MLLeakTop3Acc
CentroidDist 0.9257 0.9663 1.16E-03

AccDiff 0.8595 0.9645 1.16E-03

mse MLLeakTop3Acc
AccDiff 0.8743 0.9466 1.26E-03
AccDiff 0.9041 0.9216 1.14E-04

ce MLLeakTop3Acc-l
CentroidDist 0.9166 0.9641 2.21E-03

AccDiff 0.8409 0.9579 1.58E-03

mse MLLeakTop3Acc-l
AccDiff 0.8447 0.9244 1.73E-03
AccDiff 0.9000 0.9361 9.51E-05

ce ShadowAcc AccDiff
0.9752 0.9817 6.45E-04
0.9694 0.9762 9.18E-04

mse ShadowAcc AccDiff
0.9526 0.9733 5.36E-04
0.9626 0.9689 1.61E-04

ce ThreshAcc LossDiff
0.7517 0.9739 9.00E-04
0.7730 0.9425 1.77E-03

mse ThreshAcc LossDiff
0.9823 0.9906 2.43E-04
0.9775 0.9880 2.41E-05

compute the Pearson correlation between the observed values of the MI attack and
the observed values of the other variables of interest we identified (Section 4.4.1).
A high Pearson correlation (close to 1) means that there is a linear relationship
perfectly describing the MI attack and the variable. If so, to predict the MI attack
accuracy, measuring this one variable and learning the coe�cients of the relationship
from data is enough.

In total, we evaluate 24 setups for 6 attacks for models trained with two loss
functions, with and without L2-regularization. For all of the attacks on both
undefended and defended models, the predictive correlation is above 0.90 (Table 4.2).
Compared to the correlation baseline, the graphs Etio produces are consistently
equal or better for all 24 setups. For 17/24 of the setups, the predictive correlation
improves 3 ≠ 22%. For the remaining 7/24, the causal models are on par with
baselines or slightly better, within 3%. The mean MSE for predictions is low
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Table 4.3. We translate the prior work hypothesis H1-H9 to ATE(Feature, Attack)
queries. For (Q2,Q5,Q7) which are made of several ATE queries, we X only if all
ATE queries support the prior hypothesis. ú means the p-value > 0.05 and we mark
such queries with ¶.

CE MSE

Attack Feature ATE Query
Result ATE Query

Result
ShadowAcc AccDiff 0.30 Q1: X 0 Q1: ◊
ShadowAcc TrainVar 0.02 Q2: X 0.03 Q2: ¶
ShadowAcc TestVar 0.94 0.20 (ú)
ShadowAcc NumParams 0.15 Q3: X -0.005 Q3: X
ShadowAcc TrainSize -0.11 Q4: X -0.09 Q4: X
MLLeakAcc TrainVar -0.34

Q7: ◊

-0.05 (ú)

Q7: ◊

MLLeakAcc TestVar 0.81 0
MLLeakAcc-l TrainVar -0.24 0.06
MLLeakAcc-l TestVar 0.84 0

MLLeakTop3Acc-l TrainVar -0.40 -0.06 (ú)
MLLeakTop3Acc-l TestVar 0.75 0
MLLeakTop3Acc AccDiff 0.18 Q6: X 0 Q6: ◊
MLLeakTop3Acc TrainVar -0.34 Q5: ◊ -0.15 (ú) Q5: ◊
MLLeakTop3Acc TestVar 0.78 0.24
MLLeakTop3Acc CentroidDist 0.27 Q8: X 0 Q8: ◊

ThreshAcc LossDiff 1.47 (ú) Q9: ¶ -0.67 Q9: X

(0.001) for all of our evaluated attacks and models. We find that in the case of
ShadowAcc, Etio does not significantly improve the accuracy, as the correlation
values are already higher than 0.95. This confirms what prior works suggest [254,
132, 215]: using an attack based on the prediction correctness yields, on average,
similar performance to the ShadowAcc. We observe that the AccDiff is almost in a
perfectly linear relationship with the accuracy of the multiple shadow model attack.
Similarly, the metric we formalize, the centroid distance between clusters of members
and non-members (CentroidDist) is almost perfectly linear with the single shadow
model attack.

4.6.3 Testing of Prior Hypotheses

We confirm using our analysis that 9/18 of the prior work hypotheses are true
(X in Table 4.3). We also find 7/18 prior hypotheses do not identify a cause for the
studied MI attack (◊ in Table 4.3). As some of the hypotheses involve more than
one potential cause or they are comparing causes between attacks, we have a total
of 32 ATE values, 16 for each loss function.

We refute prior hypotheses in broadly two instances. First, when there is no
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universal explanation: prior hypotheses often overlook the di�erences between NNs
trained with di�erent loss functions and the specifics of the attack. Second, because
prior hypotheses do not consider the connections between the parameters of the
training process and variables that naturally appear as part of SGD such as loss
di�erence and variance, etc. In summary:

• A single causal factor does not explain all attacks. In fact, causes vary per
attack and di�er by the loss function used.

• (Q1, Q6) The train-to-test accuracy gap does cause the MI attack accuracy,
though for MSE-trained models, the loss di�erence is a more suitable metric.

• (Q2) The “closeness” of the shadow model influences the MI attack accuracy,
more so for CE-trained models than for MSE-trained models.

• (Q7) There are di�erences between the variants of the single shadow model
attack, and the single shadow model with top-3 is more robust to changes in
the shadow model.

• (Q3, Q4) Training size is a factor that a�ects the MI attack accuracy for all of
the evaluated attacks. Model complexity is a cause for all evaluated attacks
but to a very small degree in some cases.

• (Q5) We find that the variance of the outputs of the models is also a cause for
the single shadow model attack, to various degrees depending on the type of
attack. Prior work overlooks the di�erences in the prediction vectors between
the target and shadow model.

• (Q8) Our formalized distance between the clusters of members and non-
members is one of the largest causes for the single shadow model with top-3.

• (Q9) The threshold-based attack is influenced with varying degrees by other
factors that are related to the loss.

CE vs. MSE. We find that the train-to-test accuracy gap has the largest influence
for CE-trained models, whereas for MSE-trained models it is the loss di�erences
between members and non-members. Similarly, factors such as the variance and
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the centroid distance that a�ect MI attack accuracy on CE-trained models are not
factors on MSE-trained models.
Detailed Analysis. The di�erences in the prediction vectors of the non-members
(as measured by TestVar) has a large causal e�ect on the average MI attack accuracy.
This validates the prior work hypothesis (Q2) that the di�erences in the shadow
and target model a�ect the MI attack. For instance, for CE, the estimated ATE of
TrainVar on ShadowAcc is 0.02, whereas that of TestVar is 0.94 (Table 4.3). We
find that for the multiple shadow model attack on MSE-trained models, the number
of parameters (Q3) does not show a significant influence on the ShadowAcc, but for
all other attacks and loss functions, the more parameters, the higher the attack
accuracy. We thus validate (Q3) as for all evaluated attacks there is a non-zero ATE
value. We find that the variance of the outputs of the models is also a cause for
the single shadow model attack, to various degrees depending on the type of attack.
Prior work overlooks the di�erences in the prediction vectors between the target
and shadow model. Thus, our analysis shows that (Q5) is refuted. The variance
of the training algorithm influences MI attacks that take the whole prediction
vector more–models tend to agree more on top-3 predictions rather than the whole
prediction vector. Thus, the evaluated shadow model MI attacks that take the top-3
predictions are not as sensitive to di�erences between the shadow and target models’
architecture and dataset. This shows that there are di�erences between the variants
of the single shadow model attack, refuting (Q7). More details for each attack are
available in Appendix A.1.

We find that a small fraction of queries have low statistical significance (p-value
> 0.05)—4/16 MSE-trained models and 1/16 for CE-trained models. We do not
draw any conclusions for these.

4.6.4 MI attacks and Generalization

We find that Bias and Variance values have a high level of influence on both
generalization measures as well as the MI attack accuracy. As expected from the bias-
variance decomposition theorem, Bias and Variance values are strongly predictive
of TestAcc, AccDiff, and CentroidDist values—all of these are generalization
measures. Bias and Variance also have a disproportionately high influence on MI
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attack accuracy. Appendix C gives details; here we summarize their e�ect on MI
attack accuracy which varies by attack.
Variance & MI. The higher the variance on non-members, the higher the MI attack
accuracy. The reverse is true for members: the higher the variance on members, the
lower the MI attack accuracy. There is less variance on the training samples (i.e., the
model learns similar prediction vectors across multiple training datasets) and there
is higher variance on the test samples. Our analysis show that the larger the gap
between these two, the better the MI attack accuracy. This suggests that defenses
which decrease the gap between the train and test variance (like MemGuard [106])
will be e�ective.
Bias & MI. The Bias on non-members is almost always a factor in all types of MI
attacks we study. It a�ects MI attack accuracy through the test accuracy, which in
turn a�ects the train-to-test accuracy gap or the distance between members and
non-members. Recall that Bias is “how far” the test set predictions are from the
ground truth on average. High Bias on non-members explains why MI attacks, even
when not explicitly using the label information, will have a better accuracy. On
members, however, the ATE value of the Bias in most cases is close to 0, i.e., it has
almost no e�ect on MI attack accuracy—this corresponds to networks closely fitting
the training set. Compared to Variance, the Bias has a larger e�ect, and even more
so when the input features to the attack model are the top-3 predicted labels and
not the whole prediction vector.

Why do larger models leak information even if their test loss decreases? Complex
interplay of loss, variance, bias and the model size have been observed previously
under di�erent regimes (Fig.1 in [251]). When the Bias dominates, it and the testing
loss decrease with increase in model size of the network, but the Variance does not
linearly go down and exhibits a peak (bell-shaped curve). Our analysis shows that
Variance by itself contributes to the MI attack—despite training larger models with
lower loss and Bias, the Variance can improve MI attack accuracy (see Variance
ATE, Appendix A.1).

How does CE loss di�er from MSE? Unlike MSE, for CE we observe that the
Variance dominates the loss term. The loss and the Variance exhibit a high peak as
the model size increases, while the Bias keeps decreasing (unimodal curve). This
explains why for CE models the Variance has a much larger impact on MI attack
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accuracy. After Variance peaks, as the model size increases, the loss drops to where
both Bias and Variance are low. This explains why increasing model size can reduce
MI attack accuracy beyond a point.

4.6.5 Utility in Explaining Defenses

We analyze the causal models for all 6 attacks for L2-regularization. For Mem-
Guard, we evaluate the single shadow model (top-3) attack on the defended models
as done in the original work. Thus we have 2 + 12 = 14 causal graphs in total.
For each case, we analyze how much the ATE for a cause di�ers from ATE in the
corresponding causal graphs for undefended ML model.
L2-regularization Setup. The first type of defense requires a simple change to
one of the parameters of the training algorithm, i.e., the weight decay. The rest of
the training procedure is the same, resulting in the same number of models with
and without regularization. We run all of the attacks on the regularized models
to evaluate how the defense changes the e�ect of certain factors on the MI attack
accuracy.
MemGuard Setup. The MemGuard defense requires in total 4 models:

• Target Model: the model to be defended.

• Defense Model: the attack model trained by defenders. The model is trained
with the training set which considers the training set of the target model as
members and the testing set of the target model as non-members.

• Shadow Model: the model trained by attackers which has the same architecture
as Target Model but is trained with a di�erent dataset

• Attack Model: the attack model trained by attackers. The model is trained
with the training set which considers the training set of the shadow model as
members and the testing set of the shadow model as non-members. Note that
the non-members used to train the attack model need to be di�erent from the
non-members used to train the defense model.

For our evaluation, we defend 1 target model per repeat (on average) using
MemGuard, using 2 other models in the same repeat, which gives us 2 defended
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models per target model. In total, we generate 6 new defended models that have
almost the same accuracy as the corresponding target model. We evaluate these 6
models on the testing samples, and compute bias-variance of the outputs of these 6
models. The resulting graphs are also computed with these updated bias-variance
quantities.

Defense through L2-regularization. We find that L2-regularization alleviates
some causes but not all, and not in equal measure for all attacks. For instance, it
majorly reduces the ATE of the test variance on all of the evaluated MI attacks–even
as drastically as from 0.84 to 0.16 for MLLeakAcc-l. The e�ect of the train-to-
test accuracy gap on the ShadowAcc remains the same, but it increases for the
single shadow model attacks. The ATE of the CentroidDist does not change after
regularization is applied, showing that there are still exploitable signals left. As a
defense reduces the influence that the variance has on the MI attack for the multiple
shadow model attack. For all attacks, however, variance remains a cause for the MI
attack. For MLLeakAcc-l, the TrainVar on regularized models has a negative e�ect
on the attack performance, i.e., the higher the variance, the lower the attack, which
has decreased from ≠0.23 to ≠0.38 (more negative e�ect). In contrast, the TestVar

is positive and reduces from 0.83 to 0.15. We also find this for MLLeakTop3Acc where
the variance on the non-members has an estimated ATE of 0.77 and decreases to
0.11 (Table 4.4). Regularization does not remove the causal relationship between the
main causes of the attack prior to applying this defense. For MSE-trained models,
the e�ect of the cause LossDiff is significantly reduced for the single shadow model
attack using top-3 predictions (Table 4.5). In fact, the regularization appears to be
quite e�ective for this attack. The features pertaining to training size and model
complexity remain causes for the attack. These have a similar influence on the MI
attack accuracy even after applying the high weight decay training.

Defense through MemGuard. MemGuard reduces the variance for both CE
and MSE models, as well as some of the causes, being more e�ective than L2-
regularization in removing the variance e�ect of the members. MemGuard is more
e�ect on MSE models, as models of the usual signals have been decreased. The
e�ect of Bias on non-members for CE models remains a potential signal, along
with CentroidDist. The MemGuard defense reduces the Variance significantly
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but many factors remain unaddressed even after the defense. For instance, the
distance between members remains a factor. The ATE of the AccDiff is reduced
from 0.19 to 0.08. MemGuard is more e�ective overall in removing causes than
regularization. The attack accuracy MLLeakAcc-l is not influenced by the distance
between members and non-members (CentroidDist) after regularization. This is
visible in the graph itself, i.e., the edge is missing in the Etio graph in Fig. A.2b
compared to Fig. A.6b.

4.7 Related Work
Generalization. Generalization in machine learning is a fundamental topic. Several
studies investigate the bias-variance decomposition in neural networks [161, 251, 69].
Yang et al. [251] explore the dependence of bias and variance to network width and
depth, e.g., deeper models tend to have lower bias but higher variance. Our work
connects MI attacks to such training and architectural choices. Other works propose
new measures of generalization [47, 108].
Membership Inference Attacks. There has been a recent line of work proposing
MI attacks and providing useful attack taxonomy. Shokri et al. [207] present the first
membership inference attack. They show that overfitting is correlated with their
attack performance. They suggest that besides overfitting, the structure and type
of the model also contribute to the privacy leakage through membership inference
attacks. Several new attacks have emerged [142, 155, 87, 152, 135, 140, 260, 34, 132]
and attack taxonomies [234, 133] have started to categorize them. These attacks
serve as tools to evaluate the privacy risk of machine learning models through attack
procedures. Our work distinguishes itself from all of these by providing a causal
framework to explain why these attacks arise. Notably, our work provides a new lens
into how generalization and MI attacks connect—through a systematic measurement
and reasoning of bias, variance, and other stochastic variables that arise in training.

Several works have provided mechanistic explanations connecting MI attacks to
generalization prior to our work. Yeom et al. [254] provide a theoretical connection
between a notion of generalization called the average generalization error and a
bounded-loss adversary which does not apply to training using a CE loss. They
also propose a threshold-based attack which has knowledge of the loss distribution
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which we have also evaluated in our framework Etio. The attack assumes that the
loss is normally distributed, and thus can be connected to the adversary advantage
in a closed-form expression. Our work shows that the assumptions made in their
work may not always hold. We show that MI attack performance is linked to the
average generalization error for models with MSE loss but does not always for CE
loss. Subsequent work by Song et al. [217] propose a similar threshold-based attack,
but on the confidences of the prediction. Nasr et al. [159] also analyze the connection
between membership inference attacks and overfitting, while proposing white-box
membership inference attacks. They also empirically observe the correlation of the
attack performance to the model capacity. Song et al. [216] evaluate membership
inference attacks against adversarially robust models and point out that these models
have a larger train-to-test accuracy gap when considering adversarial examples. Our
work shows that other factors beyond the train-to-test accuracy gap contribute to
the privacy leakage.
Causality. Causality is an active area of research with recent advances improving
learning of causal models [113, 202], as well as better inference procedures [101, 131].
While extensively applied in sciences [233, 74, 88, 147, 17], causality has only been
recently connected to privacy [235, 230]. In our work, we introduce the causal lens
to understand MI and generalization. Since our proposed methodology is synergistic,
combining learning with domain knowledge, we can benefit from such advances
to improve our causal models and analysis. In addition to learning and inference,
methods to test the causal assumptions have also been proposed such as sensitivity
analysis [190, 188] and simulated dataset-approach [160]. Again, our approach can
leverage such tests for the constructed causal models.

4.8 Summary
We have proposed the first use of causal graphs to capture how stochastic factors—

such as bias, variance, model size, data set size, loss values, and so on—causally
interact to give rise to MI attacks, providing a new connection between these attacks
and generalization. We hope this framework helps formally re-analyze statistical
conclusions and pinpoint root causes more accurately.
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4.9 Future Work
We have used causality to analyze hypotheses about privacy tests and their

relationship to generalization. One of the challenges in this approach is how to
reduce the human e�ort of modeling the variables that appear in the causal graphs:
could we learn causal features from data about the learning and attack procedures?
On the other hand, would the causal graphs derived without human modeling
be trustworthy and useful? The best way to put to the test our insights from
this analysis is in designing better defenses and better evaluations. If we know
that certain factors contribute to a vulnerability or an undesirable outcome, future
work should consider designing new training algorithms that target reducing these
detrimental factors and improving those factors that help mitigate attacks.
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Table 4.4. We compute the average e�ect on the 6 evaluated MI attacks of the
causes mentioned in prior works for CE-trained models with L2-regularization.

Attack Feature ATE p-value
MLLeakAcc AccDiff 0.2314 5.78E-84
MLLeakAcc CentroidDist 0.0000 0.00E+00
MLLeakAcc LossDiff 0.0000 0.00E+00
MLLeakAcc NumParams 0.1673 2.08E-07
MLLeakAcc TestBias -75.6790 2.97E-01
MLLeakAcc TestVar 0.1425 3.66E-06
MLLeakAcc TrainBias 0.0000 0.00E+00
MLLeakAcc TrainSize -0.1267 2.62E-12
MLLeakAcc TrainVar -0.3409 3.72E-05

MLLeakAcc-l AccDiff 0.2833 2.42E-78
MLLeakAcc-l CentroidDist 0.0000 0.00E+00
MLLeakAcc-l LossDiff 1.2445 5.12E-03
MLLeakAcc-l NumParams 0.1859 7.27E-09
MLLeakAcc-l TestBias 5.5391 9.45E-01
MLLeakAcc-l TestVar 0.1580 1.09E-06
MLLeakAcc-l TrainBias 0.0000 0.00E+00
MLLeakAcc-l TrainSize -0.1428 9.59E-14
MLLeakAcc-l TrainVar -0.3831 2.80E-06
ShadowAcc AccDiff 0.2873 4.69E-178
ShadowAcc LossDiff 0.0000 0.00E+00
ShadowAcc NumParams 0.2253 1.21E-10
ShadowAcc TestBias 65.4845 3.24E-01
ShadowAcc TestVar 0.4880 2.39E-02
ShadowAcc TrainBias 0.0000 0.00E+00
ShadowAcc TrainSize -0.1626 3.07E-21
ShadowAcc TrainVar -0.0402 1.28E-07
ThreshAcc AccDiff 0.2294 5.86E-125
ThreshAcc LossDiff 0.0000 0.00E+00
ThreshAcc NumParams 0.2045 6.11E-12
ThreshAcc TestBias 107.4913 1.16E-01
ThreshAcc TestVar 0.6449 2.03E-01
ThreshAcc TrainBias 0.0000 0.00E+00
ThreshAcc TrainSize -0.1223 3.35E-18
ThreshAcc TrainVar -0.0734 5.86E-05

MLLeakTop3Acc AccDiff 0.2288 6.95E-85
MLLeakTop3Acc CentroidDist 0.2446 5.14E-33
MLLeakTop3Acc LossDiff 0.0000 0.00E+00
MLLeakTop3Acc NumParams 0.1662 1.14E-07
MLLeakTop3Acc TestBias -45.7867 5.31E-01
MLLeakTop3Acc TestVar 0.1115 1.11E-06
MLLeakTop3Acc TrainBias 0.0000 0.00E+00
MLLeakTop3Acc TrainSize -0.1322 4.51E-13
MLLeakTop3Acc TrainVar -0.3589 1.20E-05

MLLeakTop3Acc-l AccDiff 0.2240 3.54E-77
MLLeakTop3Acc-l CentroidDist 0.2661 7.45E-32
MLLeakTop3Acc-l LossDiff 0.0000 0.00E+00
MLLeakTop3Acc-l NumParams 0.1650 1.12E-07
MLLeakTop3Acc-l TestBias -58.3315 4.38E-01
MLLeakTop3Acc-l TestVar 0.0932 3.47E-07
MLLeakTop3Acc-l TrainBias 0.0000 0.00E+00
MLLeakTop3Acc-l TrainSize -0.1298 3.26E-12
MLLeakTop3Acc-l TrainVar -0.3976 2.50E-05
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Table 4.5. We compute the average e�ect on the 6 evaluated attacks of each
features over the MSE-trained models with L2-regularization.

Attack Feature ATE p-value
MLLeakAcc AccDiff -0.0951 1.81E-02
MLLeakAcc CentroidDist 0.0000 0.00E+00
MLLeakAcc LossDiff 0.5262 4.01E-03
MLLeakAcc NumParams 0.0313 7.18E-01
MLLeakAcc TestBias 0.1261 6.01E-05
MLLeakAcc TestVar 0.1238 3.73E-07
MLLeakAcc TrainBias 0.0000 0.00E+00
MLLeakAcc TrainSize -0.0199 4.07E-03
MLLeakAcc TrainVar 0.1572 1.77E-03
MLLeakAcc-l AccDiff 0.0732 3.91E-16
MLLeakAcc-l CentroidDist 0.0000 0.00E+00
MLLeakAcc-l LossDiff 0.6361 4.58E-05
MLLeakAcc-l NumParams 0.0529 4.22E-01
MLLeakAcc-l TestBias 0.1619 8.45E-07
MLLeakAcc-l TestVar 0.1690 3.97E-04
MLLeakAcc-l TrainBias 0.0000 0.00E+00
MLLeakAcc-l TrainSize -0.0292 1.62E-02
MLLeakAcc-l TrainVar 0.2790 5.77E-05
ShadowAcc AccDiff 0.0000 0.00E+00
ShadowAcc LossDiff 0.2941 1.80E-91
ShadowAcc NumParams 0.0499 8.78E-01
ShadowAcc TestBias 0.0000 0.00E+00
ShadowAcc TestVar 0.0000 0.00E+00
ShadowAcc TrainBias 0.0000 0.00E+00
ShadowAcc TrainSize -0.0382 7.07E-01
ShadowAcc TrainVar 0.4038 1.75E-29
ThreshAcc AccDiff 0.2069 5.91E-129
ThreshAcc LossDiff 0.0000 0.00E+00
ThreshAcc NumParams 0.0692 6.62E-01
ThreshAcc TestBias -0.2423 5.81E-10
ThreshAcc TestVar 0.1398 2.55E-01
ThreshAcc TrainBias 0.0000 0.00E+00
ThreshAcc TrainSize -0.0396 1.64E-02
ThreshAcc TrainVar 0.2585 3.84E-03

MLLeakTop3Acc AccDiff 0.0000 0.00E+00
MLLeakTop3Acc CentroidDist 0.0000 0.00E+00
MLLeakTop3Acc LossDiff 0.2561 4.76E-40
MLLeakTop3Acc NumParams 0.0363 5.62E-01
MLLeakTop3Acc TestBias 0.0000 0.00E+00
MLLeakTop3Acc TestVar 0.0223 4.19E-06
MLLeakTop3Acc TrainBias 0.0000 0.00E+00
MLLeakTop3Acc TrainSize -0.0319 1.27E-03
MLLeakTop3Acc TrainVar 0.2424 5.69E-02
MLLeakTop3Acc-l AccDiff 0.0000 0.00E+00
MLLeakTop3Acc-l CentroidDist 0.0000 0.00E+00
MLLeakTop3Acc-l LossDiff 0.1804 6.18E-79
MLLeakTop3Acc-l NumParams 0.0014 9.38E-01
MLLeakTop3Acc-l TestBias 0.0000 0.00E+00
MLLeakTop3Acc-l TestVar 0.0000 0.00E+00
MLLeakTop3Acc-l TrainBias 0.0000 0.00E+00
MLLeakTop3Acc-l TrainSize -0.0261 1.50E-03
MLLeakTop3Acc-l TrainVar 0.1858 4.47E-19
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Chapter 5

Precise Definitions with Decisional
Convergence Queries

5.1 Introduction
Decisional queries that have been studied predominantly in prior work aim to

verify that a property holds where that property is defined with respect to an input
to a machine learning model, and an approximation parameter ‘. In this chapter,
we introduce convergence queries, i.e., when ‘ æ 0, to check an emerging property
of stochastic gradient descent.

Stochastic gradient descent (SGD) has been the de-facto training algorithm for
neural networks. Its intrinsic security properties are therefore important to enunciate
precisely. One fundamental property of SGD is forgeability: Is it possible to obtain
the same model parameters (outputs) from two di�erent minibatches (inputs)? If
yes, then we say that the output is forgeable. Forgeability has emerged in the context
of several applications such as machine unlearning [226], model ownership [105, 261,
53], and membership inference tests [116, 117]. If a model is forgeable, certain
training samples used could have been replaced with other samples without changing
the output. It can be argued counterfactually that these samples were never utilized
in the first place, since there exist others that can replace them without a change
in output. Thus, forgeability provides a way to unlearn some data samples seen
in training. On the other hand, if a model is unforgeable, training samples are
irreplaceable in creating the final model. It has been suggested that knowing the
specific samples used is information that can be used to claim ownership of the
model [105, 261, 53]. Many such security applications naturally arise from the basic
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property of forgeability.
Despite its emerging applications, characterizing forgery in practice has remained

an intriguing open problem. Creating exact forgery of model checkpoints has
not been demonstrated yet. Prior work has shown that it is possible to forge
intermediate model parameters within certain error (under a vector norm) and
conjectured that forgery could be made exact with zero error, but this remains
a conjecture hitherto [226, 117, 116]. Similarly, we are not aware of any general
conditions over data distributions seen in practice under which models are provably
unforgeable. Therefore, exact forgery remains an important property to define and
study.

We can model SGD as a deterministic procedure by fixing the training dataset,
the initial model parameters, and all other training hyperparameters in advance.
The randomization seeds for sampling minibatches from the training dataset can
be treated as the inputs to the SGD procedure. Each input results in an execution
trace: a sequence of intermediate model parameters obtained after each minibatch is
used for training. The output is the final model. We can look at forgery from the
lens of forging execution traces rather than outputs. In this chapter, we formally
define the notion of exact forgery of states or checkpoints in an SGD execution
trace. It asks whether two di�erent inputs produce the same execution state. If a
state is forgeable, then under two di�erent inputs the next intermediate model state
obtained is exactly the same. This will imply that the inputs e�ectively “collide”
and the entire execution trace will be the same when collisions occur. It is easy to
see that the resulting output is also forgeable if a trace is forgeable. The converse is
not true: Unforgeability of one trace does not rule out the existence of another trace
that produces the same final output. We are only interested in one-step forgeability
of checkpoints in this work. Extending definitions that consider multiple steps or
traces to forge final outputs is promising future work.

Our main contribution is to present the first systematic characterization of exact
forgeability of trace checkpoints. Our central theorem states that if certain conditions
hold at an intermediate checkpoint of the execution trace, then it is unforgeable at
that step. If an execution trace is unforgeable for at least one training step, then
the whole execution trace is also unforgeable. A verifier with access to the whole
execution trace can replay the training and check that there is one unforgeable

124



CHAPTER 5. PRECISE DEFINITIONS WITH DECISIONAL CONVERGENCE
QUERIES

training step. The conditions of our theorem are testable on concrete executions and
we devise e�cient procedures to check them at any given intermediate checkpoint.
Our checks scale well with increasing neural network parameters, taking about 21
minutes per checkpoint on average for networks with millions of parameters. The
conditions define a specific regime of data distributions under which unforgeability
holds, but these conditions are mild enough in practice that they are satisfied in all
checkpoints sampled in our experimental evaluation. Our work provides the first
regime where training checkpoints are algebraically unforgeable, partially answering
the conjecture about when exact forgery might, if at all, be feasible in practice.

The implications of showing unforgeability go beyond experimental evidence.
Our goal is to point out the lack of formal definitions, without which contradictory
interpretations arise from the same experimental setups. For instance, our results
are in sharp contrast to prior work, showing that exact forgery is impossible on the
same experimental setup [226, 117]. This contrast arises because prior work considers
approximately equal (or close) intermediate states as su�cient to define forgery,
unlike our work. We empirically confirmed that when we replace an intermediate
model state with the “approximately” same state obtained by procedures suggested in
prior work, the final output of the execution is not the same as the original. Therefore,
it is possible to observe the di�erence in outputs for white-box distinguishers. While
approximate forgery may su�ce to deceive some algorithms that distinguish output
models, say via black-box testing of models, it is not su�cient to rule out all
such distinguishing algorithms. Exact forgery deals with the most powerful of
distinguishing algorithms and is, therefore, useful in rigorous security arguments.
Our result shows that the di�erence between the exact and approximate case is
significant empirically.

Contribution We present the first theoretical impossibility result for exact one-step
forgery of SGD execution states. Our theorem specifies conditions under which
traces are provably unforgeable, which are e�ciently testable on concrete executions,
given the training dataset and model parameters. Our results on exact forgery
directly contrast those in prior work which use approximate forgery.
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5.2 Problem
The property of forgery has been the basis for several recent security applications.

For concreteness, we describe one such application, i.e., data non-repudiation in
standard neural network training.

5.2.1 Motivating Application

Several lawsuits have been filed against machine learning (ML) companies claim-
ing that part of the training data infringed copyright [36, 181]. From a technical
standpoint, how can an entity prove that their data point has been used in the
training process that resulted in a given ML model? Or, conversely, what information
should the ML model provider release in order to prove that they have trained using
a particular dataset? At large, these questions revolve around data non-repudiation
in training ML models.

The answer to these questions is not immediate. Let us consider the following
scenario: given a training dataset, the ML model provider trains a model using
stochastic gradient descent (SGD). The ML provider wants to release the necessary
information to reproduce their training such that an honest verifier can independently
check data non-repudiation claims. Prior work on proof-of-learning or proof-of-
unlearning logs [105, 226] have envisioned similar motivating applications that
facilitate auditing the integrity of the training procedure. For data non-repudiation,
the information that is released to the verifier is the same as prior works [105, 226].
Specifically, the ML provider maintains a training log which consists of the data
samples used in each minibatch and the model parameters at every training step
(checkpoint). The initialized state of the model, all the training hyperparameters,
and any other sources needed to replay the execution are maintained in the log as
well. The verifier can check the validity of the logged information at a later point
in time, by reproducing the model parameters at the tth training step using the
(t≠1)th checkpoint and the minibatch information from the log. Thus, one can check
whether specific data samples were used to train the model. If the computation
is done on the same hardware and software stack there should be no di�erence
between the recomputed state and the one in the log, modulo numerical instability
and hardware implementation di�erences [180]. We can abstract away these sources
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of non-determinism and revisit their role in Section 5.6.4.
Using such training logs as proofs for training integrity with a given dataset

is problematic [261, 53]. One fundamental issue is that there might exist forged
gradient updates: Given a state of the model parameters at some training step,
there exists an alternative minibatch that produces the same model parameters as
those of the original minibatch. For data repudiation, forging at one training step
is not enough. The adversary has to be able to forge all training steps where the
repudiated sample has been used in order to forge the entire trace released to the
honest verifier.

5.2.2 Definition of the Forgery Game

Our training and forgery setup characterizes precisely the questions raised in
several several prior applications [105, 226, 117]. We define forgery as a game,
extending the game framework proposed by Salem et al. [195]. We illustrate the
game in Algorithm 5. In the forgery game, there is a verifier (V) that simulates the
ML system made up of the training pipeline specifying the training algorithm (T ),
the data distribution (D) and the training dataset (D). The verifier challenges the
adversary (A) to the forgery game by asking it to produce a forgery for a randomly
chosen state of model parameters using the training algorithm T . There are three
sequential phases in the definition of the game.

Setup Phase. The game starts with a setup. The training dataset D consists of
samples {(xi, y

i
)}m

i=1 where xi œ Rin and y
i

œ {0, 1}out, (xi, yi) sampled from a data
distribution D. The dataset D has m data samples. The dataset sampling process
is not controlled by either the verifier or the adversary. All hyperparameters of the
training algorithm such as the learning rate (“), the model architecture, batch size
(k), loss function (l), and so on, are fixed during setup as well. The initial model
parameters (◊0) are sampled from a well-defined probability distribution over real
vectors of dimension n, and a number of training steps T is also given. The verifier
then chooses a minibatch at each step t of the training at random from D. The size
of each minibatch is a fixed constant k. The choice of minibatches is captured by
a vector r which has T elements, one for each training step t œ {0, . . . , T}. Each
element of r is a bitstring chosen uniformly at random from {0, 1}m with exactly k
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1s in it. A 1 in the ith bit location means that the ith sample in D is selected in the
minibatch and 0 means it is excluded. Therefore, the minibatch used the gradient
update at a step t is completely determined by the bitstring r[t].

Tracing Phase. The verifier runs the training algorithm for T training steps to
obtain an execution trace E. The training algorithm is instantiated with the widely
used stochastic gradient descent. The training algorithm takes as input an initial
state of model parameters ◊0 œ Rn, a training dataset D sampled from the data
distribution D, number of training steps T , and vector of selector bitstring r created
during setup. It finally learns a model f◊T : Rin æ {0, 1}out that minimizes the loss
l on the training dataset. At a given training step t < T , the training algorithm
picks the minibatch bt of size k {(x1, y1), . . . , (xk, y

k
)} from the training dataset

D according to the vector r[t]. The training algorithm then performs one step of
gradient descent that updates the parameters by minimizing the loss l as follows:
◊t+1 = ◊t ≠ “ 1

k

q
k

i=1 Ò◊tl(f◊t(xi), y
i
). It continues updating the model parameters

until T training steps and returns the model parameters for all training steps
E = {◊0, . . . , ◊T }, which we call an execution trace. The training algorithm for a
fixed r, hyperparameters, and training dataset D is completely deterministic. An
execution trace E depends only on the input r to T as it determines the sampled
minibatches at each step. We thus call r as the input to T for the purpose of the
forgery game.

Forgery Phase. Once the verifier has obtained the execution trace, it challenges
the adversary with a randomly chosen checkpoint t œ {1, . . . , T} . The adversary
has access to everything in E and wins the checkpoint forgery game if it outputs a
minibatch b̂t ”= bt such that the next model parameter state obtained is the same as
in the trace. Specifically, the adversary is asked to output some b̂t ”= bt, such that
for the given ◊t ≥ E, the training algorithm T produces ◊̂t+1 and that ◊t+1 = ◊̂t+1.
The adversary’s advantage is the probability of winning over random choices of t.

This game definition encompasses previous forgery-related attacks [209, 226,
116] when the adversary A can (1) interact with the ML system by intercepting
the minibatch samples used to obtain the model parameters ◊t+1 (they know the
samples used for training) and (2) substitute the minibatch for a given checkpoint
from the training D at a chosen checkpoint ◊t with a di�erent minibatch.
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Algorithm 5 The one-step forgery game.
Input: Training algorithm T , Training dataset D = {(xi, y

i
)m

i=1} sampled from a
data distribution D ≥ Dm, Verifier V, Adversary A, Number of training steps
T , Initial model parameters ◊0

1: V chooses random indices r œ {0, 1}T ◊m

2: {◊0, ◊1, . . . , ◊T } Ω T (◊0, D, T, r)
3: V releases to A E, r
4: A chooses ◊t ≥ {◊0, . . . , ◊T ≠1}
5: ◊̂t+1, b̂t = {(x̂1, ŷ1), . . . , } Ω A(D, ◊t, bt, T )
6: V accepts if ◊t+1 = ◊̂t+1 · b̂t ”= bt

Here we study the existence of forgery under a given model checkpoint and
training dataset. We are interested in showing that when certain conditions are met
on a given checkpoint, the adversary has probability zero of winning the game at
that checkpoint.

5.2.3 Problem Statement

We have defined the existence of forgery under a given model checkpoint ◊t

and training dataset. This implies that the gradient update rule in the training
algorithm is computed with respect to the same state of model parameters ◊t but
on a di�erent set of samples corresponding to b̂t = {(x̂1, ŷ1), . . . , (x̂k, ŷ

k
)}.

A forgery is possible if ◊t+1 = ◊̂t+1 which implies

“

k

kÿ

i=1
Ò◊tl(f◊t(xi), y

i
) = “

k

kÿ

i=1
Ò◊tl(f◊t(x̂i), ŷ

i
) (5.1)

where {(x1, y1), . . . , (xk, y
k
)} ”= {(x̂1, ŷ1), . . . , (x̂k, ŷ

k
)}.

The above equation can be simplified since the learning rate “ and batch size
k are the same for the forged and original batch. Note that we can compute the
gradients of all of the samples in the dataset D with respect to the checkpoint ◊t.
We denote gi = Ò◊tl(f◊t(xi), y

i
) as a gradient computed for the ith data point in

D. The two minibatches bt (original) and b̂t (forged) are di�erent. Hence, their
corresponding bitstrings that determine which samples are selected from the dataset
at a training step are r̂[t] ”= r[t]. We henceforth drop the script t where clear
from context, e.g., r[t] = [r1, . . . , rm], ri œ {0, 1}. We can rewrite Equation (5.1) as
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follows:
mÿ

i=1
rigi

=
mÿ

i=1
r̂igi

, (5.2)

where (r1, . . . , rm) ”= (r̂1, . . . , r̂m) and q
i ri = q

i r̂i = k.
Equation (5.2) is further simplified as

mÿ

i=1
zigi = 0, (5.3)

where the coe�cients zi = ri≠r̂i œ {≠1, 0, 1}. Each gradient vector has n dimensions,
g

i
œ Rn. Using standard matrix notation, we can write the gradients as columns of

a matrix G œ Rn◊m as G = [g1| . . . |g
m

], and z = (z1, . . . , zm)T , z œ {≠1, 0, 1}m to
write Equation (5.3) as:

Gz = 0 (5.4)

In this thesis, we study the question of existence of an assignment to zis that
satisfy the equations above.

5.3 Overview
We have mathematically defined the problem of forgeries as finding whether a

system of equations such as (5.4) has solutions. It is worth asking though what
algebraic properties we require to have for the problem of forgery to be well-defined
and have intuitive semantics.

5.3.1 When is forgery well-defined?

In Equation (5.4), one would like vector addition to be commutative and asso-
ciative, as otherwise unexpectedly the order of the summation of terms may matter.
One can record the order of the summation along with what elements are selected
in the batch at a training time. This will introduce multiple counter-intuitive issues.
For instance, the definition of forgery will need to state the order of the terms in the
sum. The summation operation is often paralellized using vector instructions sets
supported by hardware, for which ordering can be unpredictable at runtime. Further,
even trivial forgeries produced by reordering of gradients within the same minibatch
may become possible. Therefore, a mathematical definition as in Equation (5.4)
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would require that the element-wise addition of the gradient vectors forms an abelian
group.

Floating-point addition is not associative [75]. For instance, in 64-bit floating-
point precision (1

3 + 1
3) + 1

4 ”= 1
3 + (1

3 + 1
4), as the two sums di�er by a small rounding

error ‘ ¥ 10≠15. In light of this, one can readily see that floating-point numbers
with addition do not define an abelian group and, therefore, exact forgery is not
well-defined therein. Our results, therefore, concern themselves with exact forgery
defined over fixed-point numbers only.

A di�erent approach that prior work has taken to circumvent this issue is to
consider non-exact, so-called approximate forgeries. Approximate forgeries satisfy the
forgery equation (5.2) only with some precision ”, i.e., || q

m

i=1 rigi
≠ q

m

i=1 r̂igi
|| < ”,

where ||·|| is some vector norm. Prior works have studied such forgeries in the context
of unlearning training data [226], as attacks to slow down training convergence
or hurt the performance of training [209], and in membership inference attack
repudiation [116]. However, this loose definition of forgery lacks any concrete basis.
As the training process of a neural network is fully deterministic (for a fixed seed),
an honest verifier has no motivation to accept that two minibatches produce the
same gradient updates, unless the updates coincide on all bits. A verifier can
simply reject approximate forgery, unless the updates are exactly the same. Another
rationale for accepting approximate forgeries is that they may have originated from
minor hardware, library discrepancies, or that they are su�cient for the application
context. However, in Section 5.6.4 we show that even when ” is tiny (e.g., as the
above rounding error, ” = ‘), subsequent training steps will significantly expand it,
resulting in clearly observable di�erences in model parameters. Therefore, it is futile
to consider approximate forgeries at a single intermediate checkpoint.

5.3.2 Challenges

Our work provides the first proofs of unforgeability. Before presenting our
approach, we present promising approaches we considered and explain why they do
not serve our purpose.

Collisions by chance: A natural question is whether collisions arise by chance in
the gradient updates using SGD. Notice that the gradients are high-dimensional
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Figure 5.1. Gradient distribution of a parameter in LeNet5 [126] with respect
to the samples in the training dataset MNIST [125] where the gradients are
log(abs(grad)). The distribution “looks” close to a lognormal distribution as
suggested in recent work [33]. But it is far enough from a lognormal distribution as
that a standard Kolmogorov-Smirno� [148] test fails.

vectors, as large as the number of parameters in the model (e.g., LeNet5 [126]
has 61, 706 parameters). If we could argue that every gradient vector has
high entropy e ∫ m, given any fixed sum of the other gradient vectors,
then the probability that Equation (5.4) is satisfied for some choice of z

is at most (m
k )2

2e , which is negligible. It would be possible to argue this
if the gradient distributions could be modelled as closed-form probability
distributions. However, this is not the case in practice. Previous results [33,
253] as well as our own experiments reveal that the dimensions of the gradient
vector definitely have su�cient entropy. The gradient distribution is similar to
Laplace or lognormal, but not exactly the same. We illustrate the distribution
of the gradient on one dimension at one particular checkpoint for LeNet5 across
the MNIST dataset in Figure 5.1. We find that the distribution “looks” close
to a lognormal, but it fails to be one as per a standard statistical test [148].
This makes it hard to theoretically argue about any desired relation between
the distribution of the di�erent gradient vectors.

Integer Coe�cients: Another approach is to devise conditions under which Equa-
tion (5.4) cannot be satisfied, without resorting to properties of probabilistic
distributions. One such condition is when vectors of G are linearly independent.
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The column vectors of G are linearly independent if and only if they are not
expressible as linear combinations of one another, i.e., z ”= 0, thereby trivially
showing unsatisfiability of system (5.4). Linear independence is much stronger
than what we need to rule out the possibility of satisfying Equation (5.4).
Specifically, the values of z are integers {≠1, 0, 1}. Even if some gradient
vectors are linearly dependent on other vectors, it does not imply that there
exists an integer combination of the gradient vectors that adds to 0. Towards
ruling out (5.4), one could consider doing a milder check, i.e., checking whether
there exists a non-trivial integer vector z œ Zm that satisfies (5.4). Unfortu-
nately, this seems as hard as solving the integer programming problem, which
is known to be NP-hard [66].

Short Vector Solutions: Notice that the set of vectors z œ Zm satisfying Equa-
tion (5.4) form an integer lattice with G as the basis. A valid forgery implies
the existence of a short non-zero vector in the lattice, i.e, ÎzÎ1 Æ 2k. If we
can rule out the existence of such short vectors, we can conclude that forgery
is impossible. This suggests that one can try to lower bound the size (in L1 or
L2 norm) of the shortest non-zero vector in the lattice. Unfortunately, this
would require solving O(k)-approximate shortest vector problem (SVP) for
the lattice, which is again a hard problem that underpins several constructions
in lattice-based cryptography [90].

The above approaches, though promising, seem to run into incompatibility with
empirical observations or computational intractability at the outset. There are
further issues to consider as well which we explain in Section 5.4.3—the algorithms
used to implement the associated checks should work with minimal assumptions
about the algebraic structure of the gradient vector operations. Our proposed
approach, explained next, keeps assumptions minimal and gives the first practical
conditions for checking unforgeability.

5.3.3 Our Approach

The checks outlined so far are still stronger than what we strictly need. Recall
that forgery is impossible if conditions below hold:
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• (C1) zi œ {≠1, 0, 1}, zi œ z; and

• (C2) Gz = 0 has no non-trivial solution for z.

It is important to note at this point that typically in machine learning libraries
we work with a finite-bit representation of the real values of the gradients, either
floating-point or fixed-point. We devise a fast condition to check when (C1) and
(C2) are not true if the reals use fixed-point representation. Specifically, addition in
fixed-point precision has desirable algebraic properties (more in Section 5.4.3) under
two’s complement arithmetic. Our key observation about arithmetic in fixed-point
precision is this: if the sum or di�erence of any subset of gradient vectors is 0, then
the parity (exclusive-or) of the least significant bits of those vectors must be 0. We
briefly explain why this is so. Consider any number x and its negative ≠x. In two’s
complement arithmetic, it is easy to deduce that the least significant bit (LSB) of x

and ≠x is always the same1. This implies that LSB(x ≠ x) equals LSB(x + x) in
two’s complement arithmetic. This fact holds only for the LSB bit because it is the
only bit that is not a�ected by carries during the addition operation.

Extending the above observation to vectors, one can see that the result of adding
or subtracting two vectors is simply the addition or subtraction of values dimension-
wise. Thus, for any two vectors g

i
and g

j
, the operations (g

i
≠g

j
) and (g

i
+g

j
) result

in vectors that have the same LSB. Condition (C1) encodes that there are only three
operations we can do on the gradient vectors to obtain a forgery. We can include a
gradient vector g

i
, include ≠g

i
, or skip vector g

i
in the summation of Equation (5.3).

As discussed previously, LSB(g
i
≠g

j
) = LSB(g

i
+g

j
) in each dimension. Thus, one

can now consider the values of zi as {0, 1} instead of {≠1, 0, 1}, with 0 representing
skipping a gradient in G and 1 representing including the gradient (or its negation)
in the summation of Equation (5.4). To rule out that any +/≠ combination of
gradient vectors in G sum to 0, one can check that the combinations of LSB(g

i
) do

not sum to 0. We formally prove that LSB checks are su�cient for unforgeability of
gradients in Section 5.4.1 and give an illustrative example here.

Example 1 Let us take 3 gradient vectors g1, g2, g3 œ R3 computed at some
fixed step during training as columns of G below. The next model parameters are

1Representing ≠x is computed as taking the complement of the bits in x and adding one, which
implies that LSB(x) = LSB(≠x)
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updated using a minibatch consisting of first two. So the gradient update vector
is � = g1 + g2 = (≠1.0, 3.25, 5.75)T . The goal of forgery is to find another subset
of vectors that sums to the same update vector �. In this example, however, the
gradient vectors are linearly independent and no other +/≠ combination results in
�. We use big parenthesis () to denote vectors / matrices defined over real numbers
and square brackets [] to denote their fixed-point binary representation to visually
distinguish them below.

G =

Q

cccca

1.0 ≠2.0 0.25
2.0 1.25 2.0
3.75 2.0 1.0

R

ddddb
=

S

WWWWU

0001.00 1110.00 1111.01
0010.00 0001.01 0010.00
0011.11 0010.00 0001.00

T

XXXXV

For illustration purposes, the above fixed-point representations use 4 bits for
the integer part and 2 bits for the fractional part. We then obtain the matrix
corresponding the least significant bits of the gradient vectors as LSB(G) :=
[LSB(g1), LSB(g2), LSB(g3)]:

LSB(G) =

S

WWWWU

0 0 1
0 1 0
1 0 0

T

XXXXV

Our proposed check on the gradient matrix yields that LSB(G) matrix is full
rank, i.e., no non-trivial solution to LSB(Gz) = 0 exists. As explained above, when
this happens, there are no forgeries possible for any subset of g1, g2, g3 of size k = 2.

5.4 Unforgeability: Proof & Algorithm
We prove the key result here as Theorem 7. It states that no solutions satisfy the

system of equations (5.4) if no solutions satisfy the corresponding boolean system
of equations defined over their LSB. Absence of solutions to system (5.4) implies
unforgeability. The algorithm for checking the conditions of the theorem is the
classical Gaussian elimination over boolean fields (LSB).

5.4.1 Formal Proofs

We present formal proofs for the claims in the previous section.
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Lemma 10. If system (5.4) has no non-trivial solutions z œ Zm, then forgeries
cannot exist.

Proof. Let forgery be defined as the pair of bitstrings (r, r̂) corresponding to the
indices of the minibatch at a training step and, respectively, the forged minibatch.
If (r, r̂) does exist, then z = r ≠ r̂ is a non-trivial solution to (5.4). Hence, the
premise is incorrect.

Our goal henceforth is to devise algorithms that detect when the homogeneous
system of equations (5.4) does not have non-trivial solutions. Before proceeding
further, we draw attention to two points. First, Equation (5.4) is no longer equivalent
to Equation (5.2) as we dropped the accompanying constraint q

i ri = q
i r̂i = k.

Rather, Equation (5.4) is more general than (5.2), thus it provides the su�cient
(and not necessary) condition when forgeries cannot exist. Second, usually in neural
nets n > m, i.e., there are more model parameters than data points, thus, in such a
case, (5.4) is overdetermined, and one may expect that no non-trivial solutions to
exist.

Theorem 6. If the system of equations (5.4) has no non-trivial solution for z œ Rm

then forgeries cannot exist.

Proof. If (5.4) has no solutions z œ Rm then it has no solutions for z œ Zm as
Z µ R. Then by Lemma 10, forgeries cannot exist.

Theorem 6 allows to transfer the problem from integer variables to reals. Over
reals, if for the homogeneous system Gz = 0 the rank equals the number of variables,
i.e., if rank(G) = m, then the system has no non-trivial solutions, thus leading
to absence of forgeries (5.4) and cannot have non-trivial integer solutions. This
approach is sound and yields the su�cient condition for absence of forgeries as long
as the rank(G) = m. However, computing the rank may be too computationally
intensive or impossible all along (as we will see further). To tackle this problem, we
shift once again the domain, but this time, to booleans.
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Consider the system of equations (5.3) only for the least significant bits2, i.e.,
shift the domain from reals to booleans:

mn

i=1
zi · g

i
= 0, (5.5)

where ü is exclusive-or (XOR), zi are boolean unknowns, and g
i

is a boolean vector
composed of the least significant bits3 of the elements of the original vector g

i
.

Under the boolean domain, the exclusive-or (ü) and logical-and (&) form a field
{Z2, ü, &}.

The next lemma establishes the relationship between solving the system of
equations (5.5) and equations (5.4).

Lemma 11. If system (5.4) has a non-trivial solution z ”= 0, z œ {≠1, 0, 1}m, then
the system (5.5) has a non-trivial solution z œ Zm

2 .

Proof. Let the vector elements be represented using t bits of fractional part precision.
Then, we can assume that 2tg

i
œ Zm, and that g

i
= 2tg

i
(mod 2) is a boolean

vector. Then
mÿ

i=1
2tg

i
zi = 0 ,

implies that
mÿ

i=1
2tg

i
zi (mod 2) =

mÿ

i=1
g

i
zi = 0 (mod 2) .

Finally, observe that z is non-trivial, and hence there exists i such that zi œ {≠1, 1},
which implies that z := z (mod 2) œ Zm

2 \ {0} is a non-trivial solution to system
(5.5).

A corollary of the Lemma 11 obtained by stating its contrapositive is the following:
If the system (5.5) has no non-trivial solutions, then system (5.4) also has no non-
trivial solutions. Lemma 10 states that when no non-trivial solutions to system (5.4)
exist, forgery is impossible. This immediately gives our main result stated below.

Theorem 7. If system (5.5) has no non-trivial solutions for z œ Zm

2 , then forgeries
cannot exist.

2Assume the reals have fixed-point precision.
3Recall that we consider fixed-point precision, so least significant bit is just the last bit of the

representation of real.
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Theorems 6 and 7 provide su�cient conditions for unforgeability. In both of
the cases, the checks reduce to finding if a homogenous system of equations has
non-trivial solutions over a particular domain, either real or boolean. When the
system is overdetermined n > m, this is equivalent to showing that the rank of the
corresponding matrix of the system equals the number of variables.

5.4.2 Algorithm

Based upon the findings of Theorem 7, we develop an unforgeability check called
LSBUnforgeability given in Algorithm 6. It takes as input the model parameters
(◊t), dataset (D), loss function (l) and a precision ”. The first step is to check that the
dimension of the model parameters, and consequently gradient vectors, is larger than
the dataset size. We obtain the gradient matrix G corresponding to the gradients
of all of the samples in D with respect to the parameters ◊t (lines 7 ≠ 10). We
require the loss function (the same as in the training algorithm) to compute the
gradients. From the gradient matrix, we obtain a boolean matrix consisting of the
least significant bit given some specified precision ‘. We specify the precision amount
in Section 5.6.1, and provide implementation details of TakeLSB in Section 5.5 for
gradients obtained using the standard machine learning libraries.

Finally, we call the ComputeBoolRank on the boolean matrix B. This
procedure computes the maximal number of independent {0, 1}n column vectors in
B under the ü operation, known as the rank r. If the rank is maximal, then forgeries
cannot exist, so the algorithm returns Unforgeable. If the rank is not maximal then
LSBUnforgeability is inconclusive. To check the rank, we can reduce the matrix
to row echelon form with the classical Gaussian elimination algorithm. Section 5.5
gives the implementation details.

5.4.3 Note on Satisfying Algebraic Assumptions

Both the definition of forgery and our checks for unforgeability make certain
minimal assumptions about algebraic computation during gradient updates. We
explain their role carefully.

Fixed-point numbers form a group but not a field. In fixed-point precision, the
numbers are assumed to have p bits for the integer part, and q bits for the fractional
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Algorithm 6 LSBUnforgeability The outline of our procedure to check the
condition under which the forgery of gradients for a given checkpoint and dataset is
impossible. If it returns True then forgery is impossible.
Input: The checkpoint ◊t of the model f◊t , Dataset D, Loss function l, Precision ”.
Output: Unforgeability „

1: „ Ω ⇤
2: G = EmptyMatrix(n, m)
3: B = EmptyMatrix(n, m)
4: while (xi, yi) œ D do
5: gi Ω Òl◊t(f◊t(xi), yi)
6: G[:, i] Ω gi

7: end while
8: while i œ 1, . . . , m do
9: B[:, i] Ω TakeLSB(G[i], ”)

10: end while
11: r Ω ComputeBoolRank(B)
12: if r == min(n, m) then
13: return True
14: end if
15: return „

part, and in software are usually represented with integers, a, b œ Z. The addition
in fixed-point is defined as modular addition over integers, i.e., a + b(mod 2p+q).
Clearly, addition over fixed-point numbers forms an abelian group. Thus, forgery
is well-defined with fixed-point precision. On the other hand, the multiplication is
defined as a combination of modular multiplications and shifts, i.e., a·b(mod 2p+q)/2q.
Unfortunately, this operation is not associative. For example, in 1-bit fractional
precision (1

2 · 1
2) · 4 ”= 1

2 · (1
2 · 4) as 0 · 4 ”= 1

2 · 2. Therefore, fixed-point arithmetic does
not satisfy algebraic axioms of a field. This limits the algorithms one can reliably
use with fixed-point arithmetic when deducing unforgeability. Consider the standard
way of computing rank, or checking linear independence, of a matrix. A standard
method for finding ranks is Gaussian elimination, but it requires vector elements to
satisfy axioms of a field (or at least a principal ideal domain4). Therefore, one cannot
compute ranks directly for matrices using Gaussian elimination with fixed-point
numbers. Hence, to run the rank algorithms we must specify and make sure we
work with a field.

4The set of fixed-point numbers with addition and multiplication has zero divisors (e.g. 1
2 · 1

2 = 0)
and thus does not form a principal ideal domain.
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The least significant bits (LSBs) of fixed-point numbers form a field. The LSBs
form the standard boolean field {Z2, ü, &}. Thus Gaussian elimination can run on
LSBs and so we can use our unforgeability check algorithm to compute the rank.

On other fields in fixed-point precision. It is tempting to define other finite
fields in fixed-point arithmetic so we can use similar unforgeability checks based on
Gaussian elimination. For instance, by taking the two least significant bits. But then
multiplication is not associative (as pointed out above) and multiplicative inverse
does not exist for every element, hence the axioms of a field do not hold. Another
alternative is to redefine the multiplication (change it from a modular) to obtain
the finite field GF (2p+q), however, then the same multiplication needs to be used as
well during training of the neural network, thus it may introduce other, potential
issues, e.g., with e�ciency. Very few checks satisfy the strong algebraic requirements
highlighted above. Our unforgeability check on LSBs is one such check, as they
allow simple finite field in fixed-precision.

5.5 Implementation
We implement Algorithm 6 in C++: we start with a reference implementation of

Gaussian elimination over booleans, and introduce a single optimization enhancement
by packing bits into 64-bit integers to speed up addition of rows during row reduction
of the matrix. Our entire implementation is less than 100 lines of code and it can
run on multiple cores5. Note that there are more e�cient algorithms for Gaussian
elimination over finite fields [139]. We opted for a standard algorithm due to its
simplicity and ease of implementation, which proved su�cient for the examined
datasets. For very large datasets, the unforgeability check can use more optimized
rank checking algorithms6, such as [139] which reports a running time of 520 minutes
on a 106 ◊ 106 boolean matrix using 64 cores.

Extracting fixed-point LSB from floating-point.For our evaluation (Section 5.6.1),
we provide a brief description about taking certain fixed-precision LSBs of floating-
point numbers. Specifically, let us examine how to extract the t-bit LSB of a 64-bit

5Our code is available at https://github.com/teobaluta/unforgeability-SGD
6We were only able to find implementation of this algorithm for a specific HPC framework,

and not in the common languages such as C/C++. As our implementation was feasible to run, we
decide not to switch to the advanced algorithm.
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float based on the IEEE format [8], i.e., the float has 1-bit sign s, 11-bit exponent e,
and 52-bit mantissa m and represents the number (≠1)s2e≠1023(1 + M

252 ) or equiva-
lently (≠1)s2E(1 + M

252 ). When E = 0, as the sign and the leading 1 play no role,
the t-bit LSB of the number is the t-bit of the mantissa (or it is 0 if t > 52). Having
E ”= 0 is similar, but first we logically shift the mantissa by E positions (to the left
if E < 0, otherwise to the right), and then take the t-bit of the result7. For instance,
when E = ≠10, t-bit LSB of the float is the t + 10 bit of the mantissa. Hence,
extracting LSBs is straightforward, and subtraction, logical shift and masking are the
only operations required for its implementation. All of these use two’s complement
arithmetic, as needed for our results to apply.

5.6 Evaluation
Our main goal is to evaluate whether our LSB check is conclusive in practice.

Our benchmarks and experimental setup mirror those of [226] and [117], as our
forgery game encompasses prior setups, with the di�erence that our definition of
forgery is exact, while theirs is approximate. Our formal results are valid under the
well-defined arithmetic of fixed-point precision, not floating-point. Therefore, we
want to evaluate LSB checks at a fixed bit-precision, but we also want to measure
how the check’s conclusiveness changes with more samples or with less precision
bits. Our aim is to check whether replacing one checkpoint at an intermediate step
with an approximately forged one leads to divergence, i.e., the subsequent model
parameters are noticeably far from the original trace.

In summary, we aim to answer the following research questions:

(RQ1) How conclusive is our LSB check under a given precision using the same
experimental setup as prior work?

(RQ2) How conclusive is our LSB check under a given precision when increasing the
dataset size?

(RQ3) What precision is su�cient for LSB checks to be conclusive?
7When E > 0, the leading 1 plays role and should be taken into account.
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(RQ4) Does approximate forgery at a given training step result in noticeably di�erent
model parameters after continuing training for more steps, i.e., does training
diverge?

(RQ5) How much divergence do rounding errors arising from floating-point arithmetic
introduce after training for more steps?

Benchmarks & Experimental Setup. In our experiments, we use the same as
benchmarks as [226, 117]. More precisely, we focus on LeNet5 [126] with 61, 706
parameters on MNIST [125] dataset, ResNet-mini [86] with 1, 487, 370 parameters and
VGG-mini with 5, 742, 986 parameters on the CIFAR10 [120] dataset. As reference
implementation for LeNet5 we used [179], confirmed through correspondence with
the authors [226]. For the ResNet-miniand the VGG-mini implementation we used
as reference the one at [186], i.e., the same one specified in [117]. For all of these
model architectures, we do not use batch normalization, same as [226, 117]. We use
a fixed learning rate 0.01, and train with batch sizes of 64 for various epochs, each
with some number of training steps (depending on the batch size and dataset size).
Prior work on approximate forgery [226] considers M = 400 candidate minibatches,
which is what we use in Section 5.6.18. To train models, we use NVIDIA GPU
2080X, CUDA 11.7. Furthermore, we ran LSBUnforgeability (Algorithm 6) on
Ubuntu 20.04 box, with 80 cores and 256GB RAM. For the VGG-mini experiments
and experiments with larger sizes of M , we used a storage over the network, which
added an overhead to our results.

Reproducibility We train our models using PyTorch 1.13.1+cu117 for GPUs. In
PyTorch we use np.float64 floating-point precision for training. For reproducibility,
we avoid using nondeterministic algorithms for some operations and set a specific
seed for our computation [180]. This ensures that under multiple runs on the same
hardware and software stack, we obtain the same gradients and model parameters
when training.

Notations. Gradients are n-dimensional vectors over reals. To represent distance
(sometimes we call it di�erence, or error) between gradients g1, g2, we use either L2

8Based on email correspondence with the authors of [226], in Fig. 1 and Fig. 2 in the [226]
paper, the number of batches is 400.
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norm, i.e., ||g1 ≠ g2||2 =
Òq

n

i=1(gi
1 ≠ gi

2)2, or LŒ norm, i.e ||g1 ≠ g2||Œ = maxi(|gi

1 ≠
gi

2|).

5.6.1 Are LSB Checks Conclusive?

If our check does not determine that the matrix is full rank, then there might exist
forgeries. It is reasonable to expect that the least significant bits of the gradients
will not be strongly biased, as the training process introduces su�cient entropy at
least in the LSBs of the gradients. This in turn will lead to full rank boolean matrix,
i.e., positive unforgeability check. We check this in our experiments.

From Floating-point to Fixed-point Precision. We convert the 64-bit floating-
point precision gradients (called sources9) output by PyTorch into fixed-point
precision. We consider a high number of precision bits taken from the source float-
point gradients, i.e., 26 bits10. This is within the scope of precision required typically
for machine learning training.

Following the procedure used in prior work, we randomly sample 25 checkpoints
at di�erent training epochs and steps from the first 5 epochs for LeNet5, ResNet-mini,
and, respectively, 5 checkpoints for VGG-mini. We run LSBUnforgeability on
these checkpoints for M = 400 candidate minibatches, sampled without replacement.
For e�ciency reasons, we run only 5 checkpoints for VGG-mini. The average running
time of the algorithm on the checkpoints is around 23 seconds on LeNet5 (Table 5.1),
1291 seconds for ResNet-mini models (Table 5.2), and, respectively, 9588 seconds for
VGG-mini models (Table 5.3). Furthermore, all of these are unforgeable, showing
that the conditions we state in our theorem are satisfied in practice.

Result 1: The unforgeability check LSBUnforgeability is e�cient (feasi-
ble for large neural networks) and e�ective. It outputs conclusively that forgeries
are impossible on all evaluated cases.

9We want to stress out that we introduce this convention only because we want to reuse the
floating-point source gradients output by the PyTorch training process (currently, it supports
only floats), however, if the training had been conducted in fixed-point precision, the amount of
precision bits would have been uniquely determined.

10In fact, any su�ciently large amount can be taken.
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Epoch Step Time (s) Unforgeable
0 839 22 X
1 402 22 X
1 447 24 X
2 0 23 X
2 42 23 X
2 194 22 X
2 232 23 X
2 361 24 X
2 481 22 X
2 505 23 X
2 534 22 X
3 187 22 X
3 401 22 X
3 410 22 X
3 722 23 X
3 736 22 X
4 186 23 X
4 217 24 X
4 295 23 X
4 296 22 X
4 610 23 X
4 695 23 X
4 827 22 X
4 936 22 X
5 332 23 X

Table 5.1. All 25 evaluated checkpoints for LeNet5 on MNIST with fixed precision
of 26 bits are unforgeable.

One may ask what happens if multiple datasets are concatenated, or if the size
of the dataset were larger. We thus additionally consider larger number of batches
M for LeNet5 on MNIST, and ResNet-mini on CIFAR10. We find that the tests
are conclusive for both LeNet5 and ResNet-mini at precision 26 when we vary the
number of batches (Table 5.4).

Result 2: The unforgeability check LSBUnforgeability is conclusive
even on larger sample sizes compared to [226].

5.6.2 Precision at which LSB Checks are Conclusive?

One might ask what precision is enough to prove unforgeability with our LSB
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Epoch Step Time (s) Unforgeable
0 98 1561 X
0 259 1202 X
0 646 1555 X
0 480 1129 X
1 84 1408 X
1 416 1183 X
2 182 1465 X
2 249 1449 X
2 286 1448 X
2 743 1254 X
2 750 1124 X
3 115 1401 X
3 130 1186 X
3 215 952 X
3 250 1522 X
3 261 1266 X
3 275 1154 X
3 317 1393 X
4 714 1423 X
4 28 1154 X
4 677 1337 X
5 74 965 X
5 452 1380 X
5 541 1319 X
5 644 1056 X

Table 5.2. All 25 evaluated checkpoints for ResNet-mini on CIFAR10 with fixed
precision of 26 bits are unforgeable.

Epoch Step Time (s) Unforgeable
1 209 7078 X
1 262 9945 X
1 257 10254 X
3 11 10259 X
3 450 10406 X

Table 5.3. All 5 evaluated checkpoints for VGG-mini on CIFAR10 with fixed
precision of 26 bits are unforgeable.

check? We focus on scenarios with lower number of precision bits, that may
potentially allow approximate forgeries. We take 5 di�erent LeNet5 checkpoints
and vary the selection of precision bits from 1 to 24 from the source gradients. In
Table 5.5, we give the exact ranks of the systems obtained for these 5 checkpoints,
and gray out the full ranks which essentially correspond to unforgeability. For each
of the 5 checkpoints, none of the systems for bits below 14 have full rank, i.e.,
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Architecture M Avg. Time (s) Unforgeable

LeNet5 600 45.84 25 / 25
800 91.56 25 / 25

ResNet-mini 600 5810.2 5 / 5
800 8817 5 / 5

Table 5.4. Even when varying the number of minibatches M , LSBUnforgeabil-

ity remains conclusive for both LeNet5 and ResNet-mini at precision 26.

LSBUnforgeability cannot exclude forgery for such cases. Indirectly, this means
that potential approximate forgeries with precision up to 2≠13 (around 10≠4 in LŒ)
are still possible. This range already covers all approximate forgeries we present
in Section 5.6.4. On the other hand, with around 20-bit precision the checkpoints
transition to unforgeable. Hence, it would be unlikely to produce approximate
forgeries with a precision higher than 2≠21 (around 10≠6) at any of these checkpoints,
regardless of the technique used to generate them. We cannot completely exclude
the possibility, as carries from the lower (beyond taken precision) bits may still
propagate, however, such carries will only randomize the LSBs, thus yielding similar,
full-rank matrices.

Result 3: LSBUnforgeability is conclusively finds unforgeability for
precision over 20 bits in all evaluated cases.

Therefore, when interpreting results of approximate forgery even in fixed-point
arithmetic, the precision considered plays a significant role in determining whether
forgery works at all.

5.6.3 Divergence with Approximate Forgery?

Our next experiments provide evidence that approximate forgeries at an interme-
diate step in training leads to large di�erences in the final model after training more
steps. We argue that while obtaining a limited precision (e.g., up to ” = 3 decimals)
forgeries at a particular step is feasible, in subsequent training steps these errors
will once again increase. We test this hypothesis by implementing the search for
approximate forgeries [226].
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Bit
1 3121 6794 2727 4422 2542
2 4277 9336 3717 6093 3457
3 5794 12091 5048 8175 4624
4 7645 14882 6708 10657 6108
5 9873 17859 8756 13394 7843
6 12491 20533 11207 16241 9943
7 15105 22588 13848 19127 12306
8 17487 24049 16544 21400 14837
9 19457 24978 18810 23031 17284
10 21224 25342 20720 24206 19417
11 22709 25477 22344 25015 21304
12 23930 25561 23638 25414 22778
13 24785 25594 24547 25565 23991
14 25276 25600 25123 25593 24852
15 25496 25600 25399 25598 25313
16 25581 25600 25518 25599 25539
17 25595 25600 25575 25600 25593
18 25597 25600 25592 25600 25598
19 25599 25600 25598 25600 25599
20 25600 25600 25598 25600 25600
21 25600 25600 25600 25600 25600
22 25600 25600 25600 25600 25600
23 25600 25600 25600 25600 25600
24 25600 25600 25600 25600 25600

Table 5.5. Even at smaller precision on LeNet5 checkpoints, our LSB check can
determine unforgeability. The grayed out cells correspond to full rank, i.e., the
checkpoints at this bit precision are not forgeable.

We randomly sample 25 saved checkpoints for LeNet5, ResNet-miniand VGG-
mini from the first 5 epochs with ◊t model parameters (same ones as in Section 5.6.1).
The target checkpoint that we want to forge is ◊t+1. Then, according to the previously
proposed strategy, for each checkpoint ◊t, we sample M = 400 forgery candidate
batches with size 64. Then, we perform one training step from ◊t using these samples
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Figure 5.2. The approximately forged model parameters diverge after subsequent
training of LeNet5 on MNIST and ResNet-mini on CIFAR10. The solid line indicates
the mean LŒ distance over the 25 checkpoints while the translucent region indicates
the maximum and the minimum LŒ distance boundaries for the corresponding
architecture.

and greedily select the one with the smallest L2 and, respectively, LŒ distances from
the target checkpoint: argminM ||◊t+1 ≠ ◊Õ

t+1||p, p œ {2, Œ}. Then, to test potential
divergence, we keep training the forged model parameters with the same data as
the target trace. We train for 3, 000 additional steps for LeNet5 and ResNet-mini,
and 10, 000 more for VGG-mini. In Figure 5.2, we show for LeNet5 and ResNet-
mini that the distance between the initial and forged models’ parameters increases.
For VGG-mini, the LŒ di�erence between the training run and the forged run
initially decreases, but, as with LeNet5 and ResNet-mini, it eventually diverges
(Figure 5.3). We observe that the larger the model (number of parameters), the
slower the divergence. It takes about 8, 000 training steps for the LŒ distance to be
greater than the initial distance, with respect to the forged parameters. This is due
to the gradient descent updates being smaller in magnitude than the initial error for
VGG-mini.

We run one more series of experiments with longer training. More precisely, we
train only LeNet5 (for e�ciency reasons) for 17, 000 training steps. The propagation
of distance is given in Figure 5.4 and we can observe a similar outcome. Therefore,
based on these two experiments (refer to Appendix B.1 for L2 results), it is clear
that even not-so close approximate forgeries will diverge in the successive training
steps.
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Figure 5.3. The approximately forged model parameters diverge after subsequent
training of VGG-mini on CIFAR10. The solid line indicates the mean LŒ distance
over the 25 checkpoints while the translucent region indicates the maximum and
the minimum LŒ distance boundaries for the corresponding architecture.

Figure 5.4. LŒ distance between the forged batch and the benign training for
LeNet5 on MNIST over 5 checkpoints. The solid line indicates the mean LŒ distance
over the 5 checkpoints while the translucent region indicates the maximum and the
minimum LŒ distance boundaries for the corresponding architecture.

Result 4: Approximate forgeries in floating-point precision eventually diverge
and always result in clearly distinct model parameters by the end of training.

Impact of Larger M on Forgeries. We check whether increasing the number
of candidate minibatches helps with obtaining better approximate forgeries. We
increase the number of candidate minibatches and run the approximate forgery attack
for M œ {600, 800} by sampling without replacement, on all models, including VGG-
mini. When increasing the number of candidate batches, there is no real improvement

149



CHAPTER 5. PRECISE DEFINITIONS WITH DECISIONAL CONVERGENCE
QUERIES

in the obtained approximate forgeries, for all evaluated models. At the same time,
doubling the number of batches means that the running time of the attack also
doubles. Specifically, we run the approximate forgery, as in the evaluation of [226] for
25 checkpoints, to find the best LŒ norm for LeNet5, ResNet-mini and VGG-mini
for all M œ {400, 600, 800}. Among all of the 25 evaluated checkpoints the attacks’
best approximate forgery among all 25 checkpoints was 1.56 ◊ 10≠4 in LŒ norm
on VGG-mini when M = 800. However, increasing the number of batches did not
improve the average LŒ distance by much, i.e., by less than 10≠5. For the largest
number of batches M = 800, the time taken for VGG-mini is 40◊ larger than
for LeNet5 and 2◊ larger than for ResNet-mini. We give the detailed results in
Appendix B.2.

5.6.4 Divergence due to Floating-point Errors?

Recall from Section 5.4.3 that forgeries are not well-defined for reals imple-
mented with floating-point precision. We first confirm that additions of gradients in
floating-point lead to non-zero rounding errors. For this purpose, we run a series
of experiments at di�erent training epochs. At each epoch, we sample uniformly
at random a minibatch of 1024. Then we sum up the gradients in 1000 di�erent
random orders, and check the number of di�erent sums we get. The final results
show that at each of the tested epochs, 1000 out of 1000 sums are di�erent, i.e., each
shu�e leads to a distinct sum. The sums di�er on LŒ errors in the range 10≠12 to
10≠17. Hence, we can conclude that even when one considers the same minibatches
but in di�erent summation order, one may not produce this trivial forgery on all n

bits. In our experiments, in 100% of the cases, di�erent order resulted in di�erent
values. Thus, in floating-point precision, forgeries resist standard definition, rather,
they will require at minimum an additional specification of the order of summation.

We investigate what happens if the above produced errors are kept small through-
out training. If such is the case then one may argue that approximate forgeries
with such precision (i.e., equal on almost all n bits) should be accepted as valid
under the premise that the errors may have originated from minor hardware or
library discrepancies. To test the propagation of small errors, among all of the
previously generated potential pairs of sums, we sample a random pair at 5 di�erent
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Shu�e Error Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5
(epoch 1, step 100) 4.62e-14 2.83e-04 1.33e-03 1.66e-03 2.33e-03 3.16e-03
(epoch 2, step 100) 2.49e-14 8.25e-04 1.47e-03 1.59e-03 4.27e-03 5.67e-03
(epoch 3, step 100) 3.02e-14 8.93e-04 1.98e-03 4.22e-03 4.88e-03 4.49e-03
(epoch 4, step 100) 3.38e-14 1.12e-03 3.35e-03 3.53e-03 4.73e-03 4.52e-03
(epoch 5, step 100) 4.62e-14 2.13e-03 4.27e-03 3.75e-03 5.86e-03 4.33e-03

Table 5.6. Even very small di�erences of 10≠14 (called shu�e errors) due to the
summation order in floating-point produce divergence over 5 epochs of training.

checkpoints. For each pair, we produce the resulting parameters (at the sample
epoch/step), and then train independently each of them for 5 additional epochs on
the same randomly sampled minibatches of size 1024. At the end of the training,
we compare the di�erences between the final parameters, i.e., we compute the LŒ

norm between the parameter vectors. The results at di�erent training epochs are
presented in Table 5.6. We can see that the small initial errors (di�erences between
the parameters), quickly expand and even after the first training epoch (around
1000 training steps) become pronounced, large errors. This means that even if we
consider very close approximate forgeries (as close as a rounding error produced
during floating-point addition), the subsequent training process will rapidly expand
the small, initial di�erence and the almost identical pair of parameters produced
by the approximate forgery will diverge into clearly distinct parameters. Therefore,
based on these experiments, we can make two key observations. First, approxi-
mate forgeries clearly lead to distinguishable final output models in training, and
therefore, are ill-suited for use in formal definitions. Second, even exact forgeries in
floating-point precision diverge due to rounding errors of additions. Additionally, we
have shown that small errors introduced due to hardware and library discrepancies
lead to clear parameter discrepancies after a few rounds of training.

5.7 Discussion
In this chapter, we have argued for refining the definitions of forgeability, irre-

spective of applications and datasets. Next, we discuss the setup limitations, and
the complexity of the proposed test.
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5.7.1 Limitations

Our tests were conclusive for all of the experimental setups considered in prior
work. These setups assume that the adversary is constrained to use samples from
the dataset that the ML trainer has released for verification. The verifier is honest,
and the adversary can only modify the choice of minibatches from the fixed dataset
at a training step (see Section 5.2.2). This is a post-deployment adversary, that
aims to construct forged gradient updates for data samples after the execution traces
and their logs have been released. If the adversary can modify the dataset, then
they could form b̂t from samples outside the training dataset such as synthetically
generated samples [261], or sampling more points from the distribution, until the test
fails. Despite recent works proposing adversaries that synthesize data, there is no
evidence that such attacks are possible at a higher precision (not approximate) [53].
Moreover, these attacks should be e�cient enough to be mounted for every instance
where a data point is used, not just one training step (whereas verifying impossibility
for one is enough). Without breaking the requirement that the test be run with
respect to a dataset, we can ask how often is the test conclusive if one were to
consider a larger dataset. We evaluate this in Section 5.7.2.

A pre-deployment adversary, on the other hand, can manipulate both the
training hyperparameters and the dataset. A more powerful test is required, one
that does not assume that the adversary cannot manipulate the setup phase. The
verifier therefore can only check that the update is valid, i.e., given some minibatch
b̂t ”= bt, the model parameters ◊̂t+1 satisfy the forgery condition ◊t+1 = ◊̂t+1. In
theory, such an adversary can construct a valid execution trace that is unforgeable
with respect to D, but forgeable with respect to a trace obtained from a di�erent
dataset and hyperparameters. Formal statements about the existence of such
adversaries at high precision would unlock more practical applications that rely on
proof-of-learning logs [105].

One limitation of our check is that it works under the condition that the size
of the dataset is less than the model parameters, which is typically the case for
many deep learning models and datasets. However, future unforgeability checks can
consider the scenario where the number of model parameters is less than the dataset
size, and design checks that are conclusive. These scenarios might be more relevant
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to large language models, such as a T5-base transformer model [183, 187] (around
220 million parameters11) trained the C4 crawl dataset (estimated at 365 million
records) [183, 41].

5.7.2 Theoretical Complexity

Attacks proposed in [226] that find approximate forgeries (greedy) search the
space of minibatches with the smallest distance in parameter space to the targeted
model parameters. Instead, one can try running such search algorithm until an
exact forgery is found, if one wants to utilize them to answer the decision problem of
forgeability. However, as our evaluation points out, there might not be a solution for
exact forgery, in which case the search would exhaust all possible

1
m

k

2
minibatches

to decide that there is no solution. Our test is rank computation whose worst
running time is O(n · m2) where n and m are the number of model parameters
and, respectively, the dataset size. The computational di�culty of other search
procedures when exact forgery is possible is unknown; we briefly alluded to these
approaches in Section 5.3.2.

5.7.3 Repudiation Game

Let us assume that at time t, the ML trainer has trained an ML model with
some training dataset and releases publicly the ML model parameters ◊ at time t for
everyone to use, along with the claim that training dataset D1 was used. They have
logged every training step of the training process, along with making the training
reproducible. At time t + 1, the claimant becomes suspicious of the ML trainer’s
claim that D1 is the dataset they have trained on, and believes that they have
actually, at time t, trained on the training dataset D2 that contains their data.
For simplicity and without lack of generality, assume D2 = D1 fi {x}. Given the
claimant’s suspicion, can we verify if the ML trainer used x at time t? For that, at
time t+2, the ML trainer releases their training log with all the information required
to replay the execution of SGD and check that the training dataset D1 was indeed
used. A trusted third-party replays the execution of SGD using the information
released by the ML trainer and concludes that the final model parameters are the

11 https://github.com/google-research/text-to-text-transfer-transformer/blob/
main/released_checkpoints.md#t511
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same as the parameters ◊ released at time t, hence the trace is valid. We call this
the validity check. Is the validity check of the execution trace su�cient to resolve
this dispute? We have to consider that two worlds are possible: one where the ML
trainer is honest and one where the ML trainer is not honest. The main conundrum
is that we do not know in which world we are in.

(World 1) ML trainer is honest. If the ML trainer is honest, they have trained
on D1 at time t. Thus, if this is the world we live in, providing a valid execution
trace and checking if x œ D1 is su�cient to convince the judge and the claimant.

(World 2) ML trainer is dishonest. However, consider the alternative. If the
ML trainer is dishonest, then at time t they have lied about training with D1 and
have obtained ◊ from a di�erent dataset D2 = D1 fi {x}, containing the claimant’s
data x. There are two potential scenarios here. In the first scenario, the ML trainer
cannot produce a valid trace since their actual training log at time t is a log from D2.
Such a dishonest trainer is immediately caught by the validity check. The second
(and more interesting) scenario is that, at time t + 2, the dishonest ML trainer can
obtain a valid trace that results in ◊ using D1 since that is what they claimed to
have used at time t. In this case, the trace validity mechanism based on simply
replaying the executing of SGD would wrongly certify that the ML trainer has not
used sample x at time t. A valid execution trace and a simple membership query
x œ D1 is thus insu�cient to determine whether x was used or not at time t.

What is released at time t matters. What if at time t the ML trainer only
releases ◊ and does not divulge which training dataset was used? Then, a dishonest
trainer has more freedom in creating a valid trace that results in ◊. At time t + 2,
the ML trainer fabricates a valid trace and training dataset that does not contain x

such that the final model parameters are ◊. We refer to this as a pre-deployment
adversary (see Section 5.7.1). What if at time t the ML trainer not only releases
◊ but also the intermediate set of checkpoints, along with the claim that D1 was
used. If we are in world 2, then the model was trained on D2, and a validity-based
check would not be able to distinguish between an honest trainer and a dishonest
one. Then, at time t + 2, the ML trainer can come up with a di�erent selection of
minibatches for each training step that leads to exactly the same trace. This is the
adversary we model in this work.
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Relation to the one-step forgery game. The adversary in Section 5.2.2 is the
ML trainer whose aim is to modify only one training step of SGD to construct the
same trace starting from the claimed D1. Under this setup, with our proposed check,
LSBUnforgeability, if we are in the first world (ML trainer is honest), we can
soundly attest it. This is what we describe above as the post-deployment adversary
(Section 5.7.1). What remains for future work is to check if the ML trainer can
obtain a di�erent valid trace (i.e., not the same intermediate checkpoints) whose
final model parameters are ◊ starting from D1.

5.8 Related Work
Approximate Forgery & Applications. Prior work has shown that di�erent
minibatches can produce similar model parameters using SGD, with direct implica-
tion to applications such as unlearning, proof-of-learning, and membership inference
tests. A recent work [226] argues that approximate unlearning is not refutable or
auditable because forgery of minibatches that contain the to-be-unlearned samples
(say x) is possible. This implies that we could have obtained a similar model
parameter state had we used a di�erent minibatch (without x) from the training
dataset. Thus, one cannot distinguish whether these execution traces correspond to
the training dataset with the x samples. Another recent work [117] proposes using
approximate forgery for repudiating membership inference tests. In this application,
the authors have considered forging multiple checkpoints throughout the training
process in order to find similar execution traces for D and D ≠ x. The resulting
models have similar parameters up to some error in vector norms due to forging at
multiple checkpoints. On these models, membership inference attacks are not able
to distinguish whether x has been used. We motivated forgery using the proof-of-
learning logs introduced in [105], which allows a verifier or a third-party auditor to
check that 1) the computation was done over a given dataset and 2) that all the
steps of the computation have been done correctly to obtain a final set of parameters.
The verifier asks the ML owner / adversary to produce a sequence of batch indices
and intermediate model updates such that starting from the initialization one can
replicate the path to the final model parameters. Their proposed approach is to
select only a subset of checkpoints to verify the model parameters for. However,
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there is no guarantee that an adversary is not able to forge the minibatch (find
a di�erent from the one used by the model owner) to produce the desired model
parameters via SGD. In light of our results, we argue that one should consider exact
forgery under fixed-point precision, since white-box verifiers are able to examine the
forgery under all available precision, whereas previously demonstrated forgeries (i.e.,
with di�erent samples) have as high an approximation error as 10≠3 (in LŒ). Such
approximation errors in forgeries are much higher than ones that could be attributed
to floating-point errors—which we evaluated to introduce di�erences of the order
of 10≠14. In addition, [226] describes forgery under other setups, e.g., when one
considers similar datasets to the one used for training or where the initial model
parameters are not the same, i.e., not forgery at a checkpoint but rather across
multiple training steps at a time. These proposed problems are beyond the scope of
our results but are interesting future work.

Algebraic Precision. Our work highlights the role of algebraic precision in speci-
fying properties and drawing refutable conclusions about experimental observations
about training with SGD. This issue is shared with other prior works that are not
concerned with forgery as well. For instance, data reordering attacks on SGD distort
the training execution trace to an adversary’s advantage (e.g., longer convergence
times, drop in task performance) [209]. These attacks use alternative minibatches
from the same dataset reshu�ed or reordered to produce similar but di�erent model
parameters after some training steps. In our experiments, we also show that it is
possible to obtain this type of training divergence under minibatch reshu�ing to
change the training execution trace because of floating-point errors that propagate
(Section 5.6.4). We pinpoint that these phenomena are due to the non-associativity
of floating-point computations. If one did not have the exact order they would not be
able to reproduce the execution trace of the training algorithm. This observation is
also related to the problem of reproducibility in machine learning research which has
been a known issue in creating artifacts [180, 223, 176]. To this end, our approach
works under fixed-point precision, where additions have the required algebraic proper-
ties such as associativity and commutativity. There is on-going research into making
training available in lower or fixed-point precision [71]. Quantization techniques
are commonly used to accelerate inference of deep learning models but these do
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not apply to our setup since the gradient update computation is still being done
in floating-point [96, 97] or in bifurcation/mixed precision (both floating-point and
8-bit integer) [11]. Other techniques propose complete fixed-point precision training
pipelines that achieve good task performance [137, 70, 39]. On the other hand,
these errors that accumulate because of choosing a di�erent order of samples during
SGD introduce some noise that helps making training data less “distinguishable”.
This is in line with recent work on repudiating membership inference attacks using
approximate forgery [117, 116] but other types of noise have been purposefully added
to the gradient computation to add privacy. For instance, it is common to add
Laplace or Gaussian noise to gradients in order to achieve di�erential privacy [1].
Noise is also added to gradients in order to defend against bias attacks in inverting
gradients [5, 52].

Finding Pre-images for Neural Networks. Our work considers finding collisions
in the gradient update step due to freedom of choosing the minibatches in training.
There has been research in understanding collisions at inference time rather than
during training, for instance, when two di�erent inputs produce similar [134] or
the same activations or logits with a given ML model [163]. The problem of exact
forgeries in this thesis is that of finding a second pre-image in gradient descent,
whereas prior work on gradient inversion considers the problem of finding any pre-
image—finding the input to the model from the gradients [263]. Without bias in
the model architecture, one work shows that recovering input data points can be
uniquely determined from the gradients [52]. More advanced gradient inversion
techniques deal with di�erent types of neural networks [68, 103, 262]. Gradient
inversion considers recovering the input data sample that results in a given gradient
vector. However, recovering the set of data samples used in a minibatch given a
gradient update vector has yielded much lesser success thus far, though attacks
exist [255, 94].

5.9 Summary
In this chapter, we identified mild and su�cient conditions under which gradient

updates at one step of standard SGD training are unforgeable. Ours is the first
result on proving unforgeability to the best of our knowledge. We found that these
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conditions are satisfied for the same benchmarking setup as prior work, i.e., single-
step forging is not possible for LeNet5 and ResNet-mini neural networks on MNIST
and CIFAR10, respectively. Our work explains that algebraic precision plays a
crucial role in making refutable claims about model comparison. We believe these
aspects matter practically to forgery-based security arguments and beyond.

5.10 Future Work
There are a number of interesting open problems that stem from the forgery

property of SGD traces. The work laid out in this chapter highlights the need
for algebraic precision in definitions of forgery. In particular, a key insight is that
forgeability of traces is well-defined under fixed-point arithmetic where the addition
is associative. However, most of the machine learning frameworks use IEEE 754
floating-point arithmetic. This is one of the sources of non-determinism that prior
work mentions, among others. In order to have any meaningful properties, we
have to be careful when analyzing the rounding errors introduced by computing
in floating-point. We can bound the tolerance ”F P that results from summing the
vectors in any order in floating-point (e.g., via semi-numerical analysis). If that
bound is smaller than the bound derived by the attack (”a ¥ 10≠4), it prompts the
question of approximate unforgeability: Are forgeries possible which are within the
tolerance of ”F P ? We require novel techniques that look at geometric properties of
the gradient matrix that allow us to reason about distances between vectors. Future
work should consider such questions to extend our ability to reason about traces in
more practical setting.

Besides the issue of computer representation, there are storage and privacy that
hinder the practicality of our approach based on recording the training logs. The
ML trainer has to store all training steps and share all the inputs with the verifier,
including hyperparameters and training dataset. While it is common practice to
store intermediate checkpoints every X training steps (commonly used are values
for X are 100 or 1, 000), the forgery game presented in this chapter assumes all
training steps are recorded in the trace. The verifier has to recompute and check
every training step of the trace in order to verify that the trace is unforgeable.
Moreover, the verifier is trusted since all the trainer’s information (including training
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dataset) is required. Thus, if the training dataset contains private and sensitive
information the ML trainer may not be willing to share their traces. Future work
can consider the more practical setting of verifying intermediate checkpoints rather
than the whole trace. In this case, a probabilistic forgery game could be derived
based on a security trade-o� parameter. Another interesting line of work is to prove
unforgeability without revealing the training dataset.

We refer the reader to Section 5.7 where we discuss the distinction whether
the claim of using dataset D1 happens at t (in which case the adversary acts
post-deployment) or not (in which case the adversary acts pre-deployment). Even
under the post-deployment model, can the ML trainer manipulate only the training
procedure to obtain a forged trace? Thus, without making changes to D1 or the final
model parameters ◊, can they recreate a trace that does not use a target sample
x? This is an interesting future work direction. While prior work has shown that
training logs are forgeable, they do so either by considering approximate forgeries
that are far larger than rounding o� errors of floating-point computation [53, 226],
or by giving the adversary the ability to change the dataset D1 [261]. Future work
can consider improving forgery attacks to settle the question of how hard it is to
forge traces. The existence of an e�cient adversary with fewer assumptions that
can forge traces given a set of model parameters is consequential to membership
inference tests, unlearning auditing, and model ownership. As a result, future work
should consider this direction, and search for techniques that resolve these issues
systematically.
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Chapter 6

Conclusion
In this thesis, we identified gaps several foundational aspects of security in

machine learning, from security definitions, models of reasoning about the train-
ing process, to sound procedures for statistically verifying security. Our research
closes such gaps by putting forward precise definitions of forgery, i.e., when two
di�erent sets of samples lead to the same model. Our work is the first to show
that stochastic gradient descent steps are collision-resistant computations under
mild checkable conditions, which is in contrast with claims of existing works on the
same experimental setup. Our approach reasons about execution traces of stochastic
gradient descent, and considers forgeries of one training step. We show why existing
approximate forgery definitions su�er from a divergence phenomenon, namely after
subsequent training steps, the di�erences in the model parameters increase by 100◊
between the approximately forged execution trace and the original traces. To reason
about the forgeability of traces, we proposed LSBUnforgeability, a test that is
e�cient and conclusively shows unforgeability for all the considered experimental
setups. LSBUnforgeability is a first step towards practical mechanisms for
solving disputes over data non-repudiation.

This thesis proposes the first causal model for stochastic gradient descent for
studying memorization versus generalization. Memorization has been highlighted as
a privacy weakness in training machine learning models via membership inference
attacks, whose goal is to infer if a sample belonged to the training dataset. It is
not well understood, however, why they arise. Are they a natural consequence of
imperfect generalization only? Which underlying causes should we address during
training to mitigate these attacks? Towards answering such questions, we propose
the first approach to explain membership inference attacks and their connection to
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CHAPTER 6. CONCLUSION

generalization based on principled causal reasoning. We o�er causal graphs that
quantitatively explain the observed MI attack performance achieved for 6 attack
variants. We refute several prior non-quantitative hypotheses that over-simplify
or over-estimate the influence of underlying causes, thereby failing to capture the
complex interplay between several factors. Our causal models also show a new
connection between generalization and MI attacks via their shared causal factors.
Our causal models have high predictive power (0.90), i.e., their analytical predictions
match with observations in unseen experiments often, which makes analysis via
them a pragmatic alternative.

Finally, this thesis proposes the first frameworks for statistical verification of
properties with soundness guarantees in both white-box and black-box access to the
machine learning models. We demonstrate the utility of these sound procedures in
several security applications for which we formalize counting queries. In summary, we
contribute to precise formalisms and algorithmic tools for rigorous security analysis,
and give concrete security applications where our frameworks show utility.
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Appendix A

Causal Analysis of Membership In-
ference Attacks Appendix

A.1 Detailed Analysis of Causal Queries
We provide more detailed explanations of our results analyzing membership

inference (MI) attack causes in this section. Our causal models are available in
Appendix A.2.

In Table A.1, we show the di�erent configurations we trained.

A.1.1 Analysis of MI Attacks

Variance and Bias. We link the variance from the bias-variance decomposition
with the “closeness” of the shadow models’ prediction. We find that the variance
generally plays a role in the MI attack, as our causal graphs identify a path from it to
the MI attack accuracy. In particular, the variance on unseen samples has generally
a larger impact for the multiple shadow model attack and the single shadow model
attack with the label feature as input.

CE vs. MSE-trained models. The MI attacks have di�erent mechanisms not
just per attack but also depending on the loss function. We find that the variances
for MSE models do not have a significant impact on the MI attack performance.

Table A.1. Di�erent configurations of models we trained and analyzed.

Dataset CE MSE
With Scheduler Without Scheduler With Scheduler Without Scheduler

CIFAR10
CIFAR100 - -

MNIST
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We observe that for MSE-trained models, the variances of both the training data
(members) and testing data (non-members) are typically smaller than their CE
counterpart. This means that there is less variance among models and, thus, for MSE-
trained models, shadow models’ prediction vectors would have a similar distribution
to that of the target model. This case explains the prior works’ intuition that one
does not require multiple shadow models—even one shadow model captures the
behaviour of the target model closely.

Training set size and model complexity. For all of the evaluated attacks
and loss functions, we find that larger training set size causes a lower MI attack
accuracy. We also validate that a larger model complexity causes a better MI
attack performance. The changes in these features are related to generalization, not
only the MI attack performance. Such findings validate the prior work hypotheses
(Q3 and Q4 in Table 4.3). Our analysis, though, singles out the causal e�ect of
the training size on the MI attack accuracy, when it is independent of the model
complexity. If we simultaneously changed both of them, we would be able to find
a sweet spot of the best MI attack accuracy and how well the model generalizes.
While this has been studied in prior work, with our method we can confirm how
these two factors independently influence the privacy leakage.

Multiple Shadow Model Attack. For CE-trained models, a larger overfitting
gap (AccDiff) causes the MI attack accuracy to increase (ShadowAcc), even when
controlling for bias. This validates Q1 from prior work (Table A.2). The di�erences
in the behaviour of the model, e.g., its unique distribution of the prediction vector,
influences the attack performance. We find that the variance of the prediction
vectors for the training set (members) causes the accuracy of the multiple shadow
model attack to increase very slightly. The di�erences in the prediction vector of
the non-members (as measured by TestVar) has a greater e�ect on the MI attack
accuracy. This validates the prior work hypothesis (Q2) that the di�erences in the
shadow and target model a�ect the MI attack. The estimated ATE of TrainVar on
ShadowAcc is 0.02, whereas that of TestVar is 0.94 (Table A.2). For MSE-trained
models, the gap in AccDiff does not cause an increase in the multiple shadow model
attack accuracy–the inferred model does not have a causal path to the MI attack.
The variance in the non-member predictions has a causal e�ect on the MI attack
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accuracy, though it is less than for CE-trained models (Table A.3). There is no
causal e�ect of the variance of the members on the MI attack accuracy. These two
findings invalidate prior work hypotheses for MSE-trained models.

Table A.2. We compute the average e�ect on the 6 evaluated MI attacks of the
causes mentioned in prior works for CE-trained models.

Attack Feature ATE p-value

MLLeakAcc AccDiff 0.1798 4.82E-58
MLLeakAcc CentroidDist 0.0000 0.00E+00
MLLeakAcc LossDiff 0.0000 0.00E+00
MLLeakAcc NumParams 0.1609 1.42E-04
MLLeakAcc TestBias 3.9476 3.55E-06
MLLeakAcc TestVar 0.8342 1.26E-06
MLLeakAcc TrainBias 0.0000 0.00E+00
MLLeakAcc TrainSize -0.0890 1.24E-06
MLLeakAcc TrainVar -0.3385 4.25E-02
MLLeakAcc-l AccDiff 0.1817 2.03E-95
MLLeakAcc-l CentroidDist -0.2877 1.53E-07
MLLeakAcc-l LossDiff 0.0000 0.00E+00
MLLeakAcc-l NumParams 0.1607 1.64E-05
MLLeakAcc-l TestBias 3.3946 5.15E-05
MLLeakAcc-l TestVar 0.8382 3.30E-04
MLLeakAcc-l TrainBias 0.0000 0.00E+00
MLLeakAcc-l TrainSize -0.1052 2.10E-09
MLLeakAcc-l TrainVar -0.2395 1.95E-02
MemGuardAcc AccDiff 0.0805 5.04E-11
MemGuardAcc CentroidDist 0.1410 6.87E-16
MemGuardAcc LossDiff 0.0000 0.00E+00
MemGuardAcc NumParams 0.0393 1.91E-02
MemGuardAcc TestBias 1.7732 4.67E-03
MemGuardAcc TestVar 0.1690 5.56E-02
MemGuardAcc TrainBias 0.0000 0.00E+00
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Attack Feature ATE p-value

MemGuardAcc TrainSize -0.0587 1.77E-09
MemGuardAcc TrainVar -0.0345 1.99E-01
ShadowAcc AccDiff 0.2949 1.54E-136
ShadowAcc LossDiff 0.0000 0.00E+00
ShadowAcc NumParams 0.1536 1.03E-05
ShadowAcc TestBias 2.8590 3.14E-05
ShadowAcc TestVar 0.9483 1.40E-04
ShadowAcc TrainBias 0.0000 0.00E+00
ShadowAcc TrainSize -0.1137 2.03E-13
ShadowAcc TrainVar 0.0243 3.20E-02
ThreshAcc AccDiff 0.2715 5.63E-83
ThreshAcc LossDiff 1.4711 2.48E-01
ThreshAcc NumParams 0.1374 1.33E-01
ThreshAcc TestBias 1.6541 1.85E-04
ThreshAcc TestVar 1.0284 1.44E-03
ThreshAcc TrainBias 0.0000 0.00E+00
ThreshAcc TrainSize -0.0893 2.64E-09
ThreshAcc TrainVar 0.2026 2.19E-03

MLLeakTop3Acc AccDiff 0.1773 3.14E-59
MLLeakTop3Acc CentroidDist 0.2741 8.65E-21
MLLeakTop3Acc LossDiff 0.0000 0.00E+00
MLLeakTop3Acc NumParams 0.1415 8.46E-02
MLLeakTop3Acc TestBias 3.8692 1.36E-06
MLLeakTop3Acc TestVar 0.7784 6.85E-07
MLLeakTop3Acc TrainBias 0.0000 0.00E+00
MLLeakTop3Acc TrainSize -0.0937 8.03E-08
MLLeakTop3Acc TrainVar -0.3431 3.55E-02
MLLeakTop3Acc-l AccDiff 0.1578 4.96E-54
MLLeakTop3Acc-l CentroidDist 0.2753 6.41E-19
MLLeakTop3Acc-l LossDiff 0.0000 0.00E+00
MLLeakTop3Acc-l NumParams 0.1602 6.13E-05
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Attack Feature ATE p-value

MLLeakTop3Acc-l TestBias 3.9796 9.55E-07
MLLeakTop3Acc-l TestVar 0.7538 4.85E-07
MLLeakTop3Acc-l TrainBias 0.0000 0.00E+00
MLLeakTop3Acc-l TrainSize -0.0971 5.57E-08
MLLeakTop3Acc-l TrainVar -0.3991 2.93E-02

Table A.3. We compute the average e�ect on the 6 evaluated attacks of each
features over the MSE-trained models.

Attack Feature ATE p-value

MLLeakAcc AccDiff 0.0000 0.00E+00
MLLeakAcc CentroidDist 0.0000 0.00E+00
MLLeakAcc LossDiff 0.2719 7.31E-63
MLLeakAcc NumParams 0.1787 1.18E-01
MLLeakAcc TestBias 0.0000 0.00E+00
MLLeakAcc TestVar 0.0000 0.00E+00
MLLeakAcc TrainBias 0.0000 0.00E+00
MLLeakAcc TrainSize -0.0857 3.96E-03
MLLeakAcc TrainVar -0.0472 9.27E-01
MLLeakAcc-l AccDiff 0.0000 0.00E+00
MLLeakAcc-l CentroidDist 0.0000 0.00E+00
MLLeakAcc-l LossDiff 0.3416 1.25E-103
MLLeakAcc-l NumParams 0.1647 6.61E-02
MLLeakAcc-l TestBias 0.0000 0.00E+00
MLLeakAcc-l TestVar 0.0000 0.00E+00
MLLeakAcc-l TrainBias 0.0000 0.00E+00
MLLeakAcc-l TrainSize -0.1015 2.11E-03
MLLeakAcc-l TrainVar 0.0618 5.31E-01
MemGuardAcc AccDiff 0.0000 0.00E+00
MemGuardAcc CentroidDist 0.0903 9.28E-01
MemGuardAcc LossDiff 0.1278 6.82E-03
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Attack Feature ATE p-value

MemGuardAcc NumParams 0.0469 1.50E-01
MemGuardAcc TestBias 0.0000 0.00E+00
MemGuardAcc TestVar 0.0000 0.00E+00
MemGuardAcc TrainBias 0.0000 0.00E+00
MemGuardAcc TrainSize -0.0371 9.67E-03
MemGuardAcc TrainVar 0.0023 9.04E-01
ShadowAcc AccDiff 0.0000 0.00E+00
ShadowAcc LossDiff 0.6194 2.86E-01
ShadowAcc NumParams -0.0055 9.43E-03
ShadowAcc TestBias 0.1960 2.39E-01
ShadowAcc TestVar 0.2057 1.25E-01
ShadowAcc TrainBias 0.6174 1.28E-05
ShadowAcc TrainSize -0.0881 4.25E-03
ShadowAcc TrainVar 0.0277 3.94E-01
ThreshAcc AccDiff 0.0000 0.00E+00
ThreshAcc LossDiff -0.6702 1.20E-12
ThreshAcc NumParams 0.0111 3.30E-02
ThreshAcc TestBias 0.0631 3.61E-01
ThreshAcc TestVar 0.2835 3.88E-01
ThreshAcc TrainBias -0.2563 3.44E-05
ThreshAcc TrainSize -0.0954 2.91E-03
ThreshAcc TrainVar 0.0450 2.47E-01

MLLeakTop3Acc AccDiff 0.0000 0.00E+00
MLLeakTop3Acc CentroidDist 0.0000 0.00E+00
MLLeakTop3Acc LossDiff 0.2147 8.43E-10
MLLeakTop3Acc NumParams 0.1107 6.76E-02
MLLeakTop3Acc TestBias -0.0580 9.64E-02
MLLeakTop3Acc TestVar 0.2350 5.08E-02
MLLeakTop3Acc TrainBias 0.0000 0.00E+00
MLLeakTop3Acc TrainSize -0.0888 1.72E-03
MLLeakTop3Acc TrainVar -0.1551 7.91E-01
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Attack Feature ATE p-value

MLLeakTop3Acc-l AccDiff 0.0000 0.00E+00
MLLeakTop3Acc-l CentroidDist 0.0000 0.00E+00
MLLeakTop3Acc-l LossDiff 0.2783 1.46E-65
MLLeakTop3Acc-l NumParams 0.1645 7.26E-02
MLLeakTop3Acc-l TestBias 0.0000 0.00E+00
MLLeakTop3Acc-l TestVar 0.0000 0.00E+00
MLLeakTop3Acc-l TrainBias 0.0000 0.00E+00
MLLeakTop3Acc-l TrainSize -0.0935 6.53E-03
MLLeakTop3Acc-l TrainVar -0.0627 8.80E-01

Single Shadow Model Attacks. The largest influence on the single shadow
model accuracy (MLLeakTop3Acc (-l)) is the centroid distance between members
and non-members (CentroidDist), thus confirming prior work hypothesis (Q8).
Our approach singles out the e�ect of the CentroidDist from other variables such
as NumParams and TrainSize which indirectly a�ect the CentroidDist itself. In
Table A.2, the estimated ATE of the centroid distance on the MLLeakTop3Acc is
0.27. We find that the variance of the outputs of the models is a cause for the single
shadow model attack, to various degrees depending on the type of attack. Prior work
overlooks the di�erences in the prediction vectors between the target and shadow
model. Thus, our analysis refutes prior work (Q5). We also refute the hypothesis that
there are no di�erences in taking only the top-3 prediction vs. the whole prediction
vector (Q7). There are a number of key di�erences in the causes of these variations
of the single shadow model attack. The variance in the non-members’ prediction
vectors (TestVar) is a cause for the single shadow model attack that uses the whole
prediction vector and the label as input features (MLLeakAcc-l). Interestingly,
the accuracy of the attacks that take the top-3 predictions (MLLeakTop3Acc and
MLLeakTop3Acc-l) is less sensitive to the variance of the prediction vectors compared
to the single shadow model attack that uses the whole prediction vector, as well as
the multiple shadow model attack (Table A.2). Our observation is that the variance
influences the attacks that consider the whole prediction vector compared to ones
that take only the top predictions as models agree on top predictions more than on
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the last predictions. A larger causal e�ect of the variance means that the attack is
sensitive to the specific changes in the prediction vector influenced by the dataset or
randomness. Thus, attacks that are robust to these changes on average can more
readily transfer membership information beyond the dataset and architecture of the
target model.

Threshold-based Attack. LossDiff is a significant cause for the threshold attack
accuracy, as expected. On average, the variance of the prediction vectors significantly
influence the average performance of the loss-based attack. We find the ATE of the
LossDiff on the ThreshAcc to be close to 1.37 (Table A.2). On closer inspection,
beyond the prior work hypothesis, we find that there are other causes. For instance,
the variance of the prediction vectors causes the MI attack accuracy. Both TrainVar

and TestVar have an estimated ATE of around 0.20 and 1.02, respectively. For
models trained with MSE, the train-to-test loss di�erence (LossDiff) consistently
has a causal e�ect on the MI attack performance rather than the train-to-test
accuracy gap.

A.2 Causal Models
For each attack of the 6 attack variants (with and without a defense), we show

the resulting graphs below.

195



APPENDIX A. CAUSAL ANALYSIS OF MEMBERSHIP INFERENCE
ATTACKS APPENDIX

TrainAcc

TestAcc

AccDiff

TrainLoss

TestLoss

LossDiff

TrainVar

TestVar

TrainBias2

TestBias2

NumParams

CentroidDistance.origin.

TrainSize

MLLeakAcc

(a) The causal model Etio infers for the
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target MLLeakAcc-l (MSE-trained models).

Figure A.1. Etio graphs for the single shadow model with top-10 prediction
vector (with and without label) as input to the attack model.
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(d) The causal model Etio infers for the
target MLLeakTop3Acc-l (MSE-trained

models).

Figure A.2. Etio graphs for the single shadow model that takes the top-3
prediction vector (with and without label) as input to the attack model.
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Figure A.3. The causal model Etio infers for the multiple shadow model attack
for CE and MSE-trained models, where the target node is ShadowAcc.
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Figure A.4. The causal model Etio infers for the multiple shadow model attack
for CE and MSE-trained models, where the target node is ShadowAcc.
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Figure A.5. Etio graphs for the single shadow model with top-10 prediction
vector (with and without label) as input to the attack model. The models have been
trained with L2-regularization (weight decay=5 ◊ 10≠3).
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(c) The causal model Etio infers for
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Figure A.6. Etio graphs for the single shadow model that takes the top-3
prediction vector (with and without label) as input to the attack model. The models
have been trained with L2-regularization (weight decay=5 ◊ 10≠3).
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(a) The causal model Etio infers for
the target ShadowAcc (CE-trained

models with regularization).
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Figure A.7. The causal model Etio infers for the multiple shadow model attack
for CE and MSE-trained models, where the target node is ShadowAcc. The models
have been trained with L2-regularization (weight decay=5 ◊ 10≠3).
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(a) The causal model Etio infers for
the target ThreshAcc (CE-trained

models with regularization).
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Figure A.8. The causal model Etio infers for the multiple shadow model attack
for CE and MSE-trained models, where the target node is ThreshAcc. The models
have been trained with L2-regularization (weight decay=5 ◊ 10≠3).
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(a) The causal model Etio infers for
the target MemGuardAcc (CE-trained

models).
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Figure A.9. The causal model Etio infers for the single shadow model on
MemGuard defended models. The target node in this case MemGuardAcc represents
the accuracy of the MLLeak attack with top-3 predictions on defended models.
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Appendix B

Forgeability Evaluation Appendix

B.1 Divergence Results
We ran the approximate forgery [226] to select batches (M = 400) that minimize

the L2 norm for both ResNet-mini and LeNet5 on CIFAR10 and MNIST, respectively
(Figure B.1). We observe the same trend for the L2 norm as we did for the LŒ norm.
The training diverges in L2 norm in less than 100 training steps. This suggests that
approximate forgeries are detectable for a verifier that compares the benign training
and the forged run. In Figure B.2, we demonstrate that with extended training of
LeNet5 on MNIST, the divergence (in L2) keeps increasing. This suggests that a
single approximate forgery determines a significant change in the model parameters
for subsequent training steps.

B.2 Approximate Forgery Scalability
We ran approximate forgery [226] procedure and selected a larger number of

batches, i.e., M œ {400, 600, 800}. Our aim was to evaluate if the approximate
forgery attack can find minibatches which result in closer model parameters in LŒ

distance. We find that the improvement is marginal for all of the evaluated models
(MNIST, ResNet-mini and VGG-mini), while the time taken doubles as the batch
size also doubles (Table B.1).
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Figure B.1. The forged model parameters diverge after subsequent training (in L2
distance) on 25 checkpoints for ResNet-mini on CIFAR10 and LeNet5 on MNIST.
The solid line indicates the mean L2 distance over the 25 checkpoints while the
translucent region indicates the maximum and the minimum L2 distance boundaries
for the corresponding architecture.

Figure B.2. Extended training shows even larger divergence in L2 distance between
for LeNet5 on MNIST over 5 checkpoints. The solid line indicates the mean L2
distance over the 5 checkpoints while the translucent region indicates the maximum
and the minimum L2 distance boundaries for the corresponding architecture.
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Archictecture M Time (s) LŒ
(Avg, Max, Min)

Avg. L2
(Avg, Max, Min)

LeNet5
400 205.58 (6.62e-04, 1.16e-03, 3.12e-04) (9.43e-03, 2.21e-02, 8.42e-04)
600 165.85 (6.38e-04, 1.11e-03, 3.12e-04) (9.26e-03, 2.10e-02, 7.09e-04)
800 206.21 (6.23e-04, 1.02e-03, 1.56e-04) (9.10e-03, 2.33e-02, 4.93e-04)

ResNet-mini
400 2010.92 (1.55e-03, 2.28e-03, 3.12e-04) (3.21e-02, 5.12e-02, 1.94e-03)
600 2817.59 (1.51e-03, 2.28e-03, 3.12e-04) (3.16e-02, 5.12e-02, 1.91e-03)
800 3768.89 (1.48e-03, 2.23e-03, 3.13e-04) (3.13e-02, 5.18e-02, 1.93e-03)

VGG-mini
400 4314.00 (6.62e-04, 1.16e-03, 3.12e-04) (9.43e-03, 2.21e-02, 8.42e-04)
600 6711.57 (6.38e-04, 1.11e-03, 3.12e-04) (9.26e-03, 2.10e-02, 7.09e-04)
800 8489.83 (6.23e-04, 1.02e-03, 1.56e-04) (9.10e-03, 2.33e-02, 4.93e-04)

Table B.1. The approximate forgery attacks only marginally improves with in-
creasing the number of candidate minibatches (M) considered from 400 to 800. The
time represents the total time to load the model, sample the minibatches and pick
the best update for all 25 checkpoints considered.
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