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Abstract

Towards Practical Distribution Testing
by
Yash Pote

As systems that employ samplers are deployed in safety-critical software, there is
a need for tests that can verify the samplers’ statistical correctness. This raises the
question: For a sampler P and a target distribution Q, can we practically test whether P
samples from a distribution close to Q?

Samplers can be accessed in a black-box manner, where one can only observe
samples drawn from the sampler. Samplers can also be accessed in a white-box
manner, where the code is available and can be reasoned about. In the high-
dimensional setting, where the domain is {0, 1}* for a large N, testing with black-
box access is known to be statistically intractable; and in the white-box setting,
testing is known to be computationally intractable. Consequently, richer "grey-box"
models, such as those allowing conditional sampling, have emerged as promising
alternatives.

In this thesis, we develop grey-box algorithms that are fast in theory and
practice. In the first part, we focus on the decision variant of the problem, where
we develop algorithms that can distinguish between close and far distributions.
To this end, we develop a technique that uses pairwise conditioning to improve
the query complexity from exponential to linear in V. In our experiments we use
this algorithm to design a testing tool for combinatorial samplers.

In the second part, we address the estimation variant, where we estimate the
distance between distributions. We first tackle this for distributions with tractable
representations, such as probabilistic circuits. We then extend our approach to the
broad class of self-reducible models, for which we build the first polynomial query
distance estimator. Together, these algorithms provide a toolkit for the practical

statistical verification of combinatorial samplers.
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Chapter 1

Introduction

There is nothing like looking, if
you want to find something.
You certainly usually find
something if you look, but it is
not always quite the something

you were after.

J.R.R. Tolkien, The Hobbit

In this thesis, we study the problem of distribution testing, which can be framed
as: Given two distributions P and Q, determine whether P is close to Q.

Distribution testing is one of the main topics of study in statistics and has been
studied in several different contexts over the last two centuries [66]. Classically,
the analysis of the testing problem has been asymptotic, i.e., where the number
of samples drawn from the distribution is assumed to go to infinity. In modern
settings, we encounter high-dimensional distributions, i.e., distributions over n-
dimensional objects such as texts or images, where n is the size of the object and
is assumed to be large. To simplify things, we can consider the distributions to
be over {0, 1}". Since these high-dimensional distributions have extremely large
support, the classical asymptotic results fall short, and recent work in the area has
focused on tests that provide finite-sample non-asymptotic guarantees.

The first such non-asymptotic test was devised by Goldreich and Ron [52] for
the problem of uniformity testing, where one has to determine whether P is the
uniform distribution or e-far from uniform'. The test was black-box in the sense

that the only way to interact with the distribution was via the drawing of samples.

n total variation distance, defined later in Section 2



The sample complexity of the test was 2(2%/?), and this dependence was shown to
be tight by Paninski [77].

The exponential lower bound on the sample complexity gave an impetus to
research into opening up the black box and exploiting the fact that, in practice,
distributions frequently offer more powerful access. One of the directions taken

was in the study of conditional oracle models of accessing distributions.

1.1 Oracles for Faster Distribution Testing

Conditional Oracles To sidestep the exponential lower bounds on testing, the
conditional sampling model, or COND, was introduced independently by Chakraborty
et al. [27] and Canonne et al. [23], as a more powerful way to access distributions.

A COND oracle for distribution D over {0, 1}" takes as inputa set S C {0, 1}" with
D(S) > 0, and returns a sample i € S with probability D(i)/D(S). It has been
shown that the use of the COND oracle and its variants drastically reduces the
sample complexity of many tasks in distribution testing [1, 51, 23, 27, 12, 61, 13, 36,
24,74]. An extensive treatment of the subject can be found in a survey by Canonne
[21].

In this thesis, we consider two restricted variants of COND:

1. Pair-conditioning (PCOND): a special case of the COND oracle, introduced
by [20] with the restriction that |S| = 2, i.e., the size of the conditioning set
has to be two. As we will see later in the thesis, the PCOND model is suitable

for testing of SAT samplers.

2. Subcube Conditioning (SUBCOND): the SUBCOND model allows condition-
ing only on sets that are subcubes of the domain. With a view towards plausi-
ble conditional models, Canonne et al. [23], Bhattacharyya and Chakraborty
[12] introduced the SUBCOND model, which is particularly suited to the
Boolean hypercube {0, 1}".

Other Oracles With the same goal of designing tests with polynomial sample

complexity, a different kind of oracle, known as the DUAL oracle, was proposed



by Canonne et al. [23]. The DUAL oracle allows one to sample from a given distri-
bution and also query the distribution for the probability of arbitrary elements
of the domain. A weaker form of DUAL is the APPROXDUAL oracle which allows
approximate sampling and returns the approximate probability. In this thesis, we
will consider distributions that offer DUAL, and APPROXDUAL access.

A similar oracle, not considered in this thesis, is the probability revealing PR
oracle introduced by Onak and Sun [75]. Unlike the DUAL oracle, the PR oracle
only returns the probability of the elements that have been sampled rather than

arbitrary elements.

Oracles and Costs Our choice of oracles is motivated by practical considerations.
While COND is the most flexible, and therefore useful oracle to query;, it is also
the most expensive to implement, requiring 2" random bits merely to describe
a single conditional set, in the worst case. Even for the restricted oracles we use,
we find that in practice the oracle calls are significantly more expensive than
sampling. Hence, wherever possible we try to minimise the number of queries
to the expensive oracles, while accepting a trade-off of an increased number of
queries to the cheap oracles.

Bhattacharya and Valiant [8] studied the trade-off problem for equivalence
testing, in which one has to determine whether P = ) or dry (P, Q) > ¢, having
sample access to both P, and (). In their setting, the cost to draw samples from P
and () are unequal, hence they show the optimal trade-off where one can draw
fewer samples from P while drawing a greater number from (). We do not explore

the trade-off formally in this thesis, and we leave it for future work.

1.2 Problem Statements

The main problem we are interested in is: Given two distributions P and Q, determine
whether P is close to Q. We will make this question more formal and split the

investigation into two themes: decision and estimation.



1.2.1 The Decision Problem

Given as input two distributions P and Q over {0, 1}" , along with parameters ¢, 7

suchthat0 <e<n<1l,and 0 <6 <0.5,
1. With probability > 1 — ¢ return Accept if do(P, Q) < ¢
2. With probability > 1 — § return Reject if dpy (P, Q) > 1

We will define dy and d., distance functions, and discuss the motivations behind
the choice later in Chapter 2.2. However, to provide an intuition, we visualize the

problem statement in the following diagram.

doo(P, Q) > ¢,

drv(P,Q) <n

At the center, we have the distribution P, and the green disk represents all
the distributions that are e-close in d., to P, while the red region represents the
distributions that are n-far from P. As in the definition, we want to, with high
probability, return Accept for all O that are in the green region and return Reject for
all Q in the red. Notice that there is also a band of yellow in between that represents
the distributions for which we do not guarantee correctness. This band is essential
for the decision problem and, as discussed later more formally, determines the

query complexity of the test.



The first part of the thesis deals with the decision problem, and we present two
algorithms designed to solve the problem, Barbarik2 and Barbarik3, in Chapters 3
and 4 respectively. Barbarik2 generalizes the tolerant uniformity test Barbarik [26]
to arbitrary discrete distributions, and like Barbarik, uses the PCOND oracle to
achieve scalability in practice.

To scale further and to show a polynomial query complexity, we present
Barbarik3, another PCOND based algorithm that uses bucketing to split the prob-
lem into individually tractable parts. Barbarik3 requires O(n) oracle queries to solve
the decision problem in the worst case, where n is the number of dimensions of
the domain.

We focus on combinatorial samplers as the objects of experimental investigation,
and we conduct a detailed evaluation of these two algorithms, providing the

complete data later in the appendix sections A.1 and A.2.

1.2.2 The Estimation Problem

Estimation is a quantitative generalization of the decision problem, where instead
of a 0-1 decision, we provide an estimate of how far P and Q are. Formally, given
as input two distributions P and Q over {0, 1}", along with parameter ¢ such that

0<e<1l,and 0 < § < 0.5, return est such that
Pl"[dTv(P, Q) — & S est S dTv(P, Q) + 8] Z 1-9¢

In the second part of the thesis, we deal with the estimation question, and we
present our contribution in two chapters. The first chapter (Chapter 5) deals with
our research into distance estimation in probabilistic circuits, which are a class of
ML models that offer tractable DUAL access. Here, we analyze the computational
complexity of distance estimation and present some lower and upper bounds with
respect to the underlying distribution representation. Furthermore, we design and
implement the estimator for the models that allow polynomial time estimation.
We present the complete set of results in appendix section A.3.

Then, in the second chapter (Chapter 6), we tackle the longstanding open
problem of distance estimation in the conditional sampling model. Although there
are many polynomial query algorithms known for the decision problem, to date,

the best-known algorithm for distance estimation, even with full COND access,

5



is exponential in n. We present a part of our ongoing work in designing the first
polynomial time distance estimation algorithm that uses SUBCOND, a restricted
variant of COND that has the advantage of being computationally plausible to

implement.



Chapter 2

Preliminaries

A probability distribution D over the domain (2 is a function D : 2 — [0, 1] such
that >°,cq D(0) = 1. In particular, we will focus on distributions over the Boolean
hypercube {0, 1}". We use D(0) to denote the probability of an element o € {0,1}",
for a distribution D. For a set S C {0, 1}", we use the notation D(.S) to denote the
probability of the set S, i.e. D(S) = >_,c5 D(0).

We will use Dy to indicate the conditional distribution generated when D is

conditioned on S. Formally,

Definition 1 (Conditioning). For D(S) > 0, and for some o € {0,1}",

1 |0 ifo &S
P = o)
D(o) ifoelS
We denote by [n] the set {1, ...,n}. For a random variable v, the expectation is

defined as E[v] and the variance as V|[v].

2.1 Complexity Basics

The polynomial hierarchy (PH) contains the classes ¥} (NP) and II} (co-NP)
along with generalizations of the form XF and IT¥ where IT¥,; = co-NP™ and
»F | = NP [90]. The classes %37 and I17 are said to be at level i. If it is shown that
two classes on the same or consecutive levels are equal, the hierarchy collapses to
that level. Such a collapse is considered unlikely, and hence is used as the basic
assumption for showing many hardness results, including the ones we present in

Chapter 5.



2.2 Distance Measures for Distributions

Our goal is to design a program that can test the quality of a distribution with
respect to an ideal reference. The total variation distance between distributions is

central in this thesis.

Definition 2. The total variation distance between distributions P and Q is

1

ire(P.0) =3 3 10(0)=P(o)

We also use the notion of pointwise distance.

Definition 3. The pointwise distance between distributions P and Q is

B Qo) Po))
doo(P, Q) = max <7><a>’ Q(a)) :

We will also use the notion of Hellinger distance.

Definition 4. The Hellinger distance between distributions P and Q is

(P, Q) = H > (Ve -yPe)

2.2.1 Relevance to Applications

Since the available off-the-shelf samplers that come with theoretical guarantees
all provide pointwise (d)-closeness guarantees, we are interested in accepting a
sampler that is e-close in d, [54, 50, 28, 30].

In contrast, we would like to be more forgiving to the samplers without guar-
antees and would like to reject only if they are n-far in TV distance, a notion
more relaxed than d., closeness. This has an operational meaning in the context
of testing: A randomized program that draws a single sample from P, and after
further processing outputs a distribution D. If, P were to be replaced with Q then
the new output distribution is D’. The replacement could be for the purpose of
optimisation, or due to programmer error. Using total variation we can upper

bound the change in the output caused by the replacement as follows:
drv (D, D) < dry(P, Q)

8



In the following definition we capture the mentioned ideas, and we will use

this definition throughout Chapters 3 and 4.

Definition 5 (c-closeness and n-farness). A distribution P is e-close to an ideal Q, if

we have
dwo(P,Q) <&
P is n-far from the ideal Q, if

dTV(Pa Q) >

2.3 Some Useful Tools

Concentration Bounds

Proposition 1 (Hoeffding). For i.i.d. 0-1 random variables X;, X = Sk X, and
t>0,
2t
Pr(X —E[X] >t) <exp 5
and

Pr(E[X] — X >t) <exp (—f)

When the true mean E[Y;] is unknown, the following Chernoff-type bounds
can be applied using a known value 6 that acts as a lower bound (for case 1) or

upper bound (for case 2) for E[Y;]:

Corollary 1. Let Y1,Y5, ..., Y, bei.i.d 0-1 random variables.

o (-05)

o (050)

1. IfE[Y;] > 6 > 0, then forany t <6,

> U<
J€ln]
2. IfE[Y;] < 0, then forany t > 0,

> U

J€n]

Pr

Pr

Proposition 2 (Chebyshev). Given bounded r.v. X, we have
E[X]?

Pr(|X — E[X]| < E[X]) > E[X2)




Sample complexity of learning a distribution. If we are given samples {s1, s2, ..., s}
from a distribution D over [n], then the empirical distribution D is defined to be
. k
D(i) = 1+ > Is,~i}- The following proposition provides a bound on the number of
j=1

samples required to learn a distribution to accuracy ¢ in TV with confidence 1 — 6.

Proposition 3 (See [22] for a simple proof). Suppose D is a distribution over [n], and
D is constructed using max ( n AnQ/ 5)) samples from D. Then dpy (D, D) < 1 with

772 9 ,,]2

probability at least 1 — 0.

2.4 Access Oracles

Our algorithms will interact with distributions only via oracles. We consider a
range of oracles, and they can be thought of as variants of three main archetypes,
SAMP, EVAL, and COND, which can be informally described as:

1. SAMP(D): the sampling oracle, returns a single sample o from D.

2. EVAL(D, 0): the evaluation oracle, returns the probability of element ¢ in the

distribution D.

3. COND(D, S): the conditional oracle, returns a sample from the D conditioned
on set S, where S C {0, 1}".

In the rest of the thesis, we investigate the practicality of various models by
implementing them and testing their efficiency and applicability on real-world

sampling benchmarks.

10



Part 1

Decision Problems
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This chapter is based on the following publications:

1. On Testing of Samplers
Kuldeep S. Meel ® Yash Pote ® Sourav Chakraborty.
In Proceedings of Advances in Neural Information Processing Systems
(NeurIPS), 2020.!

2. On Scalable Testing of Samplers
Yash Pote ® Kuldeep S. Meel.
In Proceedings of Advances in Neural Information Processing Systems
(NeurIPS), 2022.

We focus on the decision problem in this part of the thesis, and we divide it
into two chapters. Chapter 3 focuses on Barbarik2, the first practical algorithm for
the decision problem. In this chapter, we present a detailed recipe to implement
conditional access into samplers, i.e. randomised programs that return samples
from a given distribution.

Chapter 4 then presents Barbarik3, a linear query algorithm that improves upon
Barbarik2’s worst-case performance. In this chapter we focus on purely algorithmic
improvements and hence to simplify matters, we only deal with distributions and

not samplers.

1@ indicates randomly chosen author ordering.

12
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Chapter 3

Barbarik2: an Algorithm Based on Pair-
Conditioning

3.1 Introduction

Motivated by the success of statistical techniques, automated decision-making
systems are increasingly employed in critical domains such as medical [40], aero-
nautics [72], criminal sentencing [45], and military [3]. The potential long-term
impact of the ensuing decisions has led to research in the correct-by-construction
design of Al-based decision systems. There has been a call for the design of ran-
domised and quantitative formal methods [87] to verify the basic building blocks
of the modern Al systems. In this chapter, we focus on one such core building
block: constrained sampling.

Given a set of constraints ¢ over a set of variables X and a weight function
wt over assignments to X, the problem of constrained sampling is to sample a
satisfying assignment o of y with probability proportional to wt(c). Constrained
sampling is a fundamental problem that encapsulates a wide range of sampling
formulations [54, 50, 28, 67, 30]. For example, wt can be used to capture a given
prior distribution often represented implicitly through probabilistic models, and ¢
can be used to capture the evidence arising from the observed data, then the prob-
lem of constrained sampling models the problem of sampling from the resulting
posterior distribution.

The problem of constrained sampling is computationally hard [60], even for
the problems where the corresponding search problem is easy. Consequently,

sampling has witnessed a sustained interest from theoreticians and practitioners,

13



resulting in the proposal of several approximation techniques. Of these, Monte
Carlo Markov Chain (MCMC)-based methods form the backbone of modern
sampling techniques [4, 15]. The runtime of these techniques depends on the
length of the random walk, and the Markov chains that require polynomial walks
are called rapidly mixing Markov chains. Unfortunately, for most distributions of
practical interest, it is infeasible to design rapidly mixing Markov chains [58], and
the practical implementations of such techniques have to resort to the usage of
heuristics that violate theoretical guarantees. The developers of such techniques,
often and rightly so, strive to demonstrate their effectiveness via empirical behavior
in practice [16].

The need for the usage of heuristics to achieve scalability is not restricted to
just MCMC methods but is widely observed for other methods such as variational
methods [39], hashing-based techniques [28, 50, 29, 70], and simulated annealing
techniques [63]. Consequently, a fundamental problem for the designers of sam-
pling techniques is: how can one efficiently test whether a given technique samples from
the desired distribution? Most of the existing approaches rely on the computations of
statistical metrics such as variation distance and KL-divergence by drawing sam-
ples and perform hypothesis testing with a preset p-value. Sound computations
of statistical metrics require a large number of samples that is proportional to the
support of the posterior distribution [7, 92], which is prohibitively large; it is not
uncommon for the distribution support to be significantly larger than 2. Conse-
quently, the existing approaches tend to estimate the desired quantities using a
fraction of the required samples, and such estimates are often without the required
confidence. The usage of unsound metrics may lead to unsound conclusions, as
demonstrated by a recent study where the usage of unsound metric would lead
one to conclude that two samplers were indistinguishable (it is worth mentioning
that the authors of the study clearly warn the reader about the unsoundness of
the underlying metrics) [46].

The researchers in the sub-field of property testing within theoretical com-
puter science have analyzed the sample complexity of testing under different
models of samplers and computation. The resulting frameworks have not wit-
nessed widespread adoption to practice due to a lack of samplers that can precisely

tit the models under which results are obtained. In a recent work, Chakraborty
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and Meel [26], building on the concepts developed in the condition sampling
model (rf. [1]), designed the first practical algorithmic procedure, called Barbarik,
that can rigorously test whether a given sampler produces the uniform distri-
bution using a constant number of samples assuming that the given sampler is
subquery-consistent (see Definition 14). Empirically, Barbarik was shown to be able
to distinguish samplers that were indistinguishable in prior studies based on un-
sound metrics. While Barbarik made significant progress, it is marred by its ability
to handle only the uniform distribution. Therefore, one wonders: Can we design
an algorithmic framework to test whether the distribution generated by a given sampler is
close to a desired (but arbitrary) posterior distribution of interest?

This chapter’s primary contribution is the first efficient algorithmic framework,
Barbarik2, to test whether the distribution generated by a sampler is e-close or 7-far
from the desired distribution specified by the set of constraints ¢ and a weight
function wt. In contrast to statistical techniques that require an exponential or sub-
exponential number of samples for samplers whose support can be represented
by n bits, the number of samples required by Barbarik2 depends on the tilt of the
distribution, where tilt is defined as the maximum ratio of non-zero weights of
two solutions of ¢. Like Barbarik, the key technical idea of Barbarik2 sits at the
intersection of property testing and formal methods and uses ideas from conditional
sampling and employs chain formulas. However, the key algorithmic framework
of Barbarik2 differs significantly from Barbarik, and, as demonstrated, the proof of
its correctness and sample complexity requires an entirely new set of technical
arguments.

Given access to an ideal sampler P, Barbarik2 accepts every sampler that is
e-close to P while its ability to reject a sampler that is -far from P assumes that
the sampler under test is subquery-consistent. Since Barbarik2 assumes access to
an ideal sampler, one might wonder if a tester such as Barbarik2 is needed when
we already have access to an ideal sampler. Since sampling is computationally
intractable, it is almost always the case that an ideal sampler P is significantly
slow and one would prefer to use some other efficient sampler Q instead of P, if
Q can be certified to be close to P.

To demonstrate the practical efficiency of Barbarik2, we developed a prototype

implementation in Python and performed an experimental evaluation with several
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samplers. While our framework does not put a restriction on the representation of
wt, we perform empirical validation with weight distributions corresponding to
log-linear models, a widely used class of distributions. Our empirical evaluation
shows that Barbarik2 returns Accept for the samplers with formal guarantees but
returns Reject for other samplers that are without formal guarantees. Our ability
to reject samplers providence evidence in support of our assumption of subquery
consistency of samplers. We believe our formalization of testing of samplers and
the design of the algorithmic procedure, Barbarik2, contributes to the design of

randomised formal methods for verified Al, a principle argued by Seshia et al [87].

3.2 Notations and Preliminaries

A Boolean variable is denoted by a lowercase letter. For a Boolean formula ¢, the
set of variables appearing in ¢, called the support of ¢, is denoted by Supp(y).
An assignment o € {0, 1}15“PP(¥)| to the variables of  is a satisfying assignment or
witness if it makes ¢ evaluate to 1. We denote the set of all satisfying assignments

of p as R,,.

Definition 6 (Projection of an Assignment). Let o be an assignment for the variables in
Supp(p) and let S C Supp(p). The projection of o onto S, denoted o g, is an assignment
over the variables in S such that for every variable v € S, the value of v under o g is

identical to its value under o.

We denote the set of all unique projections of the witnesses of p onto S as R, ,

where R, , = {05 |0 € R,}.

Definition 7 (Weight Function). For a set S of Boolean variables, a weight function

wt : {0, 1151 — (0, 1) maps each assignment to some weight.

Definition 8 (Sampler). A sampler Q(¢p, S, wt) is a randomised algorithm that takes in
a Boolean formula o, a weight function wt, a set S C Supp(p), and outputs a sample from

R, . For brevity of notation, we may sometimes refer to a sampler as Q(yp) or simply, Q.

plLse

For any o € {0,1}5! the probability of the sampler Q outputting o is denoted by
Q(p,0) or Qo) if p is clear from context.
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We use Q(¢p, S) to represent the distribution induced by Q on R,, .. When the

LS
set S is understood from the context, we will denote Q(p, S) by Q(¢).

Example 3.1 (Illustration of Notations). Let’s consider a simple Boolean formula

Y= (a:l V 1'2) /\.fL'g.
e Support: The set of variables is Supp(¢) = {x1, x2, 23}.

e Witnesses: The set of satisfying assignments, R, consists of all assignments
where z3 = 1 and (1 V 25) = 1.
RSO = {<1’ 17 1)7 (17 07 1)7 (07 17 1)}

—_——— —— ——
o1 o2 o3

e Projection: Let’s choose the projection set S = {x1,z3}. We find the set of

projected witnesses, R, ., by projecting each witness in R, onto the variables

Pys7
T and x3.

Note that two distinct witnesses, 0, and o9, project to the same assignment

(1,1). The set of unique projected witnesses is therefore smaller:
R%%s = {(17 1)7 (07 1)}

e Weight Function: We can define a weight function wt over all possible as-

signments for S = {z, z3}. For instance:
wt(1,1) =

wt(0,1)

wt(1,0) = 2,

2,
2, wt(0,0) = 1

e Sampler: A sampler Q(y, S, wt) would produce samples from the set R, , =

{(1,1),(0,1)}. An ideal sampler would output each sample 7 € R, ; with

probability proportional to its weight wt (7).
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The normalization constant Z is the sum of weights for the elements in R, :

Z =wt(l,1)+wt(0,1) =5+4+2=7

The distribution Q(¢y, S) induced by the sampler is:

Cwe(Ll) 5
~wt(0,1) 2

Definition 9 (Ideal Sampler). For a weight function wt, a sampler P(p, S,wt) is called

an ideal sampler w.r.t. weight function wt if forall o € R,, :

wt(o)

P(QO, Sa Wt)(a) = Z R Wt(O’l)
o'e ©|s

In the rest of the chapter, P(-, -, -) denotes the ideal sampler, and we will use

P(p) wherever the set S and function wt is clear from context. If

1

VUER(p)Wt(O-) = m
»

then the ideal sampler is called a uniform sampler.

Definition 10 (Tilt). For a Boolean formula ¢ and weight function wt, we define

wt (o)

tilt(wt, p) = oL oER, wt(02)

Our goal is to design a program that can test the quality of a sampler with

respect to an ideal sampler.

Definition 11 ((e, 7, §)-tester for samplers). A (e, n, d)-tester for samplers is a ran-
domised algorithm that takes a sampler Q, an ideal sampler P, a tolerance parameter ¢,
an intolerance parameter n, a guarantee parameter 6 and a CNF formula o such that (1)
If OQ(yp) is e-close to P(y), then the tester returns Accept with probability at least 1 — 0,
and (2) If Q() is n-far from P (), then the tester returns Reject with probability at least
1—90.
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3.2.1 Chain Formulas

A crucial component in our algorithm is the chain formula. Chain formulas, intro-
duced in [31], are a special class of Boolean formulas. Given a positive integer k&
and m, chain formulas provide an efficient construction of a Boolean formula 1y ,,,
with exactly k satisfying assignments with log(k) < m variables. We employ chain

formulas for inverse transform sampling and in the subroutine Kernel.

Definition 12. [31] Let ¢1¢y - - - ¢, be the m-bit binary representation of k, where c,,
is the least significant bit. We then construct a chain formula oy, (-) on m variables
ai, ...y as follows. For every j in {1,...m — 1}, let C; be the connector “V" if ¢; = 1,

and the connector “A\"” if ¢; = 0. Define

(@1, ap) = a1 Cy (a3 Co(- - - (Ap—y Cro1 @) -+ )

For example, consider £ = 11 and m = 4. The binary representation of 11 using

4 bits is 1011. Therefore, @5)4(@1, asg, as, (14) =a V (CLQ VAN (Clg V (14)).

Lemma 3.1 ([31]). Let m > 0 be a natural number, k < 2™ , and py, ,,, as defined above.
Then | @y | is linear in m and py. ,, has exactly k satisfying assignments. Every chain
formula 1 on n variables is equivalent to a CNF formula »“N* having at most n clauses.

In addition, |WONE | is in O(n?).

3.2.2 Kernel and the Subquery Consistency Assumption

Kernel is a crucial subroutine that we use in our algorithm to help us draw condi-

tional samples from R, .

Definition 13. Kernel(p, S, 01, 02) is a function that takes a Boolean formula o, a set

of variables S C Supp(y), and two assignments o1, 0y € Ry 5, and returns ¢ such that

R@ig = {0'1,0'2}.

The notion of subquery consistency plays a crucial role in our analysis. Since
each subquery can be viewed as conditioning and given that conditioning is
a fundamental operation, one would expect that off-the-shelf samplers would
be subquery consistent. At the same time, in contrast to practical applications,

the set T is arbitrarily chosen, and therefore, it is possible that certain samplers
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do not satisfy the property of subquery consistency. It is, however, not known
how to test whether a sampler is subquery consistent w.r.t a particular Kernel.
While our empirical evaluation provides weak evidence to our claim that off the
shelf samplers are subquery consistent, we believe checking whether a sampler is

subquery consistent is an interesting and important problem for future work.

Definition 14. A sampler D is subquery consistent w.r.t. the target distribution D*, and

Kernel(p, S, 01, 02) for ¢ if the following conditions hold:

o V(S C Supp(p)),01,02 € R

PYLSs
o let ¢ «+ Kernel(p,S,01,02) then D(p,wt,S) = D*(p,wt,S)r, where T =
{0’1, 0'2}.
Example 3.2. Let there be a function ¢ := z3A (21 Vxs),and aset S = {x1, z5}. Then,
for a given pair of assignments oy = {x; = 0,2, = 1}, and 0y = {21 = 1,29 = 0}, a
possible output of Kernel(p, S, 01, 03) is the following function:
@ = ((L’l — l’4) A\ (1’1 D l’g)

It can be verified that Ry s = {{z; = 0,20 = 1}, {1 = 1,25 = 0} }.

3.2.3 Log-Linear Distributions and Inverse Transform Sampling

Log-linear models capture wide class of distributions of interest including those
arising from graphical models, conditional random fields, skip-gram models [73].

Formally, for o € {0,1}", we define
Pr[o|6] o e

Following Chavira and Darwiche [34], we describe the following equivalent rep-

resentation, called literal-weighted functions, of log-linear models.

Definition 15 (Literal-Weighted Functions). For a CNF formula ¢ and set S C
Supp(p), a weight function wt : {0, 1}151 — (0,1) is called a literal-weighted function if

thereis a map W : S — (0, 1) such that for any assignment o € R,

W(x) if z=1



In this case we call wt a literal-weighted function w.r.t. W. Note that we have Pr[o] o wt(o).

We now discuss the standard technique of inverse transform sampling for
completeness. For completeness, we follow the description due to Chakraborty et
al [31].

Lemma 3.2. For any e-close to uniform sampler V, any CNF formula ¢ with support S
and a literal-weighted function wt : {0, 1}1%1 — (0, 1), we can construct a ¢ s.t.

(1 —e)ut(o)

(1+e)wt(o)
S ren, wi(0') :

< A
= V(QD, Sa U) — ZO’IERw Wt(O’l)

VUER¢7

Proof. Let S; = {z;1,--- ,im,} be a set of m; “fresh” variables (i.e. variables that
were not used before) for each z; € S. Given any integer m; > 0 and a positive
odd number k; < 2™, we construct @y, m, (i1, - - - Tim,) using the chain formula
construction in [31] such that |R,, , | = k. For notational clarity, we simply write

©k,,m; Wwhen the arguments of the chain formula are clear from context. For each

variable z; € S, such that W(z}) = i, and W(z?) = 1 — W(z;), let (z; <> @y, m,) be
the representative clause. Thus let ©NE = N;es(m; <> ©r,.m, ). We then define the
formula ¢ as follows:

C=pNp

We can see that model count of the formula |R;| can be given by:

Rsl= > 1= Y 1 (3.1)

6ER oc€ER, (&ER@:(?J/S:O')

Since the representative formula of every variable uses a fresh set of variables, we

have from the structure of ¢ that if o is a witness of ¢ then:

> 1=J]@™ —k) [] & (3.2)

(6€Ry:6 5=0) i€o0 icol
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Forany o € R,:

Up,8,0)= > UGS, 06)
(5’€R¢:5’¢S=U)
_ Z 1
(6€Rp:6,5=0) | By

Z(&€R¢:&¢5=U) 1

— Using (3.1)
Za’eRvJ Z(&€R¢:6¢s:0’) 1 5

H’iEUO(zmi B k:,) Hi@rl ki

= Using (3.2
ZU’€R¢ [Licor (QmL - kl) [Licon ki 8 ( )
_ Hieao (Qmi — kz) Hieal ki . Hies 2
[lies 2™ ZO”ERW [Licor (2mi - kz) [Lieon ki
_ HieS w(airi)
>orer, Llies w(”ixi)
wt(o)
= 7 3.3
Sen, ¥6(0) 3
From the definition of e-additive closeness (Def. 5) we have:
(L+e)7U(p. S,0) < V(p,8,0) < (L +e)U(p,S,0)
Substituting into 3.3, we get:
(1+ &) twt(o) . (14 e)wt(o)
VoeR, <V(p,8,0) < ——F——
e, wle) I S i)
L

Remark 1. Lemma 3.2 implies that if V is e-close to being a uniform sampler, then
it can be used as a blackbox to obtain an e-close-to-ideal sampler V,, w.r.t any
literal-weighted function wt. It should also be noted that Lemma 3.2 does not imply
that if V is n-far from a uniform sampler, then the new sampler (obtained using the
above transformation) is also far from the ideal sampler w.r.t wt. Thus, Lemma 3.2
by itself, does not allow us to reduce the problem to testing the uniformity of V.
Reduction to uniformity is not ruled out in general, but only in our transformation

framework.

3.3 An Overview of the Barbarik2 Algorithm

In this section, we present the algorithmic framework of Barbarik2, the pseudocode,

presented as Algorithm 1, and then the theoretical justification for the algorithm.
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Barbarik2 takes as input a blackbox sampler Q, a Boolean formula ¢ with the
associated weight function wt and three parameters (¢, 7, ). It also has access to
an ideal sampler P. Barbarik2 is an (¢, 7, 0)-tester for samplers. Also if Barbarik2
returns Reject (that is, when Q is n-far from P), it provides as witness a new
formula ¢ which is similar to ¢, except that ¢ has only two assignments to the
variables in S (namely o; and ;) that can be extended to satisfying assignments
of ¢ and the relative probability masses of oy and o5 in Q are significantly different
from that in P.

The core idea of Barbarik2 is that for verifying the quality of the sampler Q(y),
we can proceed in two stages. In the first stage, if the sampler is far from the ideal
sampler P, we hope to find a witness (in the form of two satisfying assignments)
for farness with good probability. This can be guaranteed by drawing one sample
each from Q(¢) and P(y). In the second stage, we confirm whether the witness is
indeed far. That is, if the witness is the (o1, ;) pair, we check that the probability
of 01 and 09 in Q(¢) and P(yp) are similar or not.

Here Barbarik2 differs from Barbarik in a significant way. While Barbarik employs
a bucketing strategy, Barbarik2 chooses a simpler yet equally effective method to
check the similarity between o, and o,. This is also the most difficult stage of
the tester as one may have to draw a exponential number of samples to confirm
this similarity. We manage by drawing samples from the conditional distribution
Q(p) | {01,092} instead of Q(y). Since O(¢p) | {01, 02} is supported on a set of size
only two, estimating the distance of Q(y) | {01, 02} from P(yp) | {01, 02} can be
done with constant number of samples.

Now since we do not have direct access to the distribution Q(y) | {01, 02} we
circumvent the problem by drawing samples from a new distribution Q(¢) where
¢ is obtained from ¢ and has similar structure as ¢ (with Supp(¢) C Supp(¥))
and there are only two assignments (namely oy and o, to the variables in Supp(y)
that can be extended to satisfying assignments of ¢. The subroutine Kernel helps
us to simulate the drawing of samples from Q(¢) | {01, 02} by drawing of samples
from Q(p). The subroutine Bias helps to estimate the distance of Q(¢) from P ().

Finally, we repeat the whole process for a certain number of rounds, and we
argue that if the sampler is indeed far, then, with high probability, in at least one

round, we will find a witness of farness. On the other hand, if the sampler is close
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to ideal, then there does not exist any such witness of farness.

Barbarik2 accesses two subroutines, Bias and Kernel: Bias(d, I, S) takes as input
an assignment 6, a list I' of assignments and a sampling set S. It returns the fraction
of assignments of I' whose projections on S is equal to &.

Kernel(y, 01, 07) is a subroutine (Definition 13) that aims to create a ¢ such the
behaviour of the sampler on ¢ is similar to its behaviour on ¢, i.e. Q(¢) | {01, 02} =~
Q(¢)-

In Barbarik2, in the for loop (in lines 7—20), in each round, the algorithm draws
one sample o according to the distribution Q(¢) and one sample o5 according
to the ideal distribution on R,, (line 8). In the case that o; = 03, it moves to the
next iteration (in line 9-10). In line 16, the subroutine Kernel uses ¢ and the two
samples o, and o5, to output a new formula ¢ such that Supp(p) C Supp($). In
line 17, Barbarik2 draws a list, I's, of N samples according to the distribution Q(¢).
Kernel ensures that for all 0 € I's, 05 is either o, or o,. In line 18 Barbarik2 uses
Bias to compute the fraction of samples that are equal to ; (on the variable set .5),
and if the fraction is greater than the threshold, then Barbarik2 returns Reject (in
line 20).
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Algorithm 1 Barbarik2(Q, P, ¢, 7,6, ¢, S, wt)

1: t «+ log.(1/9) log, (m)_l {t iterations boost the confidence to 1 — ¢}
2: n < 8log, (t/9)

3: lo=(1+¢)?

4: hi =1+ (n+ 3¢)/2

5: I'1 +— Q(, S, t); {I'y gets t samples from Q }
6: Ty + P(p, S, t); {T'y gets t samples from P }
7: fori=1tot do

8: oy < I'1[i]; o9 < [afil;

9: if 01 = 09 then
10: continue
11:  «a < wt(oy)/wt(og) {a is the ratio of probabilities in P}
122 L+ (a-lo)/(1+a-lo)
132 H <+ (a-hi)/(1+a-hi)
4. T=(H+L)/2
15: N+« n-H/(H— L)
16: ¢ < Kernel(p, 01, 09)
172 T3+ Q(p¢, S, N)
18:  Bias < Bias(oy,1'3,5) {Bias compares the ratio of probs. in P and Q }
19:  if Bias > T then

20: return Reject
21: return Accept

Algorithm 2 Kernel(p, 01, 02)

1 m<+ 12,k+ 2" -1
Lits; < (o1 \ 02)

LitS2 — (0’2 \ 0'1)

V « NewVars(p,m);

G N (01V o)

[~ LitSl U LitS2
PPN (_‘l - Zbk,m(v))
oA (= (V)
return ¢

Algorithm 3 Bias(5, I, S)

—_

count =0

2: foro €I'do

3 if 0|5 = o then

4: count < count + 1
5

. return C‘Tﬁ‘m
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Algorithm 2 presents the pseudocode of subroutine Kernel. As stated above,
Kernel takes in a Boolean formula ¢, a set S C Supp(y) and two partial assignments
01,09 € Ry s . Since the set S is implicit from o, and o5, it may not be explicitly
given as an input. Kernel assumes access to a subroutine NewV ars which takes
in two parameters, a formula ¢ and a number m, and returns a set of m fresh
variables that do not appear in ¢. Kernel first constructs two sets of literals, denoted
by Lits; (resp. Litsy), which appear in oy (resp. o2) but not o, (resp. o). The
algorithm then constructs the formula ¢. First it generates ¢ A (0, V 03) on Line 5,
a formula with exactly two solutions. Next, it randomly chooses a literal I from
Lits; U Lits, and constructs a chain formula (I — v ,,) over the fresh Boolean
variables V[1], V[2] - -- , V[m]| where £ is the number of satisfying assignments the
formula has. Conjuncting the two generated formulas, we get ¢ = ¢ A (01 V 03).
Therefore, at the end of Kernel, i.e. line 8, ¢ has 2k solutions. We choose the value
of k such that itis odd (see [31]). The chain formula is linked to a random Boolean

literal from the given set of literals for two reasons,

1. An ideal or e-close to ideal sampler would not be affected by the random-
ization and would generate the same distribution over ¢ as it does over

© A (01 V 0o9).

2. If the sampler under test Q is n-far from ideal, then we want to construct a
formula which cannot be easily guessed by P. We wish to avoid the scenario
where P, an n-far sampler on ¢, somehow behaves as an almost-ideal sampler

over ¢ and hence manages to fool Barbarik?2.

3.3.1 Theoretical Analysis

The following theorem gives the mathematical guarantee about the correctness of

Barbarik2. Note that the weight function wt is used to implement EVAL access to Q.

Theorem 3.1. Given PCOND+SAMP access to sampler Q, and ideal sampler P, n > 3¢,

tilt(wt,p)?
n(n—3¢)3

poly logarithmic factor of 1/0. With probability at least 1 — o:

J, p, and weight function wt, Barbarik2 draws O ( ) samples, where O hides a

o If Qis e-close to P, then Barbarik2 returns Accept
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o If the distribution Q(y) is n-far from P(p), then Barbarik2 returns Reject.

Remark 2. For the Reject case we assume subquery-consistency, to account for
adversarial samplers that may behave differently on the Kernel, and on other
inputs. We have not observed any such adversarial samplers, and it hence it is
possible that we can do without the assumption; we don’t have a proof in either
direction. On the other hand, if Q is e-close to P then Barbarik2 accepts (with high

probability) even if the sampler Q is not subquery consistent w.r.t Kernel.

It is also worth noting that Barbarik2 terminates with Reject as soon as the check
in line 19 succeeds. Therefore, we expect Barbarik2 to require significantly less
number of samples when it returns Reject. Furthermore, in the case of Accept, the
bound on N calculated in line 15 in terms of tilt is pessimistic as the probability
of observing o, and o, such that a ~ tilt for a sampler close to ideal sampler is
very small when the tilt is large. We defer detailed discussion of observed sample

complexity to Section 3.5.

3.4 Proof of Correctness of Barbarik2

In this section, we present the theoretical analysis of Barbarik2, and the proof of

Theorem 3.1. The proof clearly follows from the the following three lemmas.

Lemma 3.3. If a sampler Q is e-close ! to the ideal sampler P, then Barbarik2 returns

Accept with probability at least 1 — 6.

Lemma 3.4. If Q is subquery consistent w.r.t Kernel and if the distribution Q(y) is n-far
from the ideal sampler, then Barbarik2 returns Reject with probability at least 1 — 4.

tilt(wt,p)?
n(n—3e)3

input formula @ and weight function wt, where the tilde hides a poly logarithmic factor of
1/6,1/nand 1/(n — 3e).

Lemma 3.5. Given ¢, n and 6, Barbarik2 needs at most O ( ) samples for any

We will present the proofs of Lemma 3.3, Lemma 3.4 and Lemma 3.5 in Sec-
tion 3.4, Section 3.4 and Section 3.4 respectively. In the rest of this section we will

use the following notations:

for any e and ) > 3¢
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o We use 1(F) to represent the indicator variable for the event E.
e We use R; to denote the event that Barbarik2 returns Reject in iteration i.

We are now ready to present the proofs of Lemma 3.3, Lemma 3.4 and Lemma 3.5.

Proof of Lemma 3.3

Lemma 3.3. If a sampler Q is e-close * to the ideal sampler P, then Barbarik2 returns

Accept with probability at least 1 — 6.

For the proof of Lemma 3.3 we will firstly show (in Lemma 3.6) that in each
iteration of the loop, the probability that Barbarik2 returns Reject is less than 6/t
and then the proof of Lemma 3.3 follows by the application of the Chernoff Bound.

Recall that R; denotes the event that Barbarik2 returns Reject in iteration 7.

Lemma 3.6. If sampler Q is e-close to an ideal sampler P, then the probability that

Barbarik2 returns Reject in any particular iteration of the loop, is no more than 6 /t. Then

(-1

Proof. (of Lemma 3.6) Barbarik2 returns Reject in the ith iteration if the Bias (in
the ith iteration) is more than 7', where T’ = £ with
(1+)P(p, 5, 01)
(1+)P(p, S, 01) + (L +2)7"P(e, 5, 02)

And since, by definition, all the elements in I';, I'; and I'; are obtained by drawing

AN

jeli—1]

independent samples from Q(y), P(¢) and Q(¢p) respectively so

Ri| A R,

jeli—1]

Pr = Pr [ Bias < T in the ith iteration]

=1 — Pr[ Bias > T in the ith iteration]

1(Ty[j]s =
—1-Pr [Z Lalihs =)
= N

Note that the random variables 1(I';[j],s = 01) are i.i.d 0-1. Since the sampler Q is

assumed to be e-close to the ideal sampler we have

(1+e)7"P($,Ts[j]) < Q(¢,Ts[j]) < (1+e)P(¢, Ts]j)).
for any € and 7 > 3¢
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Since the random variable 1(I'3[j];s = o1) takes value 1 when we draw o; ~
Q(p, S), we have,

E[1(Ts)jlis = 01)] = Q(#, 5,01) < (1 +€)P(&, 5, 01)

We first note that

7)(907 S? Ul)

P<(70’ S’ 01) N P(QD, S? 01) + P(QO,S, 02)

(3.4)

Now we consider two cases depending on whether P(y, S, o) is greater or lesser
than P(p, S, 09). If P(p, S,01) < P(p, S, 02) then we have

E[1(T3]j].s = 01)] = Q(, S, 01)

(14+e)P(p,S,01)
(14+e)P(p,S,01) + (L +)P(p, S, 09)
< (1+e)P(p,S,01)

T (14+e)P(p,S,01) + (1 +e)"P(p, S, 09)

(From Equation 3.4) =

=L (3.5)
However if P (¢, S, 01) > P(p, S, 02) then again from Equation 3.4 we have

E[1(Ts[j]ys = 02)] = Q(&, 5, 02)
(1+¢e)"*P(p, S, 09)
(L4+¢e)7"P(p,8,01) + (L +¢)"'P(p, 5, 02)
S (1+¢e)"'"P(p, S, 09)
T (14+e)P(p,S,01) + (1 +e)"P(p, S, 09)

In that case since P(, S, 01) + P(, S, 02) = 1 we have

E[1(T3[j]ys = o1)] = Q($, S, 01)
=1-9(p,5,09)

1. ( (142)"*P(y, S, 02) )
N (1 + 5)7)(907 Sv 01) + (1 + 5)_173(907 S? 02)
< (1 +5)P((,0, S, 0'1)

T (14+e)P(p,S,01) + (1 + )" P(p, S, 09)

—L  (3.6)

Thus in either case, from Equation (3.5) and Equation (3.6) we have E[1(I'3[j],s =
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01)] < L. Now applying the Chernoff bound from Cor. 1 we have

Pr [Bias > T] = Pr EZEGimS:m)>T

JE[N]
B (T —L)*NY\ (H — L)?*N
e[ TSY) 15t
(H — LN
< exp <_8H> (Because H > L) (3.7)
< j, (3.8)

where the inequality in line (3.7) follows because H > L when® > 3¢ and last
inequality follows because N = n.H/(H — L)* where n = 8log(t/J). O

Proof. (of Lemma 3.3) Let R; denote the event that Barbarik2 returns Reject in
iteration i and R denote the event that Barbarik?2 returns Accept. Thus R = N;R;.
In the i'" iteration if the bias is less than the threshold, Barbarik2 fails to Reject.

Thus from Lemma 3.6 if the sampler Q is e-close to the ideal sampler P then

If Barbarik2 has not returned Reject in any of the iteration then after the last iteration
Barbarik2 returns Accept. The probability of Barbarik2 returning Accept (event R) is

t
) s

Pr [ﬁ} > H Pr

i€[t]

Rl N\ R

jeli—1]

Proof of Lemma 3.4

Lemma 3.4. If Q is subquery consistent w.r.t Kernel and if the distribution Q(y) is n-far
from the ideal sampler, then Barbarik2 returns Reject with probability at least 1 — 4.

Proof. To prove the Lemma, we will start by splitting the set R, into disjoint subsets

depending on the distribution Dg(,).

Definition 16. We define the following sets for use in the soundness proof:

SH > Lif hi > lothatisn > 2e? 4 ¢
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D={zxeR,: Q(x) <P(x)}

U=R,\D

Us={z € R,: Pla) < Qa) < (1+ 55 P(a)}.

Up={z€R,: (1+1)P(z) < Q(x)}

Recall, R; is the event that Barbarik2 returns Reject in the ith iteration of the
for loop. Then the following lemmas helps us to lower bound the probability
of I'l[i] € Uy ATs[i] € D and the probability of R; under the condition that
I[i] € Uy ATs[i] € D.

Lemma 3.7. If the sampler Q is n-far from the ideal sampler then

Pr Rz| /\ R €U1/\I._‘2HED)

JEli—1]

cm»n

Lemma 3.8. If the sampler Q is n-far from the ideal sampler on input ¢ then

n(n — 3¢)
T

Now using Lemmas 3.8 and 3.7 we can complete the proof of soundness. The

Pr [Fl[Z] S U1 /\FQ[Z] S D] 2

probability that Barbarik2 returns Reject in the ith iteration of the for loop is

L Jjei~1]
>Pr |R /\ R EUl/\FQ[]GD):| Pr[Fl[]EUl/\FQ[]ED]
L JE[Z 1]
> (;l) 77(77;35) (From Lemma 3.8 and Lemma 3.7) (3.9)
The probability of Barbarik2 returning Reject in any iteration (event R) is given by
PriUR]=1-[[Pr|R| A R;
1€[t] jEi—1]
-3
>1-1]] (1 - 77(7758)> (Using Equation (3.9))
1€t
t
> 1 (1_ n(n;?)ﬁ))

>1—-06 (Substituting t)
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[]

Now to complete the proof of Lemma 3.4 we have to prove the Lemma 3.7 and

Lemma 3.8. They are presented next.

Lemma 3.7. If the sampler Q is n-far from the ideal sampler then

Pr

cmq;

R (N Ry eUl/\FQ[]eD)]

JEli—1]

Proof. Let us assume I'j[i| € U; and I';[i] € D. That is, we have Q(yp, S, I's[i]) <
P(p, 8,Tali]) and Q(p, 8, T1[i]) > (1 + T52) P(ip, S, T1[i]). Tt follows that

o> (14 . : 3.10
Olp.5.10]) = ) Plp. 5.1l (3.10)
Since Vx > 0,a/b > x = a/(a +b) > z/(x + 1), we have from Equation 3.10

A, 5, I'1[d])
Qp, 5, Tai]) + Qle, 5, Tui])

(o) TEST (1, ) P

2 P 2 P, S, 1)

Thus we have

E[1(Tsljlis = o)) = (&, 5, T [i])

= 005, Pz(ﬁs 5, Fl([i) AN | by the subquery consistent sampler assumption|
e+ 0\ Ple,S,Tuli)) 3e+n\ Ple,S,Tuli)\ ™

(35 S (0 (455 S

=H [By definition of H]| (3.11)

Barbarik2 returns Reject in the ith iteration if the Bias (in the ith iteration) is more

than T, where T’ = L4 with

_ +EPE.Se)
(1 + SEQj)P<(}07 Sa 0_1) + P(QO, Sa 02)
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As defined, all the elements in I';, I'; and I's are obtained by drawing independent

samples from Q(p), P(p), and Q(¢) respectively so we have

Pr|R;|( A\ R;)A\(T:li] € Uy ATo[i] € D)

jeli—1]

=Pr[ Bias > T in the ith iteration | (I'1[:] € Uy AT'9[i] € D)]

[ 1(Talil o =

=Pr| Y (Tslilus = o) > T | (Ty]i] € Uy ATyi] € D)]
: N

Lj€N]

Now since 1(I's[j],s = o1) are i.i.d 0-1 random variables and since I'[i] € U;

and I';[i] € D implies E[1(I'3[j],s = 01)] > H (from Equation 3.11) by applying

Chernoff bound from Cor. 1 we have:

Pr|— S 1(Tuljlis = o) > T

(H - T)2N>
N jem

= erp <_ SH

by the choice of N <

t
sinced < 0.5andt>3 <1/5

Lemma 3.8. If the sampler Q is n-far from the ideal sampler on input ¢ then

n(n — 3¢)
—

Pr [Fl[l] € U1 A FQ[’L] S D] Z
Proof. Since the sampler Q is e-far from the ideal sampler on input ¢ so, the TV
distance between Q(¢) and P(¢p) is at least 7). By the definition of sets U and D we
have,

2_(Q(z) = P(2)) = >_(P(z) - Q(x)) = n (3.12)

zelU x€eD

Now by definition of Uy, we have

> ()~ P)) < TEE S Py < THE (313)

xzelUy xelUy

ASU:UOUU1,

> Q) =Px) =3 (Qa) = Px) - 3 (Qz) - P(x)) (3.14)



Substituting Equation (3.13) and Equation (3.12) in Equation (3.14) we get:-
n+3 n—3

¥ (@) Pl 2 - LE -1
Therefore, »  Q(z) > 7 _238

zeUy

Thus we have,

Pr [Fl S U1 Z Q (315)
zeU; 2
From Equation (3.12) we know that,
Pr [[4[i] =Y P (3.16)

€D
Since I'1[i] € Uy and I'y[i] € D are independent events, putting together Equation
(3.15) and Equation (3.16), we see that

n(n — 3¢)

Pr([y[i] € Uy ATli] € D] > =

Proof of Lemma 3.5

tilt(wt,p)2
n—3¢)3

input formula ¢ and weight function wt, where the tilde hides a poly logarithmic factor of
1/6,1/nand 1/(n — 3¢).

Lemma 3.5. Given ¢, n) and 6, Barbarik2 needs at most O (

) samples for any

Proof. From Algorithm 1, line 1, we see that the number of trials is:
log,(1/9)
- 5
log, (5—77(77—38))

(log,(v) <z —1) t< loge(l/é)M

In every iteration we calculate a value N according to the expression:

t « - hi o - hi a-lo 72
N =8log, () : .
Oge(a) 1+a-hi <1+a-hz' 1+a~l0>

t 1\? l+a-hi
=81 ~. hi-—— (1 . 10)?
8log, (5) <hi—lo) ! a (1+a-lo)

t 1 2 l14+a-2
1 < 2 1 K -2
(1 <lo<hi<?2) <8oge(5> (hi—lo)

(1 - 2)?
——(1+a-2)
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On Line (11) in Algorithm 1 we define:

_ Wt(Ul)
wt(Ug)

t
tilt(wt, ) = max wt(01)

01,02€R, WE (0_2) (Deflnltlon 10)

Thus, a < tilt(wt, p). Substituting the values of a, lo and hi, we get:

. 2
N < 2log, C;) ' (tli;t(iqtégw))

The maximum number of samples drawn after ¢ trials is:

2t +tN < 2tN
L 1 5-log (1/6)) 5-log,(1/0)  tilt(wt,p)?
Substituting for t,N <2log, | = - < < X
( § ) ° (5 n(n — 3e) nn—3s)  (n—3¢)?
_ 5 (tilt(wt,gp)j)
n(n — 3¢)

3.5 Evaluation
The objective of our evaluation was to answer the following questions:

RQ1. Is Barbarik2 able to distinguish between off-the-shelf samplers by returning
Accept for samplers -close to the ideal distribution and Reject for the 7-far

samplers?
RQ2. What improvements do we observe over the baseline?

RQ3. How does the required number of samples scale with the tilt(wt, @) of the

distribution?

To evaluate the runtime performance of Barbarik2 and test the quality of some
state of the art samplers, we implemented a prototype of Barbarik2 in Python. Our
algorithm utilizes an ideal sampler, for which we use the state of the art sampler
WAPS [56]. All experiments were conducted on a high performance computing
cluster with 600 E5-2690 v3 @2.60GHz CPU cores. For each benchmark, we use a

single core with a timeout of 24 hours.
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We focus on the log-linear distributions given their ubiquity of usage in ma-
chine learning; a formal description is provided in Section 3.2.3 for completeness.
Observe that Barbarik2 does not put any restrictions on the representation of the
weight distribution. We conducted our experiments on 72 publicly available bench-
marks, which have been employed in the evaluation of samplers proposed in the
past [29,46]. The tilt of the benchmarks spans many orders of magnitude, between
1and 10"

Samplers Tested The past few years have witnessed a multitude of sampling
techniques ranging from variational methods [95], MCMC-based techniques [59,
68], mutation-based sampling [46], importance sampling-based methods [49],
knowledge-compilation techniques [56] and the like. The conceptual simplicity of
uniform samplers encourages designers to tune their algorithms for uniform sam-
pling, and the standard technique for weighted sampling employs the well-known
method of the inverse transform. For the sake of completeness, we provide a de-
tailed discussion of the transformation technique in Section 3.2.3. We perform em-
pirical evaluation with the three state of the art samplers wUnigen, wQuicksampler,
and wSTS constructed by augmenting inverse sampling with underlying samplers
Unigen [29], Quicksampler [46] and STS(SearchTreeSampler) [49] respectively.
While wUnigen is known to have theoretical guarantees of ¢ —closeness, there is
no theoretical analysis of the distributions generated by wQuicksampler and wSTS.
Of the 72 instances, wUnigen can handle only 35 instances while wQuicksampler and
wSTS can handle all the 72 instances. The variation in the number of instances that
are amenable to sampling for a particular sampler highlights the trade-off between
the runtime performance and theoretical guarantees. It is perhaps worth empha-
sizing that wQuicksampler and wSTS are significantly more efficient in runtime

performance than the ideal sampler WAPS.

Test Parameters We set tolerance parameter ¢, intolerance parameter 7, and
confidence § for Barbarik2 to be and 0.1, 0.8 and 0.2 respectively. The chosen setting
of parameters implies that for a given Boolean formula ¢, if the sampler under test
G () is e-close to the ideal sampler, then Barbarik2 returns Accept with probability

at least 0.8, otherwise if the sampler is n-far from ideal sampler then Barbarik2
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returns Reject with probability at least 0.8. Note that, the number of samples
required for Accept depends only on the parameters (¢,7,d) and tilt(wt, »). We
instantiate Kernel with the values m = 12 and k = 2™ — 1. Observe that Theorem 3.1

does not put restrictions on k and m.

Description of the table We present the experimental results in Table 3.1. Due
to lack of space, we present results for a subset of benchmarks while the extended
table is presented in the Appendix. The first column indicates the name of the
benchmark, the second the tilt, and the following columns indicate the outcome
of the experiments with wUnigen, wSTS and wQuicksampler in that order. Every
cell in the table has two entries. In the second column, the first entry shows the
value of tilt for the corresponding benchmark, while in the other columns, it
contains “A” and “R" to indicate the output of Barbarik2 for the corresponding
sampler. The second entry for the cells in the column corresponding to tilt indicates
the theoretical upper bound on the samples required for Barbarik2 to terminate,
while for rest of the columns, the second entry indicates the number of samples

consumed by Barbarik2 for the corresponding instance and the sampler.

RQ1 Ourexperiments demonstrate that Barbarik2 returns Reject for wQuicksampler
on 68 benchmarks and Accept on the remaining four benchmarks. For wSTS we
found Barbarik2 returned Reject on 62 of the benchmarks and Accept on the seven
while it times out on the remaining three. Since wSTS and wQuicksampler are sam-
plers with no formal guarantees and therefore one may expect them to generation
distributions away from the ideal distributions. In this context, the results in
Table 3.1 provide strong evidence for the reasonableness of the non-adversarial
assumption in practice.

In contrast, Barbarik2 returned Accept for wUnigen on all the 35 benchmarks for
which wUnigen could sample. Recall, wUnigen formally guarantees e-closeness of
the samples to the required distribution, hence Barbarik2 returning Accept on all

the benchmarks provides evidence in support of soundness of Barbarik2.

RQ2 We also computed the number of samples required by the baseline ap-

proach owing to [7]. Since the number of samples is so large that exhaustive
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Barbarik2

Benchmak ilt wUnigen wSTS wQuicksampler
enchmar (maxSamp) (samples) (samples) (samples)
28 A A R
$349_3 2 (3e+07) (1e+05) (1e+05) (22854)
37 A R A
$820a_3_2 (5e+07) (96212) (87997) (2e+05)
UserServiceImpl.sk 140 A N 5
serServicelmpl.s (6e+08) (1e+05) (1e+05) (4393)
LoginService2.sk 232 a o 5
oginService2.s (2e+09) (1le+05) (38044) (13350)
603 A R R
$349_7_4 (le+10) (75555) (4284) (5150)
3300 A R R
s344.3 2 (3e+11) (1e+05) (59952) (5150)
3549 A A R
5420_new_7_4 (4e+11) (82312) (96659) (49955)
de+11 R R
54.sk_12_97 (66+27) DNS (14012) (4627)
9e+07 R A
s641_7_4 (3e+20) DNS (8747) (1e+06)
2e+08 R R
s838 3 2 (Te+21) DNS (9504) (4627)

Table 3.1: “A"(resp. “R") represents Barbarik2 returning Accept(resp. Reject).
maxSamp represents the upper bound on the number of samples required by
Barbarik2 to return Accept/Reject.

experimentation is infeasible, we had to resort to estimating the average time taken
by a sampler for a given instance. Based on the estimated time, we can estimate
the time taken by the baseline for our benchmark set. We observe that the time
taken by the baseline would be over 10° seconds for 43, 42 and 16 benchmarks
for wQuicksampler, wSTS and wUnigen respectively. In this context, it is worth high-
lighting that Barbarik2 terminates within 24 hours for all the instances for all the
samplers. We observe that the geometric means of the speedups over the baseline
approach are 10°, 102> and 58 for wSTS, wQuicksampler and, wUnigen respectively.
The lower speedup in the case of wUnigen owes to its ability to handle only small
benchmarks, for which the number of models was not very large. The extended

results are available in appendix A.1.
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RQ3 The number of trials required (indicated by the the variable ¢ as on Line 7
of Algorithm 1) depends only on (¢, 7,0), so for the values we use, (0.1,0.8,0.2),
we find that we require ¢ = 14 trials. The analysis of the algorithm reveals an upper
bound on the sample complexity of the tester (See Section 3.3, Theorem 3.1) which
is quadratic in terms of the tilt(wt, ¢). We now return to Table 3.1 and observe
that the number of samples required by Barbarik2 before returning Accept were
significantly lower than the theoretical bound provided in the second column. Fur-
thermore, as noted eatlier, the number of samples required before Barbarik2 returns
Reject is typically significantly less than the worst case — a trend demonstrated in
Table 3.1.
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Chapter 4

Scalability via Bucketing

In the previous chapter Barbarik2, could test a given sampler while providing

tilt(P)?
n(n—3¢)3

(e,7,6) guarantees, using O ( ) queries, where

. L P(O’l)
tilt(P) = 01,012%%%(,1}” P(o9)

for P(oy) > 0. Since the tilt(P) can take arbitrary values, we observed that the
query complexity could be prohibitively large’. On the other hand, the best known
lower bound for the problem, derived from [74], is Q ("n/nl;g(n)> In this chapter,
we take a step towards bridging this gap with our algorithm, Barbarik3, which has a
query complexity of O (m_‘/ﬁio(i% + n%) , representing an exponential improvement
over the state of the art.

To be of any real value, testing tools must be able to scale to larger instances.
In the case of constrained samplers, the only existing testing tool, Barbarik2, is not
scalable owing to its query complexity. The lack of scalability is illustrated by the
following fact: product distributions are the simplest possible constrained distri-
butions, and given a union of two n-dimensional product distributions, Barbarik2
requires more than 10® queries for n > 30. On the other hand, the query complexity
of Barbarik3 scales linearly with n, the number of dimensions, thus making it more
appropriate for practical use.

We implement Barbarik3 and compare it against Barbarik2 to determine their
relative performance. In our experiments, we consider two sets of problems, (1)
constrained sampling benchmarks, (2) scalable benchmarks and two constrained
samplers wSTS and wUnigen. We found that to complete the test Barbarik3 required

at least 450 x fewer samples from wSTS and 10x fewer samples from wUnigen as

'A simple modification reveals that in terms of n, 7, ¢, the bound is O (m)
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compared to Barbarik2. Moreover, Barbarik3 terminates with a result on at least 3 x
more benchmarks than Barbarik2 in each experiment.

Our contributions can be summarised as follows:

1. For the problem of testing of samplers, we provide an exponential improve-
ment in query complexity over the current state of the art test Barbarik2. Our
test, Barbarik3, makes a total of O ((77—\/7171170556;;73 + n%) queries, where O hides
polylog factors of €, 7 and 9.

2. We present an extensive empirical evaluation of Barbarik3 and contrast it
with Barbarik2. The results indicate that Barbarik3 requires far fewer samples

and terminates on more benchmarks when compared to Barbarik2.

We then present the main contribution of the chapter, the test Barbarik3, and
its proof of correctness in Section 4.1. We present our experimental findings in

Section 4.2 We defer the full experimental results to the appendix section A.2.

4.1 Barbarik3: an Linear Query Algorithm for the Deci-
sion Problem

We start by providing a brief overview of our testing algorithm before providing

the full analysis.

Algorithm 4 Barbarik3(P, Q, 7, ¢,0)

1: k< n+ [log,(100/n)]

2: fori=1tok do

3 Si={b:27" < P(bh) <271}

4: 5o =A{0,1}" \ Uiey Si

5. Bp is the distribution over [k] U {0} where we sample i ~ Bp if we sample

j~Pandj e S,

6: Bg is the distribution over [k] U {0} where we sample i ~ Bg if we sample
j~Qandj €S

7: 0 < n/20

8: d < OutBucket(Bp, Bo, k,0,5/2)

9: if d > £/2 + 6 then

10:  Return Reject

11: ex ¢ d+ 0

12: Return InBucket(P, Q, k,e,£9,1,0/2)
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4.1.1 Algorithm Outline

The pseudocode of Barbarik3 is given in Algorithm 4. We adapt the definition of

bucketing of distributions from [74] for use in our analysis.

Definition 17. For a given k € N+, the bucketing of {0, 1}" with respect to P is defined as
follows: For 1 < i < k,let S; = {b: 27" < P(b) < 27"} andlet Sy = {0,1}"\Ujcppy Si-
Given any distribution D over {0, 1}", we define a distribution Bp over [k] U {0} as: for
0 <i <k, Bp(i) = D(S;). We call Bp the bucket distribution of D and S; the i*" bucket.

Barbarik3 takes as input two distributions P and Q defined over the support
{0,1}", along with the parameters for closeness(¢), farness(n), and confidence(d).
On Line 1, Barbarik3 computes the value of £ using 1 and the number of dimensions
n. Then, using DUAL access to P, and SAMP access to Q, Barbarik3 creates bucket
distributions Bp and Bg as in Defn. 17, in the following way: To sample from
Bp, Barbarik3 first draws a sample j ~ P, then using the DUAL oracle, determines
the value of P(j). Then, if j lies in the " bucket i.e., 27 < P(j) < 271, the
algorithm takes sample i as the sample from Bp. Similarly, to draw a sample from
By, Barbarik3 draws a sample j ~ Q and then, using the DUAL oracle to find P(j),
finds i such that j lies in the i"* bucket, and then uses i as the sample.

Barbarik3 then calls two subroutines, OutBucket (Section 4.1.4) and InBucket
(Section 4.1.3). The OutBucket subroutine returns a f-additive estimate of the TV
distance between Bp and By, the two bucket distributions of P and Q, with an
error probability of at most §/2. If it is found on Line 9 that the estimate d is greater
than /2 + 6, we know that dry (P, Q) > £/2 and also that d(P, Q) > ¢, and
hence the algorithm returns Reject. Otherwise, the algorithm calls the InBucket
subroutine.

Now suppose that dry (P, Q) > n. Then, for e, (Line 11), it is either the case
that dyv (Bp, Bg) > €2 or else dry (Bp, Bg) < ¢5. In the former case, the algorithm
returns Reject on Line 10, and in the latter case the InBucket subroutine returns
Reject. In both cases, the failure probability is at most 6/2. Thus Barbarik3 returns
Reject on given n-far input distributions with probability at least 1 — 4.

We will prove the following theorem:
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Theorem 4.1. Barbarik3(P, Q,n, €, §) takes in distributions P and Q defined over {0, 1}",
and parameters n € (0,1], e € [0,17/11.6) and ¢ € (0,1/2]. Barbarik3 has DUAL access
to P, and PCOND+SAMP access to Q. With probability at least 1 — 6, Barbarik3 returns
o Acceptifd.(P,Q) <ce
e Reject if dpy (P, Q) > 1
Barbarik3 has query complexity O (M + %), where O hides polylog factors of £,7

n3(n—11.6¢)
and é.
We will use the following proposition in our analysis.

Proposition 4. Given distributions P and Q supported on {0,1}", andaset S C {0,1}",

o < (P(S) + Q(S) = 2drvi (P, Q))°
S P()QM) > e

i€S

Proof. The Hellinger distance of distributions P, Q restricted to a set S C {0,1}",
is defined as dj;(5)(P, Q) = ji\/ Yies(y Q) — /P(i))?,
dus)(P, Q) = \/—\/ > (@) — /P
€S

ZES F \/7
Z( - 2,/P(0)Q ))

165
P(S) + Q(5)
) Zg Ve
1€
Then using the fact that d% ) (P, Q) < drv(s)(P, Q) we see that, ;s /P(1)Q(3) >

PERLE) Gy sy (P, Q). Then we use the Cauchy-Schwarz inequality:

o o (P(S) + Q(S) — 2dry(s) (P, Q))?
> P)Q() = 15

€S

4.1.2 Lower Bound

The lower bound comes from the paper of Narayanan [74], where it appears in

Theorem 1.6. Phrased in the jargon of our paper, the lower bound states that dis-

tinguishing between dzy (P, Q) > 1 and do.(P, Q) = 0 requires Q(,/n/log(n)/n?)
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samples. Note that the lower bound is shown on a special case (¢ = 0) of our
problem. Hence the lower bound applies to our problem as well. Furthermore,
the lower bound is shown for the case where distribution P provides full access,
i.e., the algorithm can make arbitrary queries to P. This is a stronger access model
than DUAL. Since the lower bound is for a stronger access model, again it extends

to our problem.

4.1.3 The InBucket Subroutine

In this section, we present the InBucket subroutine, whose behavior is stated in the

following lemma.

Lemma 1. InBucket(P, Q, k, €, 2,1, §) takes as input two distributions P, Q, an integer
k and parameters e, 5,1, 0. If doo (P, Q) < ¢, InBucket returns Accept. If dry (P, Q) > n
and drv (Bp, Bg) < €3, then InBucket returns Reject. InBucket errs with probability at

most 6 .

Before we dig into the analysis, we will present a high-level overview of the
InBucket subroutine. The main task of InBucket is to take in two distributions P
and Q and distinguish between the case where the distributions are e-close to each
other, and the case where the distributions are n-far with the added promise that
if the distributions are far, there are sufficiently many witness pairs. A witness
pair is a pair of elements {0y, 02} such that their relative probabilities under P and

Q are different, i.e.
P(o1)/P(02)
Q(01)/Q(02)

To find such a pair, our algorithm requires the elements to be from the same

=14+ 0(e)

bucket, incurring a sample complexity of (’)(\/E), reflected on Lines 6 and 8. Then,
given such a witness pair is found, InBucket makes use of the Bias subroutine to
determine the relative probabilities, and we describe the same in the following

subsection.

The Bias subroutine The Bias subroutine takes in distribution Q, two elements
p,q and a positive integer r. Then, using the PCOND oracle, Bias draws r samples

from the conditional distribution Qy, ,» and returns the number of times it sees p
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Algorithm 5 InBucket(P, Q, k, €, 2,1, 9)
1: €1 ¢ (0.99n — 3.25e9 — 2¢/(1 —€))/1.05+ 2 /(1 — ¢)

2 m 4+ [Vk/(0.997 — 3.25e5 — &1)]
3 a4 (e1+2/(1—¢))/2
. log,,(4/9)
41 [mge(w/(mfslm))w
5: for t iterations do
6: I'p < m samples from P
70 Viewls < TpNS; {S; is defined in Defn. 17}
8: I'g <~ msamples from Q
9: Vze[k]FlQ — FQ N Sz
10: forall j € [k]s.t. |I'p], [T'G| > 0 do
11: p<TIp {p is an arbitrary element from the set I';,}
12: g Ty {q is an arbitrary element from the set I';,}
. P(p)
1B A i
. P(p)
14: l Péﬁ) Hzf)(} ;)a)
og.(4mt
15: T [?h_iz)g—‘
16: ¢ < Bias(Q,p,q,7)
17: ifc < (h+{)/2then
18: Return Reject

19: Return Accept

Algorithm 6 Bias(Q, p, q,r)
1: if p and ¢ are identical then
2:  Return 0.5
3: I'g,,,, < rsamples from Qy, ,
4: Return the fraction of times p appears in I'g o)

in the r samples. It can be seen that the returned value is an empirical estimate of

#p&@. Let the estimate be ¢,,. We use the Hoeffding bound in Cor. 1, and the

value of r from Line 15 of Alg. (5) to show that:

9(p) __h—t

Prgm+g@_%z“’

5 _ Q(p) h—t] 6
= G PYFW__QQﬂ+-Q@)2 P

Here t represents the number of iterations of the outer loop (Line 4), and m is
the number of samples drawn from Bp and Bg. Together, there are at most mt
pairs of samples that are passed to the Bias oracle. Since in each invocation of
Bias, the probability of error is §/4mt, using the union bound we find that the
probability that all mt Bias calls return correctly is at least 1 — §/4 and thus with
probability at least 1 — §/4, the empirical estimate ¢,, is closer than (h — ¢)/2 to
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Q(p)
Q(p)+9(q

Henceforth we assume:

(4.1)

4.1.3.1 The Accept case

In this section we will provide an analysis of the case when d..(P, Q) < . We will

now prove a proposition required for the remaining proofs.
Proposition 5. Let P, Q be distributions and let p ~ P and q ~ Q. Then,
1. If dso(P, Q) < ¢ then

Qw) P(p)
Qp) + Qa) ~ Plp) + 1+ =£)P(q)

2. If dry (P, Q) > ey, then for 0 < a < &1, with probability at least (dry (P, Q) —
a)/2,

Proof. If do(P, Q) < ¢ then

Qp) o P(p)(1 —¢)
Q(p) +Q(q) — P(p)(1 —¢)+ (1+¢)P(q)
P(p)

Pp) + (14 £)P(q)

and hence we show the first part of the claim.
For the second part of the proof we introduce the some sets. Let Hy = {h|1 <
% <l+4+a}tand H; = {h|l + a < Q—h)} and H = Hy U H,. Similarly define,
—{l—a< 3P <1}, L ={(|FF <1-a}and L = LyU L.
Now consider that we have a pair of samples, p ~ P and ¢ ~ Q. We know that
either P(L) > 1/2or P(H) > 1/2.

P(L) > 1/2: We see that Pr[p € L] > 1/2. Then from the definition of H,,
Q(Hy) —P(Hy) < awand recall that Q(H) — P(H) = drv (P, Q). Thus we have that
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Q(H,) — P(Hy) > dry(P, Q) — a and hence Pr[q € H,| > dry (P, Q) — a. We can
now confirm that ¢ € H; Ap € L with probability at least (dzv (P, Q) — «)/2. Then,

Q(p) - P(p)
Q(p) +Q(g)  P(p)+ Q)
P(p)

P T raplg Cmeers )

(From P(p) > Q(p))

P(H) > 1/2: Wesee that Pr[q € H] > 1/2. Then we have that P(Ly) — Q(Ly) < «
and also that P(L)—Q(L) = drv (P, Q), wehave that P(L;)—Q(L,) < dry (P, Q)—
a. Then, we deduce that probability at least (dry (P, Q) —«)/2,q € H Ap € L.
Then,

QA(p) A(p)
o) + Og) ~ 0 + Plg) Crom Pl < Q)
Pp)(1—a) ,
PO —a) - Plg Omeer el
< P(p)

P(p) + (1 +a)P(q)
[]

From our assumption (4.1), we know that for all invocations of Bias, with

probability at least 1 — /4, |¢py — T@;)‘ < (h —¢)/2. Using Prop. 5, and using

the value of h given on Line 13, we can see that Q) __ - p From this we can
Q(p)+2(9)

observe that for all invocations of Bias, ¢,, > (h + £)/2 and the test does not return

Reject in any iteration, hence eventually returning Accept. Thus, in the case that
d(P,Q) < ¢, the InBucket subroutine returns Accept with probability at least
1—46/4.

4.1.3.2 The Reject case

In this section we analyse the case when dry (P, Q) > n and drv(Bp, Bg) < &
and we will show that the algorithm returns Reject with probability at least 1 — 4.
For the purpose of the proof we will define a set of bad buckets Bad C [k]. Note
that bucket {0} is not in Bad.

Definition 18. Bad = {i € [k] : drv(Ps,, Qs,) > €1 A Bp(i)/Bg(i) € [0.2,2]}
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Suppose we have an indicator variable X, ; constructed as follows: draw m
samples from P and Q, and if the r" sample from P and the s sample from Q

both belong to some bucket b € Bad, then X, ; = 1 else X, ; = 0. Then,

[X s} _ Z B»p(b)Bg(b) S (Bp(Bad) + BQ(BCLd)ZU; 2dTV(Bad)(BP, BQ))Q (42)

beBad

The inequality is by the application of Prop. 4.
We analyse the expression that appears in the expectation bound above in the

following lemma.

Lemma 2.
13
BQ(BCLd) + BP(BCLCZ) — 2dTV(Bad)(BQa Bp) > 2 <0997’] — Z&Q — €1>

Proof. Let PQ be a distribution constructed from P and Q, where we first sample
J ~ Bg and then sample i ~ Py, thus PQ(i) = >> Bo(j)Ps,(i). We know that

je[k]U{0}

ifi € §;, theni ¢ S} for j' # j. This allows us to simplify and write PO(i) =
Bo(j)Ps,(i). Then,

1 ) )
dry(Bp, Bg) = 3 > |Bp(j) — Bal(j)]
je[k]u{0}
1 .
=35 > > Ps,(i)|Bp(j) — Ba(j)]
je[k]u{0} i€S;
1 ) )
-l S s P - Pel)
JEk]U{0} i€S;
1 i )
=5 Y. |P@E) —PQy)| = drv(P,PQ)
1€{0,1}"

Since dry (Bp, Bg) < €2, we have dry (P, PQ) < es.
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From the definition of TV, we have

> 1Q:) = PQ(i)]

ie{0,1}»

> > 196) — POi)

jEk]U{0} i€S;

1
2

_; S Y Bolj)Qs, (i) — Bo(j)Ps, (i)
1
2

N | —

drv(Q,PQ) =

Jje[k]u{0} i€5;

> Bolj) X 19s,(i) — Ps, (i)

jek]u{0} i€S;

= Y. Bo(j)drv(Ps,, Qs,)
J€([k]u{0})

= > Bo(j)drv(Ps,, Qs,) + Y. Bo(j)drv(Ps,, Qs;)
j€([k]Ju{0})\Bad j€Bad

We will need the following sets:

Ry ={j: Bp(j) > 2Bo(j)} R:={j:Bolj) >5Bp(j)}

From the triangle inequality we have dry (P, Q) < drv (P, PQ) + drv(PQ, Q).
We also know that dry (P, PQ) < 2 and dry (P, Q) > n. Thus we have:

n— ey < dry(Q, PQ)
n— &g < > Bo(j)drv(Ps,, Qs,) + Y. Bo(j)drv(Ps,, Qs,)

j€([k]Ju{0})\Bad j€Bad
n—ex< > Bo(j)drv(Ps,, Qs,) + > Bo(j)drv(Ps;, Ds,)
j€{0}UR1UR2 j€lk]\{R1UR2UBad}
+ Y Bo(j)drv(Ps,, Qs,)
j€Bad

Since from the definition, we know that if j € [k] \ {R; U Ry U Bad}, then
drv(Ps;, Qs,;) < €1, we have

n—ex< Y, Bo(j)+ > Bo(j)er+ Y Bolj)

jE{O}URlLJRQ je[k:]\{RluRQUBad} jE€Bad
nN—eg—&1 < BQ({O} UR U RQ) -+ BQ(BU,d)
nN—¢&€y—&1— BQ({O} UR U RQ) < BQ(B&d) (43)

If i € Ry, then Bp(i) > 2Bg(1), and thus Bp(i) — Bg(i) > Bg(i). Thus,

Bo(Ry) < Y (Bp(i) — Bo(i)) (44)

1€ER
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If i € Ry, then Bg(i) > 5Bp(i), and thus Bg(i) — Bp(i) > 4Bp(i), giving
1 . .
Bp(Rs) < 1 > (Bo(i) — Bp(i))
i€ERo
: : 5 : :
Bp(R) + > (Be(i) = Bp(i)) < 7 > (Bali) — Bp(i))
1€R2 1€R2
D . .
Bo(Rs) < 7 > (Bo(i) = Br(i)) (4.5)
1€ERo
Since |Sp| < 2" and all elements i € S satisfy P(i) < 27%, we have Bp(0) < 2%,

where we substitute k£ = n + log,(100/n) to get

Bp(0) < —

< 100 (4.6)

Then,

Bo({0} U Ry U Ra) = Bo({0}) + Bo(F1) + Bo(R2)
< b S (Bali) ~ Be(i) + X (B(i) ~ Boli) + > - (Bali) — Bp(i)

— 100 ic{0} i€Ry i€Ro
(4.7)

The last inequality is from the use of inequations (4.4),( 4.5) and (4.6). Here we
partition the set Bad U {0} into two sets Badt and Bad~, where Bad™ = {i €
Bad U {0}|Bp(i) > Bo(i)} and similarly Bad~ = {i € Bad U {0}|Bp(i) < Bo(i)}.

BQ(BCLd)‘FBp(BCLd) - 2dTV(Bad)(Bga Bp)
> 2(Bo(Bad) — 2drv(aa)(Bp, Bo))

(From 4.3) > 2 (n —ey—e1— Bo({0} UR URy) — > |Bp(i) — BQ(Z)|)

i€Bad

(From 4.7) > 2 (.9917_52_51_ S (Bpli) - Boli)) - 2 Y (BQ(Z')—Bp(i))>

i€R1UBadt 1€ RoUBad—
Using the following two facts
drv(Bp,Bo) = > (Bo(i)=Bp(i)) = > (Bp(i) — Bo(i)) =&y
i:Bp (1)< Bo (i) i:Bp (i)>Bo i)

and
viERlBP(i) > BQ(’L) Vi€R2BQ<Z') > Bp(’t)

50



we have,
13
BQ(BCLd) + Bp(BCLd) — 2dTV(Bad)(Bga Bp) > 2 (09977 — 252 — €1>

Using Equation 4.2 along with Lemma 2 we derive the fact that
13 2
E[X, ;] > (0.9977 e 51) /k

Let X = 37, icm) Xr.s- Given m samples from P and Q, Pr(X > 1) is the probability
that there is at least one bucket in Bad(among k buckets) that is sampled at least

once each in both sets of samples.

Lemma 3. E[X] > 1

Proof. Recall that we defined the value of m on Line 2 of Alg. 5
m = [Vk/(0.99n — 3.25¢5 — £1)]

Thus we have that,

Lemmad4. Pr(X >1) > 1/5

Proof. Recall that for all r, s € [m|, E[X, s] = > jcpaqg Br(b)Bo(b). Then since X =

Zr,se[m} Xr,sr
EX]= > E[X,,]=mE[X,,]

r,s€[m]
Then for i, j, k,1l € [m],
o ifi =k, j=IthenE[X;; Xy, = Yicpag Br(b)Bo(b) = E[X, ]
o ifi="Fk,j#thenE[X,;; Xy =Y ycpa Br(b)Bg(D)
o ifi#k,j=1then E[X;; Xy )] = Yyepas B5(0) Ba(b)
o ifi#k,j#lthenE[X, ;X)) = (Cyepaa Br(b) Bo(b))” = E[X,]”
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EX*=E| Y Xi;Xu

Li,g,k,1€[m]

=K Z Xi,ij:7l +E Z Xi,ij,l
a#c,b#£d a=c,b#£d
_ivj7k7l€[m] Z7J7k7l6[m]

+E| > XXy +E| D XXy
a#c,b=d a=c,b=d
i,j,k,le[m)] 1,3,k,1€[m]

€Bad

=m?*(m — 1)’E[X, > + m?(m — 1) ( > (Bp(b) + Bg(b))Bp(i)BQ(i)) +m?E[X, ]

< m'E[X, > + m? ( > (Bp(b) + Bg(b))Bp(b)BQ(b)> +m’E[X, ]

beBad
Then,
EXP miE[X, ]2
E[X?] " miE[X, ]* + m® (Ciepaa(Bp(b) + Bo(i)) Bp(i)Ba(b)) + m*E[ X, ]
1
1 _|_ m_l ZbeBad(BP(b)+BQ(b))B'P(blBQ(b) + m_QE[XT S]_l
(ZbGBad BP(b)BQ(b)) 7

We will now focus on finding the maxima for the large ratio in the denominator:

S naa(Bolt) + Ba)B(0)Bofp) _ Zvewes (y/ 350 + B2 ) (Br(®)Bo ()
(EbeBad BP<b>BQ(b))2 (ZbeBad BP( ) Q

(J1/5+V5) S (Br(h)Balb >>3/2

(b€ Bad = Bp(b)/Bo(b) €[0.2,2]) < N ROT N
= (Bp(b)Bo(h)"”?
3 . €Bad
= (Saca Br(0)Bo(0)" - (Semaa Br(b) Bolb)

(Using the monotonicity of £, norms) < 3 = 3E[X, ]/

(Chepad Br(0)Bo(b))'?
Thus,
E[X]? 1
E[X2 ~ 1+ 3m 'E[X,,] 2+ m 2E[X,.]

1
>z (Since m*E[X, ] > 1)
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The Chebyshev bound (Proposition 2) tells us that

Pr[|X — E[X]| < E[X]] > E[X]*/E[X?] > ;

Recall that from Lemma 3, we have E[X| > 1 which lets draw the following
implication
|IX —EX]| <E[X] = X>0

which finally gives us the claim:

Pr[X > 0] >

QU — O] =

PriX > 1] > (Since X takes only integer values)

]

Henceforth we will condition on the the event that X > 1. In such a case, we
know that for some k£ € Bad, there is a sample p ~ Pg, and a sample ¢ ~ Qg, . Then
for such a pair of samples (p, ¢), and some «, Prop. 5 tells us that with probability
at least (dry (P, Q) — «)/2 we have

QA(p) - P(p)
Qp) +Q(q)  P(p)+(1+a)P(q)

Using the assumption made in (4.1), we immediately have that ¢, < 57575
bt From Prop. 5 we have that % < ¢ and hence ¢,, < (h + {)/2. Since

drv (P, Q) > €1, we see that if X > 1, then with probability at least (¢ — «)/2, the

Q(p)
)+o@

iteration returns Reject.
Then, using Lemma 4 we see that in every iteration, with probability at least
(61— ) /10, InBucket returns Reject. There are ¢ iterations, where ¢ (line 4) is chosen

such that the overall probability of the test returning Reject is at least 1 — 6/2.

4.1.4 The OutBucket Subroutine

Algorithm 7 OutBucket(Bp, Bo, k,0, )

4(k+1) 8log.(4/6)
02 9 02

distributions E and fﬁ’;
2: Return dry (Bp, Bg)

1: Sample max ( ) times from Bp and Bg and construct empirical
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The OutBucket subroutine takes as input two distributions D;, D, over k + 1
elements and two parameters § and ¢. Then with probability at least 1 — §, InBucket

returns a f-additive estimate for dry (D1, Ds).

The OutBucket starts by drawing max (4(?1) : 81°g52(4/ 5)) samples from the two
distributions D; and D,, and constructs the empirical distributions D, and D,. Then
from Prop. 3, we know that with probability at least 1 — §, both dry (Dy, ﬁ) <6/2
and dyy (Dy, Dy) < 6/2.

From the triangle inequality we have that,

drv(D1,Ds) < dry(Dy, D1) + dry (Ds, Da) + drv (D1, Da) < 0+ dry (D1, Ds)
and also that,

drv (D1, D2) < dpy (D1, D1) + dry(Da, Da) + dry(Dy, Ds) < 0 + dry (D1, Ds)

Thus with probability at least 1 — §, the returned estimate dTV(ﬁ, @) satisfies
|dzv (D1, Ds) — drv (D, Da)| < 0.

Query and runtime complexity The number of queries made by OutBucket to P

and Q is given by O (7’;—2) , where O hides polylog factors of ¢, 7 and 6. The number of

queries required by InBucket is given by mtr. Bounding the terms individually, we

see that m = O( Vi ),t = O(l) and r = O(@).Thusmtr = O(M>
n n

n—11.6¢ (n—11.6¢)n3

and hence the total query complexity is O (% + %)

4.2 Evaluation

To evaluate the performance of Barbarik3 and test the quality of publicly available
samplers, we implemented Barbarik3 in Python. Our evaluation took inspiration
from the experiments presented in previous work [26, 71], and we used the same
framework to evaluate our proposed algorithm.

In the previous chapter we provided and analysed an algorithm that could
test whether an input distribution Q was close to the target P, where the target
distribution was expected to have EVAL and SAMP accesses implemented. In

our experiments, the role of the target distribution P was played by WAPS? [56].

Zhttps://github.com/meelgroup/WAPS
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WAPS compiles the input Boolean formula into a representation that allows exact
sampling and exact probability computation, thereby implementing the SAMP
and EVAL oracles needed for our test.

For the role of sampler O(¢p, w), we used the state-of-the-art samplers wSTS and
wUnigen. wUnigen [88] is a hashing-based sampler that provides (¢, §) guarantees
on the quality of the samples. wSTS [49] is a sampler designed for sampling
over challenging domains such as energy barriers and highly asymmetric spaces.
wSTS generates samples much faster than wUnigen, albeit without any guarantees
on the quality of the samples. In our previous experiments we had evaluated
wQuicksampler, however we chose to not evaluate wQuicksampler in this series of
experiments, as wQuicksampler was rejected immediately in all cases.

To implement PCOND access, we use the Kernel construction from [26]. Kernel
takes in ¢ and two assignments o0y, 05, and returns a function ¢ on m variables,
such that: (1) m > n, (2) ¢ and ¢ are similar in structure, and (3) for o € $ (1),
it holds that o supp(,) € {01, 02} Here 04 denotes the projection of o on the
variables of .

For the closeness(¢), farness(n), and confidence(d) parameters, we choose the
values 0.05,0.9 and 0.2. This setting implies that for a given distribution P, and
for a given sampler Q(¢, w), Barbarik3 returns (1) Accept if do (P, Q(p,w)) < 0.05,
and (2) Reject if dry (P, Q(p,w)) > 0.9, with probability at least 0.8. Our empirical
evaluation sought to answer the question: How does the performance of Barbarik3
compare with the state-of-the-art tester Barbarik2?

Our experiments were conducted on a high-performance compute cluster with
Intel Xeon(R) E5-2690v3@2.60GHz CPU cores. We use a single core with 4GB
memory with a timeout of 16 hours for each benchmark. We set a sample limit of
10® samples for our experiments due to our limited computational resources. The
complete experimental data along with the running time of instances, is presented

in the Appendix A.2.

4.2.1 Setting A - scalable benchmarks

Dataset Our dataset consists of the union of two n-dimensional product distri-

butions, for n € {4,7,10,...,118}. We have 39 problems in the dataset.
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We represent the union of two product distributions as the constraint: ¢ (o) =
AZE (03101 V 00) AN i1 (m03k11 V 0;), and the weight function: w(o) = [T, 37,

where o; is the value of ¢ at position «.

Results We observe that in the case of wSTS, Barbarik2 can handle only 12 in-
stances within the sample limit of 10%. On the other hand, Barbarik3 can handle all
39 instances using at the most 10° samples. In the case of wUnigen, Barbarik2 solves
5 instances, and Barbarik3 can handle 17 instances.

Figure 4.1 shows a cactus plot comparing the sample requirement of Barbarik3
and Barbarik2. The z-axis represents the number of benchmarks and y-axis repre-
sents the number of samples, a point (z, y) implies that the relevant tester took
less than y number of samples to distinguish between drv (P, Q(¢,w)) > n and
d (P, Q(p,w)) < g, for x many benchmarks. We display the set of benchmarks for
which at least one of the two tools terminated within the sample limit of 10%. We
want to highlight that the y-axis is in log-scale, thus showing the sample efficiency
of Barbarik3 compared to Barbarik2. For every benchmark, we compute the ratio
of the number of samples required by Barbarik2 to test a sampler and the number
of samples required by Barbarik3. The geometric mean of these ratios indicates
the mean speedup. We find that the Barbarik3’s speedup on wSTS is 451 x and on

wUnigen is 10 x.

4.2.2 Setting B - real-life benchmarks

Dataset We experiment on 87 constraints drawn from a collection of publicly
available benchmarks arising from sampling and counting tasks®. We use distribu-
tions from the log-linear family. In a log-linear distribution, the probability of an
element o € ¢~ !(1) is given as: Pr[o] o exp (3 0:0;), where §; € RZ. We found
that wUnigen was not able to sample from most of the benchmarks in the dataset

within the given time limit, and hence we present the results only for wSTS.

Results We find that Barbarik3 terminated with a result on all 87 instances from

the set of real-life benchmarks, while Barbarik2 could only terminate on 16. We

3https: //zenodo.org/record /3793090
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Figure 4.1: Cactus plot: Barbarik3 vs. Barbarik2. We set the sample limit to be 10,
and our dataset consists of 39 benchmarks. The plot shows all the instances where
at least one of the two tools terminated within the time limit of 16 hours and
sample limit of 10%.

present the results of our experiments in Table 4.1. The first column indicates
the benchmark’s name, and the second column has the number of dimensions
of the space the distribution is defined on. The third and fifth columns indicate
the number of samples required by Barbarik2 and Barbarik3. The fourth and sixth

columns report the output of Barbarik2 and Barbarik3.
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Barbarik2 Barbarik3

Benchmark Dimensions Result # of samples Result # of samples
SetTest.sk_9_21 21 R 2817 R 58000
Pollard.sk_1_10 10 R 7606 R 36000
s444 3 2 24 R 848148 R 64000
s526a_3_2 24 R 848148 R 64000
s510_15_7 25 R 12708989 R 66000
s27_new_7_4 7 A 23997012 R 30000
s298_15_7 17 R 38126967 R 50000
s420_3_2 34 TO - R 83000
s382_3_2 24 TO - R 64000
s641_3_2 54 TO - R 123000
111.sk_2_36 36 TO - R 87000
7.sk_4_50 50 TO - R 115000
56.sk_6_38 38 TO - R 91000
s820a_15_7 23 TO - R 62000
ProjectService3.sk 55 TO - R 125000

Table 4.1: Runtime performance of Barbarik3. We experiment with 87 benchmarks,
and out of the 87 benchmarks we display 15 in the table and we display the full
data in Appendix A.2 . In the table ‘A’ represents Accept, ‘R’ represents Reject and
“TO’ represents that the tester either asked for more than 10® samples or did not
terminate in the given time limit of 16 hours.
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Part 11

Estimation Problems
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This chapter is based on the following publications:

1. Testing Probabilistic Circuits
Yash Pote ® Kuldeep S. Meel.
In Proceedings of Advances in Neural Information Processing Systems
(NeurIPS), 2021.

2. Distance Estimation for High-Dimensional Discrete Distributions
Gunjan Kumar ® Kuldeep S. Meel ® Yash Pote
In Proceedings of the International Conference on Artificial Intelligence and
Statistics (AISTATS), 2025.

This part will focus on the estimation problem. The first chapter of this part,
Chapter 5 will focus on the estimation of distance between distributions encoded
as probabilistic circuits(PCs).

Then in Chapter 6 we extend our estimation framework to a larger class of
distributions beyond PCs, namely all distributions that allow conditioning. Prior
to our work no polynomial query distance estimator was known, and our work

paves
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Chapter 5

Probabilistic Circuits

Probabilistic modeling is at the heart of modern computer science, with appli-
cations ranging from image recognition and generation [82, 84] to weather fore-
casting [19]. Probabilistic models have a multitude of representations, such as
probabilistic circuits (PCs) [37], graphical models [64], generative networks [55],
and determinantal point processes [65]. Of particular interest to us are PCs, which
are known to support guaranteed inference and thus have applications in safety-
critical fields such as healthcare [6, 76].

Determining the closeness of models has applications in Al planning [43],
bioinformatics [85, 89, 96 ] and probabilistic program verification [47]. Equivalence
testing is a special case of closeness testing, where one tests if dyy (P, Q) = 0.
Darwiche and Huang [43] initiated the study of equivalence testing of PCs by
designing an equivalence test for d-DNNFs. An equivalence test is, however, of
little use in contexts where the PCs under test encode non-identical distributions
that are nonetheless close enough for practical purposes. Such situations may
arise due to the use of approximate PC compilation [38] and sampling-based
learning of PCs [79, 80]. As a concrete example, consider PCs that are learned via
approximate methods such as stochastic gradient descent [80]. In such a case, PCs
are likely to converge to close but non-identical distributions. Given two such PCs,
we would like to know whether they have converged to distributions close to each
other. Thus, we raise the question: Does there exist an efficient algorithm to test the
closeness of two PC distributions?

In this chapter, we design the first closeness test for PCs with respect to TV dis-
tance, called Teq. Assuming the tested PCs allow poly-time approximate weighted

model counting and sampling, Teq runs in polynomial time. Formally, given
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two PC distributions P and (), and three parameters (¢,1,0), for closeness(¢),
farness(n), and tolerance(¢), Teq returns Accept if dry (P, Q) < ¢ and Reject if
drv (P, Q) > n with probability at least 1 — . Teq makes O((n — ) ?log(d~!)) calls
to the sampler and exactly two calls to the counter.

Teq builds on a general distance estimation technique of Canonne and Ru-
binfeld [20] that estimates the distance between two distributions with a small
number of samples. In the context of PCs, the algorithm requires access to an
exact sampler and an exact counter. Since not all PCs support exact sampling and
counting, we modify existing techniques to allow for approximate samples and
counts. Furthermore, we implement and test Teq on a dataset of publicly available
PCs arising from applications in the testing of circuits. Our results show that
closeness testing can be accurate and scalable in practice.

For some NNF fragments, such as DNNF, no sampling algorithm is known, and
for fragments such as Pl, sampling is known to be NP-hard [86]. Since Teq requires
access to approximate weighted counters and samplers to achieve tractability,
the question of determining the closeness of the PCs mentioned above remains
unanswered. Thus, we investigate further and characterize the complexity of
closeness testing for a broad range of PCs. Our characterization reveals that PCs
from the fragments d-DNNFs and SDNNFs can be tested for closeness in poly-
time via Teq, owing to the algorithms of Darwiche [41] and Arenas et al. [5].
We show that the SDNNF approximate counting algorithm of Arenas et al. [5]
can be extended to log-linear SDNNFs using chain formulas [31]. Then, using
previously known results, we also find that there are no poly-time equivalence tests
for PCs from Pl and DNNF, conditional on widely believed complexity-theoretic
conjectures. Our characterization also reveals some open questions regarding the
complexity of closeness and equivalence testing of PCs.

The rest of the chapter is organized as follows: we present the main contribution,
the closeness test Teq, and the associated proof of correctness in Section 5.2. We
present our experimental findings in Section 5.3 and then discuss the complexity

landscape of closeness testing in Section 5.4.
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5.1 Preliminaries

Let ¢ : {0,1}" — {0,1} be a circuit over n Boolean variables. An assignment
o € {0, 1}" to the variables of ¢ is a satisfying assignment if p(c) = 1. The set of all
satisfying assignments of ¢ is R,. If |R,| > 0, then ¢ is said to be satisfiable and
if |[R,| = 2", then ¢ is said to be valid. We use |¢| to denote the size of circuit ¢,

where the size is the total number of vertices and edges in the circuit DAG.

5.1.1 Probability distributions

A weight function w : {0,1}" — Q™ assigns a positive rational weight to each
assignment 0. We extend the definition of w to also allow circuits as input: w(¢) =

> w(o). For weight function w and circuit ¢, w(y) is the weighted model count
o€R,

(WMC) of p w.r.t. w.

In this chapter, we focus on log-linear weight functions as they capture a wide
class of distributions, including those arising from graphical models, conditional
random fields, and skip-gram models [73]. Log-linear models are represented as

literal-weighted functions, defined as:

Definition 19. For a set X of n variables, a weight function w is called literal-weighted
if there is a poly-time computable map w : X — QN (0, 1) such that for any assignment
oe{0,1}":

wo) =TI w(x) if =1
eco [1—w(z) if =0
For all circuits ¢, and log-linear weight functions w, w(y) can be represented in
size polynomial in the input.
PC’s are a very broad class of distributional representations (see survey by Choi
et al.), and in this chapter, we focus on a fragment of the Negation Normal Form
(NNF).

Definition 20 (Probabilistic circuits). A probabilistic circuit is a satisfiable circuit ¢

along with a weight function w. @ and w together define a discrete probability distribution
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on the set {0, 1}" that is supported over R,,. We denote the p.m.f. of this distribution as:
0 w(o) =0
Pp,w)(0) =
w(o)/u(p) ¢lo) =1
A circuit ¢ in NNF is a rooted, directed acyclic graph (DAG), where each leaf
node is labeled with true, false, v or —v; and each internal node is labeled with a A
or V and can have arbitrarily many children. We focus on four fragments of NNF,
namely, Decomposable NNF(DNNF), deterministic-DNNF (d-DNNF), Structured
DNNF(SDNNF), and Prime Implicates(PI). For further information regarding cir-
cuits in NNF, refer to the survey [44] and the paper [81].

5.2 Teq: a Tractable Algorithm for Closeness Testing

In this section, we present our main contribution: a closeness test for PCs, Teq. The
pseudocode of Teq is given in Algorithm 8.

Given satisfiable circuits ¢, 2 and weight functions w;, w, along with parame-
ters (¢,7,0), Teq decides whether the TV distance between P(p1,w;) and P(p2, ws)
is lesser than € or greater than n with confidence at least 1 —d. Teq assumes access to
an approximate weighted counter Awct(c, 3, ¢, w), and an approximate weighted

sampler Samp(«, 3, ¢, w). We define their behavior in the following two definitions.

Definition 21. Awct(a, 3, p,w) takes a circuit o, a weight function w, a tolerance pa-
rameter o > 0 and a confidence parameter 3 > 0 as input and returns the approximate

weighted model count of v w.r.t. w such that

Py w(p)

1+a < AWCt(Oé,B,QD,W) < (1 —i—oz)w(gp) >1-7

Tractable approximate counting algorithms for PCs are known as Fully Polynomial Ran-

domised Approximation Schemes (FPRAS). The running time of an FPRAS is given by
T(a, B, ¢) = poly(a",log(571), [#])-

Definition 22. Samp(«, 3, , w) takes a circuit p, a weight function w, a tolerance param-
eter o > 0 and a confidence parameter 5 > 0 as input and returns either (1) a satisfying

assignment o sampled approximately w.r.t. weight function w with probability > 1 — (3 or
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(2) a symbol 1 indicating failure with probability < (. In other words,

P(p,w)(0)

2000 < Pr{Sampla, B w) = oo # L] < (L+ a)Plg.)(0)

The running time for a call to Samp(«, 3, , w) is given by

T(a, B, ¢) = poly(a~" log(B7"), |¢l)

The algorithm Our algorithm follows from a result by Bhattacharyya et al.
[9][Theorem 2.3]. Specifically, the theorem states that given approximate EVAL
access to two distributions, one can estimate the TV distance upto additive ¢
in O(¢7?). On a high-level we will use O(¢7%) Samp and Awct oracle accesses to
simulate the a single approximate EVAL access. Thus with only a constant overhead
we can implement their distance approximation algorithm.

Teq starts by computing constants y and m. Then it queries the Awct routine
with circuit ¢; and weight function w; to obtain a \/1 4+ /4 — 1 approximation
of w; (1) with confidence at least 1 — /8. A similar query is made for ¢, and w,
to obtain an approximate value for w,(y2). These values are stored in k; and ks,
respectively. Teq maintains a m-sized array I, to store the estimates for (o). Teq
now iterates m times. In each iteration, it generates one sample o; through the
Samp call on line 7. There is a small probability of at most ¢ /4m that this call fails
and returns L. Teq only samples from one of the two PCs.

The algorithm then proceeds to compute the weight of assignment o; w.r.t.
the weight functions w; and w, and stores it in s; and s,, respectively. Using the
weights and approximate weighted counts stored in k1, k; the algorithm computes
the value r(o;) on line 10, where 7(0;) is an approximation of the ratio of the
probability of o; in the distribution P(p9,w,) to its probability in P(y,w,). Since o;
was sampled from P(pq,w,), its probability in P(¢4,w;) cannot be 0, ensuring that
there is no division by 0. If the ratio r(o;) is less than 1, then I'[i] is updated with
the value 1 — r(0;) otherwise the value of I'[i] remains 0. After the m iterations,
Teq sums up the values in the array I'. If the sum is found to be less than threshold
m(e + 7y), Teq returns Accept and otherwise returns Reject.

The following theorem asserts the correctness of Teq. To improve readability,

we use P; to refer to the distribution P(y1,w;) and P, to refer to P (o, w5).

65



Algorithm 8 Teq(¢1,wy, @2, W, €,7,0)
Ly« (n—¢)/2

2: m < [2log(4/0)/~*]

3: '« [0] xm

40 ky < Awct(y/1 4+ /4 —1,6/8,¢1,w)

5: ko < Awct(y/1 + /4 —1,0/8, pa,w,) {Awct(-) > 0 for satisfiable formula}
6: foralli € {1,2...,m} do

7. oy < Samp(y/(4n — 27v),d/4m, p1,wy)
8 if 0; #1 then

9: s1 <= wyi(0;), 9 < wa(o;)
10: r(o;) < 2 - %
11: if (0;) < 1 then
12: Lli] <~ 1 —1r(0y)
13: if 35,1 T[i] < m(e + ) then
14:  Return Accept
15: else
16:  Return Reject

Theorem 5.1. Given two satisfiable probabilistic circuits 1, po and weight functions

Wi, Wy, along with parameters ¢ <n < land § <1,

A. If drv(P(p1,w1), P(pa,w)) < e, then Teq(g1,wy, 2, W2, €,1,0) returns Accept
with probability at least (1 — 9).

B. UdTV(P<¢1)W1)7 P<<)027W2>> 2 n then Teq(QDl,Wl, P2, W2, &, 1], 6) returns RejeCt
with probability at least (1 — 9).

5.2.1 Proving the correctness of Teq

In this subsection, we present the theoretical analysis of Teq, and the proofs of
Theorem 5.1(A) and 5.1(B).

For the purpose of the proof, we will first define events Pass;, Pass, and Good.
Events Pass; and Pass, are defined w.r.t. the function calls Awct(y/1+ v/4 —
1,0/8,¢1,w;) and cht(\/m — 1,6/8, 2, ws), respectively (as on lines 4, 5
of Algorithm 8). Pass; and Pass, represent the events that the two calls cor-

rectly return /1 + /4 approximations of the weighted model counts of ¢; and ¢,
ie. % < Awct(y/1+~/4 —1,8/8,¢1,w1) < (\/1+~/4)ws(p1), and % <

14+v/4 1+~/4 —
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Awct(/14+v/4 —1,0/8, pa,w,) < (m)wg(g@). From the definition of Awct,
we have Pr[Pass,|, Pr[Pass,] > 1 — §/8.

Let Fail; denote the event that Samp (Algorithm 8, line 7) returns the sym-
bol L in the ith iteration of the loop. By the definition of Samp we know that
allicjm) Pr[Fail;] < 6/4m.

The analysis of Teq requires that all m Samp calls and both Awct calls return
correctly. We denote this super-event as Good = ¢, Fail; N Pass; N Pass,.
Applying the union bound we see that the probability of all calls to Awct and Samp

returning without error is at least 1 — 6/2:

Pr[Good] =1 — Pr U Fail; UPass; UPass,

1€[m]
>1—m-6/dm—2-8/8
—1-5/2 (5.1)

Lemma 5. Good — ‘r(a) — ?EZ; <~/4- 128;

Proof. The quantity (o) (line 10 from Algorithm 8) conditioned on the event
Fail; C Good:

(o) = Wy (o) _ AWCt(\/m_ 1,6/8,¢1,w1)
Awet(y/1 /4~ 1,6/8, 02, w5) w1 (0)

Conditioned on the events Pass;, Pass, C Good, we know that with probability 1:

OO (T /) < rlo) < (T /e e

o (o) Wy w2 (2)w1(0)
Which gives us:
Py (o) . Py(0)
Pl(a)(1+7/4) <r(o) < (1+7/4)P1(U)
and therefore,
Pz(U) PQ(U) PZ(U)

1
Pu(o) 0294 (7/4’1 1 +w/4> = po) A

We now prove the lemma critical for our proof of correctness of Teq.
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Lemma 6. Assuming the event Good, let A = 3", (013 1 (r(0) < 1) (1 —r(0)) Pi(0),
then

1. Ide\/<P1,P2) SE,thEﬂASZ—:-F’Y/éL
2. Ide\/<P1,P2) Zﬂ,thEﬂAZﬂ—’}//4

Proof. If Y, (Pi(z) — Ps(z)) = 0,then i 3=, |Pi(z) — Py(x)| = > (P (z)—
Py(x)). Using this fact we see that,

drv(PL,P)= Y Po)-Ro)= Y (1—P2(U)>P1(a)

0:Py(0)<P1(0) o %EZ; - Pi(0o)
- = 1(pg ) (- p) e
e (B ) (B e

Thus we have that dry (P, P») — A = B. We now divide the set of assignments
o € {0,1}" into three disjoint partition S;, S, and S3 as following: S; = {0 :

W3S < 1) = 1(r(0) < D} S = {o: UG < 1) > L(r(0) < 1)}; S5 = {o

(72 < 1) < 1(r(0) < 1)}. The definition implies that the indicator 1(r(0) < 1)

is 0 for all assignments in the set Sy, and is 1 for all assignments in S3. Similarly

IL(E%Z; < 1) takes value 1 and 0 for all elements in S, and S5, respectively.

Now we bound the magnitude of B,

|B| =

Pl(O')

5 Kl - ggg;) 1 @TEZ; < 1) — (1= (o) 1 (r(0) < 1)

ce{0,1}m

For b; > 0, we have that | }°; a;b;| < 7, |a;[b;, and thus:

[(1 _ ]]Zig) 1 @TEZ% < 1) (1= (o)1 (o) < 1)

We can split the summation into three terms based on the sets in which the

Bl <

oe{0,1}n

7100

assignments lie. Some summands take the value 0 in a particular set, so we don't
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include them in the term.

B <U§11< Z; 1) (o) — ijg Pi(o)
=21 (56 <) (- 7)o

+ > 1(r(o) <1) (1 =r(0)) Pi(0)

oES3

Since we know that Vo € Sy,7(0) > 1 and allo € 53, ”; > 1, we can alter the

second and third terms of the inequality in the following way:

LEDY 11( o) 1) ’r(a) gg; Py(0)
=% (i <1 o g e
+ 2 10(e) <) P2EZ) r(a)|P1(0)
r\o PQ(O-)
|B| Soeﬁéwsg (0) - Pi(o) Pi(o)

Using our assumption of the event Good and Lemma 5, | B| < 35, c0,13» 7/4-Pi(0) <
v/4 Since dry (P, P,) — A = B, we get |drv (P, P») — A| < /4. We can now
deduce that if dry (P, P») < ¢, then A < ¢ + /4 and if dpy (P, P,) > 1, then
A>n—~v/4 O

Proof of Theorem 5.1(A)

Proof. We assume the event Good. Let o; be the sample returned by the sam-

pler Samp in the ith iteration. If r(o;) > 1, I'[i] takes value 0, else I'[i] = 1 —

r(0;). Thus I'[i] is a r.v. which takes on a value from [0, 1]. We can write I'[i] =

1 (r(0;) < 1) (1 —r(0;)) The expectation of I'[¢] is

E[] = > 1(r(o) <1)(1—r(0)) - Pr[Samp(y/(4n — 2v),6/4m, ¢1,w;) = o]
cef{0,1}m

(5.2)

According to definition 22, and our assumption of Fail; C Good, we know that

with probability 1, Pr[Samp(v/(4n—27), 6 /4m, o1,w1) = o] < (14+7/(4n—27)) P (o).
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Thus we have,

ELE] < > 1(r(o) <) (1—r(0)) (1+7/(4n—27))P(o)

oe{0,1}n

Recall that in Lemma 6, we define A = 3=, ¢ 13 1 (r(0) < 1) (1 —r(0)) Pi(0).
Therefore, we can simplify the above expression as: E[I'[i]] = (14 v/(4n —27)) - A.
We can then use the assumption of e-closeness and the result of Lemma 6-1 to find

a bound on the expectation,

E[L[]] < (1+/(4n —27)) (e +7/4)
= (L+7/(67 +4¢)) (e +~v/4)
=c+7/4+ (v/(6y +4e))(e +7/4)
=c+7/4+7/4(2/(37 + 2¢))(c +7/4)

=c+7/4+~/42/(B3n+¢))(n/4+ Te/4)

1 1+7¢/n
— 4 4.- . =0
e+a/d+al 2 34¢/n

(Since n/e < 1) <e+7/2

Using the linearity of expectation we get: £ [Zie[m] F[z]} < m(e+/2). Teq returns
Reject when 3=, I'[7] > m(e + ) on line 13. Since the I'[]’s are i.i.d random vari-
ables taking values in [0, 1], we apply the Chernoff bound to find the probability

of Accept, assuming the event Good:

Pr | Teq returns Accept

Good] =1—-Pr {Z LCli] > m(e +7)

1€[m]

>1—2e7"2>1-§/2

The value for m is taken from line 2 of Algorithm 8. Using (5.1), we see that the
probability of Teq returning Accept is:

Pr[Teq returns Accept| > Pr|[Teq returns Accept | Good] Pr[Good|
=(1-6/2)(1-6/2)>1-9
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Proof of Theorem 5.1(B)

Proof. First we assume the event Good. Then according to definition 22, we know
that with probability 1 (since we assume event Fail; C Good)

Pl(O')
(1+7/(4n —27v))

v

Pr[Samp(v/(4n — 27),6/4m, p1,w;) = o]

Thus substituting into (5.2), we get

1 r(o —r(o Pi(:)
BN > 3 1000) < D= rlo) e (53)
Then we use the n-farness assumption and Lemma 6-2
BT > /‘(477/f 55 =1 =72 (5.4)

The algorithm returns Accept when 3=, I'[i] < m(e +7) (on line 13). Then using
(5.4) and the linearity of expectation.

E Y D]

1€[m]

>m(n—/2)

Since the I'[i|’s are i.i.d random variables taking values in [0, 1], we apply the
Chernoff bound to find the probability of Reject, given the assumption of the event
Good:

Pr [Teq returns Reject | Good] =1 — Pr | Y T'[i] < m(e +7)

1€[m]

>1—Pr|mn—/2)— > Tl >mn—7/2—¢c—7)

1€[m)]

>1-Pr IZF m(n — 7/2)|>m7/2]

|

>1—2e" m/2 >1—6/2 (Substituting m as in line 2)

Hence, the probability that Algorithm 8 returns Reject is

Pr[Teq returns Reject] > Pr[Teq returns Reject | Good] Pr [Good)|
=(1-9/2)(1-96/2) >1—-¢6 (Using (5.1))
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The following theorem states the running time of the algorithm,

Theorem 5.2. Let v = n — ¢, then the time complexity of Teq is in

log(6")
O | Tawer (v, 0, max (|1l 1921)) + Tsamp (7, 0 max(li], i2])) =3 (5.5)

If the underlying PCs support approximate counting and sampling in polynomial time, then

the running time of Teq is also polynomial in terms of ,log(6~1) and maz(|¢1], |@2])-

Proof. Teq makes two calls to Awct on line 4 and 5 of Algorithm 8. According to

definition 21, the runtime of the Awct(y/1 + ~/4—1,6/8, ¢,w) queryis T'(/1 + v/4—
1,6/8,¢) = poly((\/1 +7/4 —1)7!,1log(671), [¢]).
Using the identity 1 +  — %2 < /1 + 2 for x > 0 and the fact that y € (0, 1)
1 1 11

< < —
J1+~/4—-17 7/8=7%/32  ~
Hence any poly((,/1 + v/4 —1)~') algorithm also runs in poly(y~"). Thus the Awct

queries run in O(poly(y ', 1og(671), maz (|1, |¢2])))
Teq makes m = [log(2/d)/27?] calls to Samp on lines 7 of Algorithm 8. Ac-

cording to definition 22, the runtime of the Samp(vy/(4n — 2v), d/4m, 1, w;) query

is T'(/(4n — 27),8/4m, |¢1]) = poly((v/(4n — 27)) ", log((6/4m) ), |¢1]). First we
see that @ < %, thus the algorithm remains in poly(y~'). We then see that
log(4m/§) = log(4m) + log(6~1). Since log(m) € poly(log(y~1),loglog(671)), we
know that Samp queries run in O(poly(y~*, log(d~1), maz(|¢1], |p2])))-

Since each Samp call and each Awct call requires atmost polynomial time in
terms of 7!, log(6 ) and maz(|p1], |¢2|) we know that the algorithm itself runs

in time polynomial in 7!, log(6~!) and maz (|1, [¢2])- O

Using Teq to test PCs in general. Exact weighted model counting (WMC) is a
commonly supported query on PCs. In the language of PC queries, a WMC query
is known as the marginal (MAR) query. Conditional inference (CON) is another
well studied PC query. Using CON and MAR, one can sample from the distribution
encoded by a given PC. It is known that if a PC has the structural properties of
smoothness and decomposability, then the CON and MAR queries can be computed
tractably. For definitions of the above terms and further details, please refer to the

survey [37].
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5.3 Evaluation

To evaluate the performance of Teq, we implemented a prototype in Python. The
prototype uses WAPS! [56] as a weighted sampler to sample over the input d-
DNNF circuits. The primary objective of our experimental evaluation was to seek
an answer to the following question: Is Teq able to determine the closeness of
a pair of probabilistic circuits by returning Accept if the circuits are e-close and

Reject if they are n-far? We test our tool Teq in the following two settings:

A. The pair of PCs represent small randomly generated circuits and weight

functions.

B. The pair of PCs are from the set of publicly available benchmarks arising

from sampling and counting tasks.

Our experiments were conducted on a high performance compute cluster with
Intel Xeon(R) E5-2690 v3@2.60GHz CPU cores. For each benchmark, we use a

single core with a timeout of 7200 seconds.

5.3.1 Setting A - Synthetic benchmarks

Dataset Our dataset for experiments conducted in setting A consisted of ran-
domly generated 3-CNFs and with random literal weights. Our dataset consisted of
3-CNFs with {14, 15, 16,17, 18} variables. Since the circuits are small, we validate

the results by computing the actual total variation distance using brute-force.

Results Our tests terminated with the correct result in less than 10 seconds on
all the randomly generated PCs we experimented with. We present the empirical
results in Table 5.1. The first column indicates the benchmark’s name, the second
and third indicate the parameters € and 1 on which we executed Teq. The fourth
column indicates the actual d;y distance between the two benchmark PCs. The
fitth column indicates the output of Teq, and the sixth indicates the expected result.

The full detailed results are presented in the appendix Section A.3.

1https: //github.com/meelgroup/WAPS
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dry
Benchmark <e >7n Actual Result Expected Result

15_3 0.75 094 0.804 R A/R
14 2 08 09 0.764 A A
17_4 075 09 0941 R R
14 1 09 099 0.740 A A
18 2 075 09 0918 R R

Table 5.1: Runtime performance of Teq. We experiment with 375 random PCs
with known dry, and out of the 375 benchmarks we display 5 in the table and
the rest in the appendix Section A.3. In the table ‘A’ represents Accept and ‘R’
represents Reject. In the last column ‘A /R’ represents that both Accept and Reject
are acceptable outputs for Teq.

5.3.2 Setting B - Real-world benchmarks

Dataset We conducted experiments on a range of publicly available benchmarks
arising from sampling and counting tasks®. Our dataset contained 100 d-DNNF
circuits with weights. We have assigned random weights to literals wherever
weights were not readily available. For the empirical evaluation of Teq, we needed
pairs of weighted d-DNNFs with known dry distance. To generate such a dataset,
we first chose a circuit and a weight function, and then we synthesised new weight
functions using the technique of one variable perturbation, described in the following

section.

5.3.3 One variable perturbation

Consider two weight functions w; and w, that differ only in the weight assigned to

the literals v° and v'. Then, from the definition of d:

wi(o)  wy(o)
wi(p)  wa(p)

DN | —

dTV(P(907w1)>P(90>W2)) =

>
cef{0,1}m

Zhttps:/ /zenodo.org/record /3793090
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Let S C {0, 1}" be the set of assignments for which zigg > zjgg Thus,

drv(P(g,w), P(p,w)) = 3 <W1<U) Wg(O’))

2 \we)  walp)
Lets assume wlog that w; assigns a larger weight to v' than w, does. Then, S

contains all and only those assignments that have literal v', i.e. S = ¢ A v'. Thus,

We can rewrite w; (¢ A v') = wj(p) x wy(v!), where ) is w; with the weight of v*

set to 1. Using a similar transformation on w,(p A v') we get
() X wi(vh)  wh(ep) X wa(v')
w1 (p) wa ()

We know that v} (p) = w,(p) as wy and w, differed only on the one variable v'.

dry (P(p,w1), P(p,w2)) = wy(p) x (V:;ll((l::)) - szg)))

All quantities in the above expression are either known constants or they are de-

dry(P(p,w1), P(p,w,)) =

fined w.r.t the already compiled d-DNNF, thus guaranteeing that dv (P (¢, wy), P(p, ws))

can be computed in poly-time.

Results We set the closeness parameter ¢, farness parameter 1 and confidence
4 for Teq to be 0.01,0.2 and 0.01, respectively. The chosen parameters imply that
if the input pair of probabilistic circuits are < 0.01 close in dry, then Teq returns
Accept with probability atleast 0.99, otherwise if the circuits are > 0.2 far in dry,
the algorithm returns Reject with probability at least 0.99. The number of samples
required for Teq (indicated by the variable m as on line 2 of Algorithm 8) depends
only on ¢, 7, 6 and for the values we have chosen, we find that we require m = 294
samples.

Our tests terminated with the correct result in less than 3600 seconds on all
the PCs we experimented with. We present the empirical results in Table 5.2. The
first column indicates the benchmark’s name, and the second and third indicate
the result and runtime of Teq when presented with a pair of e-close PCs as input.
Similarly, the fourth and fifth columns indicate the result and observed runtime
of Teq when the input PCs are n-far. The full set of results is presented in the
appendix A.3.
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dTV S 3 dTV Z n
Benchmark Result Teq(s) Result Teq(s)

or-70-10-8-UC-10 A 23.2 R 22.82
s641_15_7 A 33.66 R 33.51
or-50-5-4 A 41417 R 408.59
ProjectService3 A 356.15 R 356.14
s713_15_7 A 24.86 R 24.41
or-100-10-2-UC-30 A 31.04 R 31.0
s1423a_3_2 A 153.13 R 152.81
s1423a_7_4 A 104.93 R 103.51
or-50-5-10 A 283.05 R 282.97
or-60-20-6-UC-20 A 363.32 R 362.8

Table 5.2: Runtime performance of Teq. We experiment with 100 PCs with known
dry, and out of the 100 benchmarks, we display 10 in the table and the rest in
the appendix A.3. In the table, ‘A’ represents Accept and ‘R’ represents Reject. The
value of the closeness parameter is ¢ = 0.01, and the farness parameter is n = 0.2.

5.4 A characterization of the complexity of testing

In this section, we characterize PCs according to the complexity of closeness
and equivalence testing. We present the characterization in Table 5.3. The results
presented in the table can be separated into (1) hardness results, and (2) upper
bounds. The hardness results, presented in Section 5.4.2, are largely derived from
known complexity-theoretic results. The upper bounds, presented in Section 5.4.1,
are derived from a combination of established results, our algorithm Teq and the
exact equivalence test of Darwiche and Huang [43](presented at the end of this

section for completeness).

5.4.1 Upper bounds

In Table 5.3 we label the pair of classes of PCs that admit a poly-time closeness
and equivalence test with green symbols C' and E respectively. Darwiche and
Huang [43] provided an equivalence test for d-DNNF s. From Theorem 5.1, we
know that PCs that supports the Awct and Samp queries in poly-time must also
admit a poly-time approximate equivalence test. A weighted model counting

algorithms for d-DNNFs was first provided by Darwiche [41], and a weighted
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sampler was provided by Gupta et al. [56]. Arenas et al. [5] provided the first
approximate counting and uniform sampling algorithm for SDNNFs. Using the
following lemma, we show that with the use of chain formulas, the uniform
sampling and counting algorithms extend to log-linear SDNNF distributions as

well.

Lemma 7. Given a SDNNF formula ¢ (with a v-tree T')°, and a weight function w,

Samp(p, w) requires polynomial time in the size of .

Proof. Here we will assume that the weights are in the dyadic form i.e. they can
be represented as the fraction d/2” for d,p € Z*. Then using the weighted to un-
weighted construction from [31], the problem of approximate weighted sampling
over SDNNF can be reduced to approximate uniform sampling. Given a SDNNF
¢, and a weight function w, we generate a SDNNF ¢, = @ A Ajcppy(—z: V CF) A
Niepy (s V C?). Here, C} is chain formula having exactly w(—xz;) x 2¥ = 2° —d
satisfying assignments, and C} is a chain formula with w(x;) x 2P = d satisfying
assignments.

The property of decomposability on the A nodes of ¢ is preserved as each C;
introduces a new set of variables disjoint from the set of variables in ¢ and and
also from all C}, such that j # i. The A nodes in the chain formula are also trivially
decomposable and structured as each chain formula variable appears exactly once
in the formula.

If 0 is an assignment to the set of variables of S and if S’ C 5, then let 0 s
denote the projection of o on the variables in S’. The weighted formula ¢ is defined
over variable set var(y). The formula ¢,, defined above has the property that if
p(o) = 1, then [{0'|py(0’) = 1 A0}y = 0}/IRp,| = w(o). Thus a uniform

distribution on R, , when projected on var(y) induces the weighted distribution

Pw?’
P(¢p,w). This property allows weighted sampling and counting on ¢ with the help
of a uniform sampler for the generated formula ¢,,.

]

3A variable-tree, or v-tree, for a set of variables V is a full, rooted binary tree whose leaves are
in one-to-one correspondence with the variables in V.
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NNF Pl DNNF SDNNF d-DNNF
NNF EC
Pl EC  UU
DNNF | EC EU EU
SDNNF | £C EU  EU EC
d-DNNF | £C' UU EU EC EC

Table 5.3: Summary of results. C (resp. E) indicates that a poly-time closeness
(resp. equivalence) test exists. C (resp. E) indicates that a poly-time closeness
(equivalence) test exists only if PH collapses. ‘U’ indicates that the existence of a
poly-time test is not known. The table is best viewed in color.

5.4.2 Hardness

In Table 5.3, we claim that the pairs of classes of PCs labeled with symbols C'
and £ , cannot be tested in poly-time for closeness equivalence, respectively. Our
claim assumes that the polynomial hierarchy (PH) does not collapse. To prove the
hardness of testing the labeled pairs, we combine previously known facts about

PCs and a few new arguments. Summarizing for brevity,

e We start off by observing that PC families are in a hierarchy, with CNF C
NNF and DNF C SDNNF C DNNF [44].

e We then reduce the problem of satisfiability testing of CNFs (NP-hard) and
validity testing of DNFs (co-NP-hard) into the problem of equivalence and

closeness testing of PCs, in Propositions 6, 7 and 10.

e We then connect the existence of poly-time algorithms for equivalence to the

collapse of PH via a complexity result due to Karp and Lipton [62].

The NP-hardness of deciding the equivalence of pairs of DNNFs and pairs of
SDNNFs was first shown by Pipatsrisawat and Darwiche [81]. We recast their

proofs in the language of distribution testing for the sake of completeness.

Proposition 6. If there exists a poly-time randomised algorithm for deciding the equiva-
lence of a pair of PCs with at least one PC in CNF, then NP=RP.
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Proof. For CNFs, testing satisfiability is known to be NP-hard. Consider a CNF ¢
defined over variables {zy, ..., 7,} and a circuit ¢ s.t. ¢ = A;c},41) 7. Define
¢ = (Tp1 = @) A (Tp1 = N\ @)
i€[n]
We see that the size of the new CNF is |¢| € O(|p| + n). ¢ has at least one sat-
isfying assignment, specifically the assignment V,c,41j7; = 1. We notice that
dry (P(p,w), P(¢,w)) = 0if and only if |R,| = 0. Thus the existence of a poly-
time randomised algorithm for deciding whether drv (P(, w), P(¢,w)) = 0 would
imply NP C RP and hence NP=RP. O

Proposition 7. If there exists a poly-time randomised algorithm for deciding the closeness
of a pair of PCs with at least one PC in CNF, then NP = RP.

Proof. dry(P(p,w), P(¢,w)) > 0.5 if and only if |R,| > 0. Assume there exists a
poly-time randomised algorithm which returns Reject if dry (P (9, w), P(,w)) >
0.4 and Accept if dpy (P(p,w), P(¢,w)) < 0.1 with probability > 2/3. Such an
algorithm would imply BPP C NP, and hence NP=RP. O

Proposition 8. If there exists a poly-time randomised algorithm for deciding the equiva-
lence of a pair of PCs with at least one PC in DNF, then co-NP = co-RP.

Proof. For DNFs, deciding validity is known to be co-NP-hard. Given DNF ¢ and a
circuit ¢» = T'rue, the existence of a poly-time randomised algorithm for checking
the equivalence of 1 and ¢ would imply that co-NP C co-RP and hence co-NP =
co-RP. O

Using Corollary 6.3 from [62], we see that PH collapses due to either of the
above implications. From the set inclusions DNFC SDNNFC DNNF and CNFC NNF,
we obtain all hardness results. From the fact that d-DNNFs support weighted
counting and sampling, we have the existence results.

The following lemma supports our claim in table 5.3.

Lemma 8. Given a SDNNF formula o (with a v-tree T')*, and a weight function w,

Samp(y, w) requires polynomial time in the size of .

4A variable-tree, or v-tree, for a set of variables V is a full, rooted binary tree whose leaves are
in one-to-one correspondence with the variables in V.
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5.4.3 A Test for Equivalence

For completeness, we recast the d-DNNF circuit equivalence test of Darwiche and

Huang [43] into an equivalence test for log-linear probability distributions.

Algorithm 9 Peq(py, wy, 02, Wa, d)

:m <+ [n/d]

2 0~ [m]"

if m(p1,wq)(0) = 7(p2,wo)(0) then
Return Accept

else
Return Reject

—_

SANRS LI

The algorithm: The pseudocode for Peq is shown in Algorithm 9. Peq takes as in-
put two satisfiable circuits ¢, ¢, defined over n Boolean variables, a pair of weight
functions w;, w, and a tolerance parameter § € (0, 1). Recall that a circuit ¢ and a
weight function w together define the probability distribution P(¢,w). Peq returns
Accept with confidence 1 if the two probability distributions P (¢4, w;) and P(p9,w,)
are equivalent, i.e. dpy (P(p1,w1), P(p2,w2)) = 0. If dry (P(¢1,w1), P(p2,ws)) > 0,
then it returns Reject with confidence at least 1 — §.

The algorithm starts by drawing a uniform random assignment 6 from [m]",
where m = [n/d]|. Using the procedure given in Proposition 5.4.4 (in Section 5.4.4),
Peq computes the values 7 (1, w1 )(6) and (2, wp)(#), where (¢, w) is the network

polynomial [42]. 7(¢, w) defined as:

m(o,w) = WE;%(H zi ] (1—379'))

o€R, W ziEo  —wjEo

The two values are then compared on line 3, and if they are equal the algo-
rithm returns Accept and otherwise returns Reject. The central idea of the test is
that whenever the two distributions P(yq,w;) and P(p,,w,) are equivalent, the
polynomials 7(p;,w;) and 7(p,, wy) are also equivalent, however when they are
not equivalent, the polynomials disagree on atleast 1 — ¢ fraction of assignments
from the set [m]".

We formally claim and prove the correctness of Peq in Lemma 9 in the following

section.
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5.4.4 An analysis of Peq

In this section, we present the theoretical analysis of Algorithm 9 (Peq) and the

proof of the following lemma.

Lemma 9. Given two satisfiable probabilistic circuits 1, po and weight functions wy, wo,

along with confidence parameter 6 € (0, 1).

A. If dpy(P(p1,w1), P(p2,ws)) = 0, then Peq(y1,wi, @2, Wwa, 0) returns Accept with
probability 1.

B. If dry (P(¢1,w1), P(pa,wa)) > 0, then Peq(y1,wy, @2, ws, 0) returns Reject with
probability at least (1 — 0).

Peq returns Accept if (1, w1)(0) = 7(@2, w2)(0). Since P(p1,wi) = P(pa, wa) —
(g1, w1) = m(p2,ws), it follows that Peq always returns Accept for two equivalent
probabilistic distributions.

For the proof of Lemma 9(B) we will first define some notation, and then we
show (in Lemma 10) that a random assignment over [m|" is likely to be a witness
for non-equivalence with probability > 1 — §. The proof immediately follows as

we know that Peq returns Reject if 7(¢1,w1)(0) # 7(p2,wa)(0).

Definition 23. 7

variable x; to 1. Similarly

z=1(tp, W) is a polynomial over n — 1 variables, obtained by setting the

zi=0(p, w) is obtained by setting the variable x; to 0, thus:

x¢:0(()07 W) + x;m $i=1(¢7 W)

m(p,w) = (1 = z)m
From the definition, we can immediately infer the following proposition.

Proposition 9. If there exists a poly-time randomised algorithm for deciding the equiva-
lence of a pair of PCs with at least one PC in DNF, then co-NP = co-RP.

If (1, wy) # w(p2,wy) then for all z;, at least one of the following must be true:

® T|p—1(01,W1) # T|z,=1(02,W2)

e T

x¢:0(<P17W1) 75 m xi:0(9027W2)
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For the proofs in this section, we will use the following notation. For a circuit ¢
defined over the variables {z1, ..., z,}, we define a polynomial P(p,w) : {0,1}" —
0, 1]:

Plow = T E“i(n o Tl <1—xj>)

W\P) \wiko a0
We define another polynomial 7 (¢, w) which is P(p, w) but defined from [m]™* —
Q where [m] ={1...,m}.
To show that the polynomial 7 (¢, w) can be computed in time polynomial in

the size of the representation, we will adapt the procedure given by [43].

Proposition 10. If there exists a poly-time randomised algorithm for deciding the equiva-
lence of a pair of PCs with at least one PC in DNF, then co-NP = co-RP.

Let ¢ be a circuit over the set X = {z1,...,x,} of n variables , that admits
poly-time WMC. Let w : X — Q7 be a weight function and let § € [m]" be an
assignment to the variables in X and #(x) be the assignment to variable € X in

6. For each node 7 in the circuit, define a function S(-) recursively as follows:
e S(n) =3X;S(n;), where n is an or-node with children n;.

e S(n) =1II; S(n;), where 7 is an and-node with children n;.

0, if n is a leaf node false
S(n) 1, if n is a leaf node true
° n) =
w(z)0(x), ifnisaleaf node x,z € X

(1 —w(z))(1 —0(z)), ifnisaleafnode —x,z € X
e 7(p,w) = S(n)/w(y), where n is the root node

We can compute the quantity w(y) in linear time due to our assumption of poly-

time WMC, hence we can find 7 (p, w)(€) in time linear in the size of the d-DNNF.

Lemma 10. For a random assignment o ~ [m|",

Pr(m(p1,w1)(0) # T(p2,w2)(0) | P(pr,w1) #Z P(p2,w2)] > 1 -0
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Proof. For n = 1, 0 is an assignment to a single variable z. The polynomial on the
single variable x can be parameterised as 7(p,w)(x) = ax + (1 — «)(1 — ) where
_ )
parameter « Sen, *0)
with a1, as, respectively. Our assumption that P(¢;,w;) # P(p2, ws) immediately

. Let polynomials 7(¢1,w), (2, wo) be parameterised

leads to the fact that m(y1,w;) # 7(p2, w2) which in turn implies that a; # as.
The the set of inputs x for which two non-equivalent polynomials agree is

given by,

(1, w1) () = 7(p2, w2) ()
ar+(1l—a)(l—2)=ax+ (1 —a)(l—x)
2(0 —ag)r = ag — a9

r=1/2

From the initial assumption we know that = can only take integer values, hence
there are no inputs in the set [m] for which 7 (1, w;)(0) # 7(p2,ws)(o). Thus, for
n=1,and any o, Pr[r(¢1,w1)(0) # 7(p2,w2)(0) | Ple1,wi) Z P(p2,u2)] =0

We now assume that the hypothesis holds for n — 1 variables. Consider poly-
nomials 7(p1,w;) # 7(p2,ws) over n variables. From Prop 5.4.4 we know that at

least one of the following holds:
o 7-‘-‘351::1(9017 Wl) 7é 7T|36i:1(9027 WQ)

® |u—0(p1,W1) # T|a,—0(p2, W2)

Without any loss of generality we assume the latter. Then we know that there

existsaset X C [m|""1, || > (m — 1)"!, such that

Voes: Tlan=0(91,Wi)(0) # T|z,—0(p2, Wa2)(0)

The set of assignments o for which 7(p1,w;)(0) — 7(p2,ws)(0) = 0 can we

rewritten as

(1 = 2) 7|2, =0(p1, 1) (0) + T |2, =1 (01, W1) ()
= (1 = 2) 7|2, =0(p2, W2)(0) + T T |, =1 (P2, W2) ()
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Factoring out z,,,we get the following;:

Tn(Tlan=1(P1, w1)(0) = Tl =0(p1,W1)(0) = 7lap=1 (02, W2)(0) + 70 (2, w2) (@)

= 7T|xn:0(902, WQ)(U) - 7T|xn:0((plvwl)(0-)

From the assumptions we know that there are at least (m — 1)"~! assignments o
S.t. |, —0(p2, Wa)(0) — T|s,—0(p1,w1)(0) # 0, from which we can conclude that the
RHS is non-zero. Thus for all such ¢ there can be at most one value of z,, for which
the equality holds, which leaves m — 1 values which z,, cannot take. Thus there
are at least (m — 1) x (m — 1)"~! = (m — 1)™ assignments to n variables for which
m(p1,w1)(0) # m(p2, W) (0).

Since the total number of assignments for n variables is m”, out of which
(m — 1)" witness the non-equivalence of the two probability distributions, we
know that for a randomly chosen assignment o ~ [m]", we have

Prlr(io18)(0) # w(gaval(o) | Plonm) # Plona)] > P> (12 2)7

(using m from Algorithm9) >1-§
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Chapter 6

Polynomial Query Distance Estimation

In this chapter, we are interested in the computation of (e, §)-approximation of

dry (P, Q):i.e., we would like to compute an estimate est such that
Pr[dTv(P, Q) —e<est< dTv<7D, Q) + 8] >1-90

TV distance is a fundamental notion in probability and finds applications in the
diverse domains of computer science such as generative models [55, 57], MCMC
algorithms [4, 14, 17], and probabilistic programming |2, 83].

Theoretical investigations into the problem of TV distance computation have
revealed the intractability of exact computation: In particular, the problem is #P-
hard even when P and Q are represented as product distributions [10]. As a
consequence, the focus has been on designing approximation techniques. When
P and Q are specified explicitly, randomised polynomial time approximation
schemes are known for some classes of distributions, such as Bayesian networks
with bounded treewidth [11]. Not every practical application allows explicit rep-
resentation of probability distributions, and often, the output of some underlying
process defines probability distributions. Accordingly, the field of distribution
testing is concerned with the design of algorithmic techniques for different models
of access to the underlying processes. Furthermore, in addition to the classical
notion of time complexity, we are also concerned with the query complexity: how
many queries do we make to a given access model?

The earliest investigations focused on the classical model of access where
one is only allowed to access samples from P and Q [78, 93]; however, a lower
bound of 2(2"/n) [91, 93] restricts the applicability of these estimators in practical
scenarios. This motivates the need to focus on more powerful models. In this

work, we will focus on the SUBCOND access model owing to its ability to capture
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the behavior of probabilistic processes in diverse settings [60, 33, 97]. Formally,
the SUBCOND oracle for a distribution P takes in a query string p € {0, 1, *}",
constructs the conditioning set S, = {0 € {0,1}"|(p; = *) V (p; = 0;)} and returns
o € S, with probability % It is worth remarking that while we use the
name SUBCOND to be consistent with recent literature [12], there have been
algorithmic frameworks since the late 1980s that have relied on the underlying
query model [60].

The starting point of our investigation is the observation that, on the one hand,
practical applications of distance estimation rely on heuristic methods and hence
don’t provide any guarantees. On the other hand, no known algorithm, even
when given access to the SUBCOND oracle, makes less than O(2"/n) queries. The
primary aim of our ongoing work is to address the mentioned gap: we want to
design the first algorithm that computes (¢, §)-approximation of TV distance and
makes only polynomially many queries to SUBCOND oracle.Formally,

Given two distributions P and Q over {0, 1}", along with parameters ¢ € (0, 1),

and ¢ € (0, 1), the algorithm DistEstimate(P, Q, ¢, §) returns estimate « such that
Pr[/i € (dTv(P, Q) + 6)] >1—-9

DistEstimate makes O (n?log(1/6)/e*) queries to the SUBCOND oracle.

We now provide a high-level overview of DistEstimate: From the fact that,

0 o530

we can use the standard approach of sampling o from Q, estimating P (o) and
Q(o) up to some multiplicative factor, and then setting the value of the random
variable to be max(1 — P(0)/Q(0),0). This approach requires a constant number
of samples from O to compute an approximation of dry (P, Q). The main issue is
that it is not possible to approximate the value of Q(o) for arbitrary o with only
polynomially many queries to SUBCOND since Q(c) can be arbitrarily small and
the query complexity scales inversely with Q(c). The key technical contribution
lies in showing that using polynomially many SUBCOND oracle calls, we can
still compute estimates for P(c) and Q(o) at sufficiently many points to find a

theoretically guaranteed estimate.
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We are interested in designing distance estimation techniques for the SUBCOND
model because it effectively captures the behavior of probabilistic processes in
practice. Towards this goal, we compute the precise number of queries one would
need to the test, and we find that DistEstimate offers a 10" factor speedup on prob-
lems of dimensionality n = 70, for which the baseline sample-based estimator
would require ~ 10'® queries — a prohibitively large number. The result is pre-
sented in the Figure 6.1. Therefore, we demonstrate the application of DistEstimate
in a real-world setting. Sampling from discrete domains such as {0, 1}" under
combinatorial constraints is a challenging problem; therefore, several heuristic-
based samplers have been proposed over the years. We can view a sampler as a
probabilistic process, and consequently, one is interested in measuring how far
the distribution of a given sampler is from the ideal distribution. Our experiments
focus on combinatorial samplers, and SUBCOND is particularly well suited for
this problem. We use a prototype of DistEstimate to evaluate the quality of two
samplers for different benchmarks. Our empirical evaluation demonstrates the
promise of scalability: in particular, DistEstimate offers a 107 factor speedup on

problems of dimensionality n = 70.

Organization In Section 6.1 we define the notation we use in most of the chap-
ter, and we discuss some relevant background material. Then we present the
chapter’s main contribution, the estimator DistEstimate, along with its proof of
correctness in Section 6.2. In Section 6.3, we present the result of the evaluation of

our implementation of DistEstimate.

6.1 Notations and Preliminaries

We will focus on probability distributions over {0, 1}". For any distribution D on
{0,1}" and an element o € {0,1}", D(o) is the probability of ¢ in distribution
D. Further, o ~ D represents that ¢ is sampled from D. The total variation (TV)
distance of two probability distributions P and Q is defined as: drv (P, Q) =
5 X ociony [P(o) — Q(0)]. For a random variable v, the expectation is denoted as
E[v], and the variance as V[v].

For clarity of exposition, we will hide the use of the ceiling operator [z ] wher-
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Figure 6.1: A plot comparing the sample/query complexity of the baseline non-
conditional estimator vs. our estimator DistEstimate as a function of the number
of dimensions n, for ¢ = 0.3. Note that the vertical axis is in the log scale.

ever integral values are required, such as the number of samples or the number of
iterations of a loop. We use [n] to represent the set {1,2...,n}.

Consider a discrete r.v. that takes the value v with probability p. The count
of trials required to observe k instances of v follows a negative binomial distribu-
tion, denoted as NB(k, p). The expected value E[NB(k, p)] is k/p, and its variance
VINB(k, p)]is k(1 —p)/p*. We also make use of the following tail bound for negative

binomials:
Proposition 11 ([18]). For v > 1, Pr[NB(k, p) > vE[NB(k, p)]] < exp (—WI_TW)

If o is a string of length n > 0, then o; denotes the i" element of o, and for
1 < j <n, o.; denotes the substring of o from 1 toi — 1, 0; = 0y - - - 0,_1; similarly
o<; = 01 - - 0;, and 0., denotes the empty (length 0) string, also denoted as L.

For any distribution D and string p, such that 0 < |p| < n, the distribution D,

denotes the marginal distribution of D in the |p| + 1" dimension, conditioned on
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the string p, i.e.,

_ Prop(ogp41 = b) A (0<) = p)]
Dolb) = Proplo<y = p)

Definition 24. A sampling oracle SAMP (D) takes in a distribution D, and returns a
sample o € {0, 1}" such that Pr [SAMP(D) = o] = D(0).

Definition 25. A subcube conditioning oracle SUBCOND(D, p) takes in a distribution
D, and a query string p with 0 < |p| < n, and returns a sample o € {0, 1}" such that
Pr[SUBCOND(D, p) = o] = 1o, ,=p) I1iZ}pj+1 Poi(0i)-

Definition 26. A conditional marginal oracle CM(D, p) takes in a distribution D, and a
query string pwith 0 < |p| < n, and returns asample b € {0, 1} such that Pr [CM(D, p) = b] =
D,(b).

Note that the chain rule implies that SUBCOND(D, L) is the same as SAMP(D).

6.1.1 Distance Approximation

We adapt the distance approximation algorithm of Bhattacharyya et al. [9], that
takes as input two distributions P and Q, and provides an (7, d) estimate of
drv (P, Q). Recall that we had adapted the estimation algorithm in Theorem 5.1,
however we state and prove it again here, as we require different constants and

terminology here.

Lemma 6.1. (Theorem 3.1 in [9]) For distributions P and Q over {0,1}", and o €
{0,1}", let p, and q, be functions such that p, € (1 £ n)P(0), and ¢, € (1 £n)Q(0).
Given a set of samples S from Q, and n € (0, 1) along with the p, and q, for each o € S,

1 (ed
let est = ST >ies Loo>po ( - %)'

Pr lest ¢ (dTV(P, Q)+ 131777)] < 2exp (—2\5| (&)j

Proof. Recall thatp, € (1+n)P(0) and ¢, € (1£n)Q(0) then, using the definition
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Of dTV(Pa Q)/

dry(P, Q) = OG{ZO:J}nﬂg(a)wJ(o) (1 — ZEZ;) Qo)
= D Loy, (1 -~ p") Q(o) (6.1)
ce{0,1}n 9o
+ UG{ZO:J}” <ﬂg(a>>7>(o> (1 - ggg) Q(0) — Lgy>p, (1 - p:) Q(U))

A

The first summand of (6.1) can be written as E, .o [Ilqg >po ( — z—:)} .

To bound |A|, we will split the domain into three sets, By = {2 : 1g(0)>p) =

Lyospo b Be = {7 : Lo@)ysp(o) > Lg,5p, y and By = {7 : 1o(o)>P0) < Lgy>p, J-

73(U)) ( pa> )
Al = 1o o | 1— Qo) =14 5p, |1 ——|Q(c
A=l 2 ( o= ( O(0)) A7)~ Lamre \ 1= 1) 9L)
P(U)) ( pa) )‘
< lowyspe) |1 — Qo) =1, 5p, [1—— | Qo
o ( o=Pe ( O(o) ) A7)~ Lamee (1= ) QL)
Plo) s ( P(U))
= 1 o o - Q o)+ 1 o o - Q g
Ugl Q>P) | B0y g (o) 022 Q(e)>P(o) o00) (o)
+ Z ]]‘q0>Pa (1 - pa) Q(O')
ocE€B3 4o
P(o) o 2n P(o) P(o) 1-n
ForUGBll w_%’ S&Q(U)S nFOI‘UGBg,l Q()Sl_?z_
H,andforaEBg,l % < 1—%: Thus |A‘ <ZU€B1177Q( )
> oeBs 1+nQ( o) + Xoen, mQ(U) < T" luggmg the bounds on |A| back into
(6.1), we get
Do 2n
dTV(P; Q) —E [ﬂqa>pg (1 qg>‘|' S ﬂ (62)

Hence, E [1g,5p, (1= 2)] = 2L < dry(P, Q) < E |15, (1-22)] + 2% The

4o qdo
_ Po
9o

We will use est to denote the empirical estimate of E [Ilq Spy (1 - ’q’—")] Since each

distance estimation algorithm draws |S| samples to estimate E [Iqur >py

sample o is drawn independently, and 1,,~,, (1 - —) is bounded in [0, 1], we can

use the Hoeffding bound as follows,

Pr [est _E [11%% <1 . 7;:)” > 11}] <1—2exp (—2]S| (&) ) (6.3)
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Plugging (6.2) into (6.3), we complete the proof:

Pr [[est — dr(P, Q)| > 3_"77] _Pr [dwm Q) ¢ (est . 137’)]

-n
2

6.1.2 Taming Distributions

Given a distribution D, we will define and construct a new distribution D’ that

has desirable properties critical for DistEstimate.
Definition 27. A distribution D’ is §-tamed, if
Vo € {0,1}",V.L € [n] D',_,(o0) €[0,1—0]

Definition 28. For a given distribution D, and parameter § € [0, 1/n), distribution D’
is the 0-tamed sibling of D, if D' is 6-tamed and dry (D, D') < On.

Henceforth, we will use D’ as shorthand to refer to the #-tamed sibling of D
and omit mentioning 6§ whenever 0 is evident from the context. We will now show
in the following lemma that given SUBCOND query access to distribution D, CM,

and SAMP access to D’ can be simulated efficiently.

Lemma 6.2. Given a distribution D and parameter 6 € [0,1/n), every CM query to D’
can be simulated by making one SUBCOND query to D, and every SAMPquery to D' can
be simulated by making n SUBCOND gqueries to D.

Proof. Our proof adapts the #-balancing trick, devised for product distributions
in Canonne et al. [25, Thm. 6]. To simulate the CM(D’, o,) query using SUBCOND
access to D, we use the following process: alli > ¢, given the substring o.;, set o; =
0 with probability (1—260)D,_,(0)+6 and o; = 1 with probability (1—-26)D,_,(1)+6.
To implement the above, with probability 1 — 26, draw p ~ SUBCOND(D, o.;) and
return p;, else with probability 26 draw a sample uniformly from {0, 1}.

Observe that alll € [n], c € {0,1}, and p € {0,1}*"!, we have D',(c) = (1 —
20)D,(c)+6.Since § <D’ ,(c) < 1—6, wesee that D’ is indeed #-tamed. To simulate
SAMP(D’), we use the chain rule.
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Now we will show that D’ is close to D.

Claim 1. For distribution D and its 6-tamed sibling D', we have drv (D, D') < 6n

Proof. Recall the definition of subcube S, = {w € {0,1}" : w<|, = p}. For any
set S C {0,1}", D(S) is the total probability of S in D. For any distribution D,
string p (with 1 < |p| < n) and w € {0,1}" ¥, the distribution D” denotes the
marginal distribution of SUBCOND(D, p) in the remaining dimensions, i.e. for any
w € {0,1}"7 1P, D?(w) = Pry~susconp(m,p)[w = pw].

Consider the induction hypothesis that dry (D, D’) < i if D is supported on
{0, 1}". To verify the hypothesis for i = 1, wlog assume that D(0) < D(1), then
dryv(D,D') =D(1) —D'(1) = 20D(1) — 6 < 6. Assume the hypothesis holds for all
i € [n — 1]. Now, we show the hypothesis is true for i = n.

Consider a distribution D over {0, 1}" and its #-tamed sibling 7, then:

dv(@DD) =3 X D) -Do)=5 ¥ X D)~ D)

ce{0,1}n pe{0,1} we{0,1}—1

> |D(S,)D"(w) = D'(S,)D"(w)|

pe{0,1} we{0,1}n—1

> > ID(S,)D’(w) — D(S,)D*(w) + D(S5,) D" (w) — D'(S,)D”(w)]

\)

D(5p)D? (w) = D(S,) D (w)] + |D(S,)D* (w) — D'(S,) D" (w)]

> D(5,)ID?(w) = D (w)| + D, (w)[D'(S,) = D(S,)]

S (D(S,)2dry (DP, D?)) + = 3 |D/(S,) — D(S,)]

pef{0,1} p€{0,1}

< 3 (D(S,)0(n—1))+0=0n

pef{0,1}

AN
N = N= N~ NN N

We use |a + b| < |a| + |b] in the first inequality. In the second, we use the induction
hypothesis to bound the first summand, and for the second, we observe that for
ce{0,1},|D'(c) — D(c)| < 0. O

]
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6.1.3 Related Work

Distance estimation is one of the many problems in the broader area of distribution
testing. Apart from estimation, there is extensive literature on the problems of
identity and equivalence testing. The problem of identity testing involves return-
ing Accept if dry (P, P*) = 0 and returning Reject if dpy (P, P*) > ¢, where P is
an unknown distribution and P* is known, i.e. you have a full description of P*.
Equivalence testing is the generalization of identity testing. It is the problem of
deciding between dry (P, Q) = 0 and drv (P, Q) > ¢ where both P and Q are
unknown. It is worth emphasizing that for both identity and equivalence test-
ing problems, any answer from the tester (Accept or Reject) is considered valid if
0 < drv(P, Q) < e. Provided only sample access, the sample complexity of identity
testing is © (2"/ 2/ 82> [78, 94] and of equivalence testing is max (22"/3g=4/3 2n/2¢=2)
Chan et al. [32], Valiant and Valiant [94]. While testing is of theoretical interest, its
practical application faces significant limitations primarily because testers must
accept only when two given distributions are identical. In real-world scenarios,
distributions are rarely identical but often exhibit close similarity. Consequently,
a simplistic tester that consistently returns Reject can meet the specifications. A
more rigorous definition of a tester is required to address this limitation, including
estimating the distance between the two distributions. Unfortunately, this intro-
duces a considerable challenge. [93] demonstrate that in the classical sampling
model, the necessary number of queries increases to 2" /n, a significant jump from
the previous 227/3,

To sidestep the exponential lower bounds on testing, the conditional sampling
model, or COND, was introduced independently by Chakraborty et al. [27] and
Canonne et al. [23], and has been successfully applied to various problems, in-
cluding identity and equivalence testing. In this model, the sample complexity
of identity testing is ©(¢?) (independent of n), while for equivalence testing the
best-known upper and lower bounds are O((logn)/e®) [51], and Q(y/Iogn) [1]
respectively. A survey by Canonne [21] provides a detailed view of testing and
related problems in various sampling models.

Our work investigates the distance estimation problem using the SUBCOND

model, a restriction of COND. Unlike COND, which allows conditioning on arbitrary
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sets, the SUBCOND model allows conditioning only on sets that are subcubes of the
domain. While COND significantly improves the sample complexity, it is not easily
implementable in practice, as arbitrary subsets are not efficiently represented and
sampled from. With a view towards plausible conditional models, Canonne et al.
[23], Bhattacharyya and Chakraborty [12] came up with the SUBCOND model,
which is particularly suited to the Boolean hypercube {0, 1}". Canonne et al. [24]
used the SUBCOND model to construct a nearly-optimal ©(y/n) uniformity testing
algorithm for {0, 1}", demonstrating its natural applicability for high-dimensional
distributions. Then Chen et al. [36] used SUBCOND to study the problems of
learning and testing junta distributions supported on {0, 1}". Bhattacharyya and
Chakraborty [12] developed a test for equivalence in the SUBCOND model, with
query complexity of O(n?/c?). However, before this work, there was no distance
estimation algorithm in the SUBCOND oracle model, and indeed even in the general
COND model.

6.1.4 Lower Bound

Canonne et al. [25] show an (n/log(n)) lower bound for the problem.

Theorem 6.1 (Theorem 11 in [25]). An absolute constant e, < 1 exists, such that the
following holds. Any algorithm that, given a parameter ¢ € (0,¢,|, and sample access
to product distributions P, Q over {0, 1}, distinguishes between dr (P, Q) < ¢ and
dry (P, Q) > 2¢, with probability at least 2/3, requires 2(n/log(n)) samples. Moreover,
the lower bound still holds in the case where Q is known, and provided as an explicit

parameter.

The lower bound is shown for the case where the tester has access to samples
from a product distribution P and Q (over {0, 1}"). As observed by Bhattacharyya
and Chakraborty [12], SUBCOND access is no stronger than SAMP when it comes

to product distributions. Thus we get the relevant lower bound:

Corollary 2. Let S(e1,e2, P, Q) be any algorithm that has SUBCOND access to dis-
tribution P, and explicit knowledge of Q (defined over {0,1}"), and distinguishes be-
tween dpy (P, Q) < ey and dpy (P, Q) > ey with probability > 2/3. Then, S makes
Q(n/log(n)) SUBCOND gqueries.
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6.2 DistEstimate: a Distance Estimation Algorithm

We now present the pseudocode of our algorithm DistEstimate, and the SubToEval
and SubVsSub subroutines. The following subsection will provide a high-level

overview of all our algorithms and formal analysis.

Algorithm 10 DistEstimate(P, Q, ¢, 9)
1: for j = 1to 4.5log(2/6) do
2: 1 < SubVsSub(P, Q,¢)
3: Kk < Median;(r;)
4: return s

Algorithm 11 SubVsSub(P, Q,¢)

L e/(e+4)
i - 50D (121
Mipn — 3210g(48Mgyt)
est <+ 0
forall i =1 to m,, do
o + SAMP(Q/)
forall j = 1 tom,, do
p; < SubToEval(P’, o, n)
¢; < SubToEval(Q', 0, n)
p < Median;(p;)
¢ < Median;(g;)
if ¢ > p then
13: est < est+1—p/4
14: return est/mgy

2

—_
Nyl

6.2.1 High-Level Overview

In Section 6.2.1.1, we introduce the main ideas of our algorithms, DistEstimate and
SubVsSub. Then, in Section 6.2.1.2, we explain the key concepts of the SubToEval

subroutine.

6.2.1.1 Outline of the DistEstimate and SubVsSub routines

The pseudocode of DistEstimate and SubVsSub is given in Alg. 10 and 11 respec-
tively. DistEstimate takes as input two distributions P and Q defined over the

support {0, 1}", along with the parameter ¢ for tolerance and the parameter ¢ for
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Algorithm 12 SubToEval(D’, o, )
1: t<+ 0
2: k< 4nn72(1 + n?)
3: foralli=1tondo
f+«0
while f < k£ do
a <+ CM(D', o)
T, —x;+ 1
t+—t+1
10: if ¢t =64n3n72(1+ n)*c~! then
11: return 0
f—f+1La=0)
12: d < H;L:l k’/.flfl
13: return d

confidence, and returns an e-additive estimate of dr (P, Q) with probability at
least 1 — 4.

The SubVsSub subroutine call returns an estimate r; of dry (P, Q) such that
Prir; € (drv(P, Q) £ ¢)] > 2/3, and DistEstimate makes 481og(1/4) calls to boost
the overall probability to 1 — §, using the Chernoff bound on the median of the
estimates.

SubVsSub takes as input the distributions P and Q, and creates their ¢/8n-
tamed siblings P’ and Q' that are ¢/8 close to P and Q in TV distance, and have
the property that all of their marginal probabilities are lower bounded by §2(g/8n).
The bounded marginal property of P’ and Q' is crucial for the polynomial query
complexity of SubVsSub. The construction of P’ and Q', and the claimed guarantees,
are discussed in Section 6.1.2. SubVsSub then computes the constants 7, m,,;, and
m;, (the counts of iterations of the outer and inner loop).

SubVsSub then draws m,,; samples ¢ ~ ©Q’, and for each sample o, calls
SubToEval m;,, times to find the (1+£7) estimates of Q'(c) and P’(c). The SubToEval
subroutine puts an upper limit on the number of CM oracle calls, and the limit is
set high enough to ensure that the estimates, p and g, are correct with the required
confidence. SubVsSub then computes the distance using these estimates as given

in Lemma 6.1.
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6.2.1.2 Outline of the SubToEval subroutine

The SubToEval subroutine takes as input an element o € {0,1}", a distribution D

over {0,1}", and a parameter 7. SubToEval outputs an n-multiplicative estimate of

D(o). The probability D(o) can be expressed as a product of marginals, D(c) =
w1 D,_,(0;), by applying the chain rule. Essentially, the subroutine approximates

each marginal D,,_,(o;) by k/x; for each i € [n], using the CM oracle. The product
* 1 k/z; is then employed as the final estimate for D(o).

In this context, the variable x; represents the total count of CM(D, o;) queries
executed until & occurrences of o; are observed. Given that D,(b) = Prycmm,p)[w =
b] for any p (as discussed in Section 6.1), the ratio k/x; is an intuitive choice as an
estimator for D,,_, (0;). Moreover, to ensure the subroutine terminates, a total num-
ber of calls to the CM oracle are monitored, and if they ever exceed the threshold
64n®n=2(1 + n)?c!, the subroutine terminates and returns 0.

We now discuss our technical contribution - showing the correctness of SubToEval
when the threshold is set to O(n?) (for this discussion, we will set aside the depen-
dency on 7). To estimate D(0), it is essential to estimate each of the n marginals,
D, _,(0;), to within an error margin of approximately 1 + 1/n. This would require
at least n?/D,_, (0;) queries for each marginal. Consequently, the total query com-
plexity would sum up to 31", n?/D,_,(0;). This quantity is at least Q(n?), but it
could potentially be unbounded as D,,_, (;) can take arbitrarily small values. In the

forthcoming section, we reduce this complexity to O(n?*) through a more nuanced

analysis.

6.2.2 Theoretical Analysis

In this section, we will prove our main Theorem 6. The proof of Theorem 6 relies on
Lemma 6.3, which claims the correctness of the SubToEval subroutine and upper

bound its query complexity. We will prove the lemma later.

Lemma 6.3. SubToEval(D’, o, n) takes as input distribution D', o0 € {0,1}",n € (0,1/5)

and returns d, then
Pr[d € (14 n)D'(0)] > 5/8
SubToEval makes O(n?/n?) CM queries to D'
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Given two distributions P and Q over {0, 1}", along with parameters ¢ € (0, 1),

and 0 € (0, 1), the algorithm DistEstimate(P, Q, €, §) returns estimate « such that
Pl“[li S (dTv(P, Q) + &T)] >1-96
DistEstimate makes O (n®log(1/48)/e*) queries to the SUBCOND oracle.

Proof. We will first show that the algorithm SubVsSub(P, Q, ¢) returns est such
that

Prlest € (dpy (P, Q) £ )] > 5/6

Since DistEstimate returns the median of the independent estimates provided
by SubVsSub, then applying the Chernoff bound, we have Pr[x € (drv (P, Q)+e)] >
1—09.

We will now consider the events that could lead to an incorrect estimate. Re-
calling that P’ and Q' are ¢/8n-tamed siblings of P and Q we define Badﬁ3 and
Bad! to be the events that in the i'" iteration of SubVsSub, p & (1 & 1)P'(¢), and
q ¢ (1+n)Q'(0), respectively. We bound the probability of Bad” and Bad! in the

following claim.

Claim 2.
Pr[Bad?] < 1/24my; and Pr[Bad?] < 1/24mgu

Proof. For a fixed iteration j, applying Lemma 6.3 we have Pr[p; € (1 £n)P’'(0)] >
5/8. Since p is the median of independent observations p; € [0, 1], over j € [m,],
we can use the Chernoff bound to derive the claimed bound, Pr[Bad§3 | < 1/24my.

The proof for the claim Pr[Bad?] < 1/24m,,, proceedes identically. O

Now we define Bad = U;cpm,,.] (Bad” U Bad!), i.e., Bad captures the event that at

least one of the estimates is incorrect. Then from Claim 2 and the union bound,

Pr[Bad] = Pr

U (Bad?U Bad?)]

1€ [mout}

1 1 1
< Z (Pr Badp |+ Pr[Badq]) < Moyt (24m + Y ) < D
out out

S [mout]

Now, let’s assume the event Bad. We have a set of m,,; samples from Q', and

for each sample o we have p and ¢ such thatp € (1 £7)P'(c) and ¢ € (1 £n)Q (o).
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This fulfills the condition of Lemma 6.1, and hence substituting |.S| = m,,: (Line 2
of Alg.11) we have,

Pr lest ¢ (dTV(P', (0 13_7717> ﬂ]?xad]

2
1
< 2exp (—Qmout <1in> ) < 2exp (—log(24)) = 5
Substituting n = _&; from Alg.11, we have,
S 1
Pr [est ¢ <dTV(77’, Q)+ ?lf) N Bad} < D

Then,

Pr [est ¢ (dTV(P/, Q)+ ?:fﬂ < Pr [est 4 <dTV(P', Q)+ 348) ﬂBad} + Pr[Bad]

<1/12+1/12=1/6

Since P’ and Q' are ¢/8n-tamed siblings of P and Q, from Lemma 6.2 we know
that dry (P, P) < ¢/8 and drv (9, Q) < /8. Then, from the triangle inequality,
we have the bounds on dry (P, Q):

dryv(P', Q) € dpy (P, Q) = (dpv (P, P) + drv(Q', Q))
c dTv(P, Q) + 8/4

Combining the two, we get that Prlest ¢ (drv (P, Q) £¢)] < 1/6, and hence
we have our claim.

Now, we will complete the proof by showing an upper bound on the query
complexity. The total number of CM queries made by SubToEval(D’, 0, 1) in a sin-
gle invocation is 64n®n=2(1 + n)%c~! = O(n®c~3). Then SubVsSub(P, Q, ¢) makes
MinMow = O(e7?log(e7!)) many calls to SubToEval. Finally, DistEstimate calls
SubVsSub 481log(1/§) many times. Thus the total number of queries to the CM
oracle made by DistEstimate is O (n®log(1/d)log(s™1)/e?). O

Proof of Lemma 6.3. Consider the subroutine SubToEval, (D', o,n) (Alg. 13), that is
the same as SubToEval(D’, 0,7) (Alg. 12) except in one critical aspect: the termi-
nation condition on Line 10 of SubToEval has been removed. This implies that

while SubToEval(D’, o, ) terminates if the number of calls to the CMoracle exceeds
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the threshold 64n3n—2(1 + n)%c~!, SubToEval,(D’, o, 1) does not enforce this restric-
tion, thereby allowing an unlimited number of calls to the CMoracle. Note that
we use variable names d; and ¢, in SubToEval’ to distinguish them from d of ¢ of
SubToEval. This modification is critical for our analysis as it leads to the variable

z; in SubToEval, (D', 0, n) following the negative binomial distribution.

Algorithm 13 SubToEval, (D', o, 7)
1: t1 <0
2: k< 4dnn~3(1 +n?)
3: foralli =1tondo

x; +— 0

f+«0

while f < k do
a <+ CM(D' o)
T, —x;+1
tih+<t1+1

10: [+ [+ 1(a=0)

11: dy < H?:l k?/ZL‘Z

12: return d;

Remark 3. Henceforth we will use ¢; and z; to denote the final values of ¢; and z;,

as on Line 11.

We will now show that the SubToEval; (D', o, 7) correctly estimates D’(c) with
high probability (Lemma 6.4) and then we show that it makes fewer than 64n*n—2(1+
n)?e~! calls to CM oracle with high probability (Lemma 6.5). These results will
help us establish analogous results for the subroutine SubToEval(D, ¢, 7) and in

validating our Lemma 6.3.

Observation 1. Comparing SubToEval and SubToEval,, we observe that SubToEval
returns an incorrect estimate d in two cases. Either SubToEval returns incorrect d;, or

else SubToEvaly, makes more than 64nn=2(1 4 n)?c~! queries. Stated formally,
Prld ¢ (14 0)D/(0)] < Prldy & (14 n)D'()] + Pr [ty > 64n®n2(1 + )%
Our proof will use the following propositions and lemmas

Proposition 12. For i € [n|, the value of x; (in Alg. 13) is distributed as NB(k, D,_,(0;))

Proof. Fix any i € [n]. In Alg. 13, the r.v o takes the value o; with probability

D, _,(0;). Note that while the value of z; increments by one in every iteration of the
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loop (lines 6-11), while the value of f increases by one only when a = ¢;. Since
the loop runs until the value of f is k, the distribution of z; is NB(k, D,,_,(c;)). O

Lemma 6.4. Pr{d;, € (1+n)D'(0)] > 2/3.

Proof. We use a variance reduction technique introduced by Dyer and Frieze

[48]. z; on Line 11 is distributed according to NB(k, D’,,_,(0;)), so we have E[z;] =

k/D’',_,(0;), and hence, k:/E[xl] = D',_.(0i). Now since d; = [[}_, k/x;, we have
E[l/d] = E[[T, @i/ k] = 112 1/, (00).

Vi1/dy] _ E[1/d

E[l/d]*  E[1/d,]?

_ i Elhy

i Elzi/k]?

M Ceae)

Using the fact that z; is negative binomial, we substitute V|z;/k] and E[x;/k]?,

V[1/dy] ﬁ ( (1 —D’M)/w'j@) .

-1

-1

E[1/d,]? (1/D'5..)?

a D/O<2 (O-'L)

e

<I (1) -

Substituting the value of k from the algorithm, we have
VI[1/d,] 7’ "

<|(14+———] —1

E[L/d,]? = ( T an{l 40y

4
2
< exp (Z) —1
2

n
< T
~ 3(1+n)?

J

(6.4)

The last inequality comes from the fact that for » € (0,1),s > 1, exp ( ) <1+7Z
Recall that from the chain rule we have D'(0) = [[}_; D's_,(0;), then E[1/d,] =
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1/D'(0).

Pr[d; € (1£n)D'(0)] =Pr -

= Pr

n] T>i0?]

el <[ el

[ 1 1 i 1
>pr|E|—] - =< 1L r|~
= r_’ [dl] dl = 1+7 [dlﬂ
L, e V]
- " E[E]
1 2
>1— - =" .
>1-o=3 (6.5)

We use the Chebyshev bound to get the second to last inequality and then substitute

(6.4).

]

Note that in every iteration, ¢; gets incremented by the value of ;. In the

following lemma, we claim that ¢;, the number of queries made by SubToEval;,

exceeds the threshold on Line 10 of SubToEval with low probability.

Lemma 6.5.

Pr[t; > 64nn %(1 4+ )%™ < 1/24

Proof. The number of CMcalls made by SubToEval; in the i'" iteration is captured

by ;. Recall from Prop 12 that z; is drawn from NB(k, D', _,(0;)), and therefore we

have,

Elz;] = k/D's_ (0:) = 4nn (1 +1)*/D'o_,(03)

From the fact that the distribution is £/8n-tamed, we know that D’

(Using k from Line 2 of SubToEval,)

(0;) >

0<i

¢/8n. Hence we have E[z;] < 32n°n~*(1 +n)%c~". Since t; = Y3;¢(,) i, we have that
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E[t] = E[ ;e v = nE[z;] < 32n°n~3(1 4 n)*¢~'. Thus,
Pr[t; > 64nn~%(1+n)%c~!] = Pr[t; > 2E[t]]

Zx122]E

i€[n]

=
i€ln)

< Z Pr[x; > 2E[x;]]

1€[n]
(Prop. 11) < Z exp(—2k(1 —1/2)?/2)
i€[n]
=nexp(—k/4)
(Substituting k and n < 1/5,¢ < 1) < nexp(—nn*(1+n)%")

< nexp(—9n) <1/24

In the last inequality we used the fact that for s > 0, ze™** < 1/es. O

Putting together lemmas 6.4 and 6.5 along with the observation 1, we complete

the proof:

Prl[d ¢ (1+n)D'(0)] <Prld; & (1+n)D'(0)] +Pr {tl > 64n°n~2(1 +n)%e _1}

<1+1_3
-3 24 8

6.2.3 The Discrete Hypergrid "

This section extends our results beyond the hypercube {0, 1}" to the hypergrid »",
where ¥ is any discrete set. This line of investigation is motivated by the fact that
in modern ML, distributions models are frequently described over hypergrids.
For instance, language models are defined to be distributions over X" where X
is the set of tokens, and n the length of the generated string. Furthermore, the
SUBCOND oracle is particularly suitable for use in ML applications as it models
autoregressive generation.

The SUBCOND oracle for D supported on X", takes a query string p € {E U*}"
and draws samples from the set of strings that match all the non-* characters

of p. As noted in [35], algorithms for {0, 1}" do not immediately translate into
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algorithms for ¥, because the SUBCOND oracle does not work with the natural
reduction of replacing elements c € > with their binary encoding. Nevertheless,
SubVsSub can be extended to distributions over ¥", incurring a linear dependence
on |X|.

We will now restate our result adapted to the new setting: Given two distribu-
tions P and Q over X", along with parameters ¢ € (0,1),d € (0,1/2), the algorithm
DistEstimate(P, Q, ¢, §), and with probability at least 1 — § returns &, s.t.

PI[Ii € (dTv(P, Q) + 6)] >1-946

DistEstimate(P, Q, ¢, §) makes O (n?|%| log(1/6)/e%) SUBCOND queries.

The only change required in DistEstimate to make it work for distributions over
the X" is in the construction of the tamed siblings P’, and Q'. We update the taming
parameter from ¢/8n to ¢/8n|X|. Since the query complexity is proportional to 1/6,

we observe a linear dependence on |X|.

6.3 Experiments

We implemented DistEstimate in Python. We focus on distributions generated by
state-of-the-art combinatorial samplers STS[49] and CMSGen[53]. Our assessment
included two datasets: (1) scalable comprising random Boolean functions over n
variables, with n ranging from 30 to 70, and (2) real-world, containing instances
from the ISCAS89 dataset, a standard in combinatorial testing and sampling eval-
uations [69]. To determine the ground truth TV distance for the above instances,
we implement a learning-based distance estimator [22].

For our experiments, we set the tolerance € = 0.3 and confidence § = 0.4 as the
default throughout the evaluation. These parameters indicate that the estimate
returned by DistEstimateis expected to be within +0.3 of the ground truth, with a
probability of at least 0.6.

The experiments were conducted on a cluster with AMD EPYC 7713 CPU cores.
We use 32 cores with 4GB of memory for each benchmark and a 24-hour timeout
per instance.

Our aim was to answer the question: To what extent does DistEstimate scale,

i.e., how many dimensions can the estimator handle while providing guarantees?
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Table 6.1: The sample complexity and runtime performance of DistEstimate on

real-world instances.

Benchmark Dimensions STS CMSGen
# of samples time (ins) #ofsamples time (ins)

s1196a_3_2 33 1.8e+09 4.1e+05 1.9e+09 5.3e+05
53.sk_4_32 33 1.7e+09 2.5e+05 1.9e+09 1.6e+06
27.sk_3_32 33 1.7e+09 1.9e+05 1.9e+09 1.0e+06
s1196a_7_4 33 1.8e+09 4.6e+05 1.9e+09 5.5e+05
s420_15_7 35 2.1e+09 4.2e+05 2.3e+09 4.0e+05
111.sk_2_36 37 2.2e+09 3.5e+05 8.3e+08 6.6e+05

We found that DistEstimate scales to n = 70 dimensional problems, a regime

where the baseline sample-based estimators would require 10" x more samples.

The estimates are empirically confirmed to be of high quality when compared

against the ground truth, falling within the allowed tolerance bound in all cases

where we could determine the ground truth.

Table 6.1 details the performance of DistEstimate on 6 real-world benchmarks.

The algorithm successfully finished on all benchmarks with dimensionality up to

n = 37. The table specifies the benchmark name, dimensionality, sample count,

and processing time for both STS and CMSGen.

The sample complexity of DistEstimate relative to a baseline sample-based

estimator is illustrated in Figure 6.1. For this, we use scalable benchmarks. Re-

markably, for the largest instance handled (n = 70 dimensions), DistEstimate

outperformed the baseline by a factor greater than 10"
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Appendix A

Extended table of results

A.1 From Chapter 3

A.1.1 Comparing sample complexity.

“A”(“R”) represent Barbarik2 returning Accept(Reject). “DNS” is used against those

£ 7

instances on which the indicated sampler Did Not Sample. indicates that
Barbarik2 timed out on that particular instance on the indicated sampler. Note that
“DNS” is different from “-” as “DNS” indicates the failure of the underlying sampler

‘" 7

to sample the initial set of samples, while “-” indicates the failure of Barbarik2 to
finish within the timeout period. The timeout was set to 50,000 seconds for wSTS

and wQuicksampler, while for wUnigen it was 24 hours.

Table A.1: The Extended Table

Barbarik2
tilt wUnigen wSTS wQuicksampler

Benchmark (maxSamp)  (samples) (samples) (samples)

1 R R
107.sk_3_90 (2e+05) DNS (5146) (6009)

1 R R
tableBased Addition.sk (2e+05) DNS (6009) (24534)

1 R R
55.sk_3_46 (2e+05) DNS (8911) (4354)

1 R R
111.sk_2_36 (2e+05) DNS (23543) (5150)

continued ...
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Barbarik?2

tilt wUnigen wSTS wQuicksampler
Benchmark (maxSamp)  (samples) (samples) (samples)
1 R R
17.sk_3_45 (2e+05) DNS (1e+05) (4677)
1 R R
80.sk_2_48 (2e+05) DNS (4284) (4627)
1 A R R
27.sk_3_32 (2e+05) (1e+05) (25329) (6009)
1 R R
70.sk_3_40 (2e+05) DNS (10402) (17704)
1 A R R
32.sk_4.38 (2e+05) (1e+05) (18081) (14682)
1 R R
84.sk 4 77 (2e+05) DNS (5146) (4354)
1 A R R
53.sk_4_32 (2e+05) (le+05) (35618) (6009)
3 R
$35932_3_2 (6e+05) DNS TO (11756)
3 R
$35932_7_4 (6e+05) DNS TO (11756)
3 A R R
s832a_3_2 (6e+05) (le+05) (8708) (54138)
8 R R
109.sk_4_36 (3e+06) DNS (26218) (6009)
11 R R
77.sk_3_44 (5e+06) DNS (47582) (47907)
12 R
$35932_15_7 (6e+06) DNS TO (4354)
15 A R R
s832a_7_4 (8e+06) (le+05) (4393) (13350)
18 A R R
51.sk_4_38 (1e+07) (78661) (4284) (4627)
26 R R
29.sk_3_45 (2e+07) DNS (4284) (55989)
27 R A
81.sk_5_51 (3e+07) DNS (28409) (2e+05)
continued ...
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Barbarik?2

tilt wUnigen wSTS wQuicksampler
Benchmark (maxSamp)  (samples) (samples) (samples)
28 A A R
5349_3_2 (3e+07) (1e+05) (1e+05) (22854)
32 A R R
$298 3 2 (3e407) (1e+05) (80883) (26491)
37 A R A
s820a_3_2 (5e+07) (96212) (87997) (2e+05)
44 A R R
$298_15_7 (6e407) (1e+05) (42520) (53107)
58 R R
63.sk_3_64 (1e+08) DNS (4393) (4677)
79 A R R
s820a_15_7 (2e408) (84310) (2e405) (16714)
110 A R R
s1488_15_7 (4e+08) (86152) (17168) (7341)
132 A A R
s1488_3_2 (6e+08) (89686) (89236) (7341)
138 A R R
$382_15_7 (6e+08) (92159) (2e405) (6009)
, 140 A R R
UserServicelmpl.sk_8_32 (6e+08) (1e+05) (1le+05) (4393)
144 R R
20.sk_1_51 (7e+08) DNS (30895) (5146)
167 A A R
s820a_7_4 (9e+08) (95566) (1e405) (6009)
194 A R R
s832a_15_7 (1e+09) (96984) (9434) (13350)
206 A R R
s1488_7_4 (1e+09) (1e+05) (4677) (4627)
218 A R R
s344_15_7 (2e+09) (90183) (94481) (4354)
, . 232 A R R
LoginService2.sk_23_36 (2e+09) (le+05) (38044) (13350)
265 R A
s420_new1_15_7 (2e+09) DNS (19224) (3e+05)
continued ...
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Barbarik?2

tilt wUnigen wSTS wQuicksampler
Benchmark (maxSamp)  (samples) (samples) (samples)
412 A R R
s349_15_7 (5e+09) (99215) (28400) (14682)
501 A A R
s444 15 7 (8e+09) (le+05) (1e+05) (26627)
603 A R R
s349_7_4 (le+10) (75555) (4284) (5150)
644 R R
s444_7_4 (1e+10) DNS (4393) (4354)
982 A R R
5420_newl 7 4 (3e+10) (1e+05) (4354) (18473)
986 A R R
s298_7_4 (3e+10) (83681) (8638) (6009)
1226 A R
s420_newl_3_2 (5e+10) DNS (1e+05) (5150)
1283 A R R
s382_7_4 (5e+10) (92307) (26491) (7341)
1552 A R R
5420_3_2 (8e+10) (le+05) (14756) (48983)
1856 A R R
s1238a_7_4 (le+11) (95095) (5150) (7341)
1965 A R R
s1238a_3_2 (le+11) (le+05) (28848) (4627)
2028 A R R
s444 3 2 (le+11) (1le+05) (2e+05) (9500)
2317 R R
s1238a_15_7 (2e+11) DNS (9020) (88233)
2317 A R R
s420_new_15_7 (2e+11) (99198) (1le+05) (4393)
2453 R R
30.sk_5_76 (2e+11) DNS (5216) (4677)
2607 A R R
5344 7_4 (2e+11) (1le+05) (14170) (16818)
3300 A R R
s344_3_2 (3e+11) (1le+05) (59952) (5150)
continued ...
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Barbarik?2

tilt wUnigen wSTS wQuicksampler
Benchmark (maxSamp)  (samples) (samples) (samples)
3549 A A R
s420_new_7_4 (de+11) (82312) (96659) (49955)
8984 A R
s953a_7_4 (3e+12) DNS (2e+05) (4627)
10596 R R
s953a_15_7 (4e+12) DNS (11734) (59735)
15268 R R
10.sk_1_46 (7e+12) DNS (35179) (1e+05)
17449 A R R
5420_new_3_2 (le+13) (1e+05) (44937) (5150)
18253 R R
19.sk_3_48 (1le+13) DNS (59014) (4627)
20860 R R
s953a_3_2 (le+13) DNS (51161) (le+05)
1e+06 R R
s641_3_2 (5e+16) DNS (14454) (4627)
_ . 5e+06 R R
ProjectService3.sk_12_55  (7e+17) DNS (9020) (4393)
1le+07 R R
71.sk_3_65 (3e+18) DNS (1e+05) (4284)
le+07 R R
s838_7_4 (5e+18) DNS (4393) (4284)
3e+07 R R
s838_15_7 (3e+19) DNS (5150) (4393)
6e+07 R R
s713_3_2 (le+20) DNS (56386) (5827)
6e+07 R R
s713_7_4 (1e420) DNS (5827) (37419)
9e+07 R A
s641_7_4 (3e+20) DNS (8747) (1e+06)
2e+08 R R
$838_3_2 (le+21) DNS (9504) (4627)
de+11 R R
54.sk_12_97 (6e+27) DNS (14012) (4627)
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A.1.2 Comparing the runtime performance

In each of the following tables we compare the runtime of Barbarik2 against the
runtime of the baseline approach. The runtime of Barbarik2 on Reject instances
depends on which iteration the tester terminated on. The runtime of the baseline
is extrapolated from the expected number of samples and the average sampling
rate of the sampler. To do this we use the /;-testing algorithm given in [7]. In
the current context, the algorithm assumes black box sample access to a uniform
sampler over the models of a Boolean formula ¢, and the sampler under test, and
requires O(#¢?3(n — £)~*3log(#/d)) samples, where #¢ is the model count,

(e,m) are the closeness and farness parameters, and ¢ is the confidence parameter.

A.1.2.1 ForwSTS

Benchmark Baseline Barbarik2(s) Speedup
s349_7_4 16457 5 3428.58
s420_newl_7_4 5.4E+6 6 8.6E+5
s298_7_4 705 8 94.02
s444 7 4 1.1E+7 8 1.3E+6
s832a_7_4 3725 10 372.53
s1488_7_4 184 12 15.16
s344 7 4 24751 15 1683.77
s420_3_2 2.2E+6 17 1.3E+5
s1238a_7_4 1.4E+6 20 66538.64
s832a_3_2 2149 22 98.60
s832a_15_7 15121 24 622.29
s838_15_7 29E+13 27 1.1E+12
s349_15 7 16457 28 587.76
s838_7_4 3.7E+13 29 1.3E+12
s382_7 4 14915 32 469.03
s298_15 7 384 32 12.09
s420_new1_15_7 41E+6 33 1.3E+5
27.sk_3_32 79531 34 2346.06
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Benchmark Baseline Barbarik2(s) Speedup
s1238a_15_7 1.8E+6 37 49906.05
111.sk_2_36 2.9E+8 42 6.8E+6
51.sk 4 38 2.0E+6 44 45904.52
80.sk_2_48 6.0E+7 46 1.3E+6
s1488_15_7 128 48 2.67
s953a_15_7 1.1E+9 49 2.2E+7
s344 3 2 15750 51 309.45
s298 _3_2 229 52 4.42
s838_3_2 2.7E+13 57 4.8E+11
s420_new_3_2 2.9E+6 65 44288.35
84.sk_4 77 3.4E+13 68 5.0E+11
s641_3_2 4.1E+10 70 5.9E+8
55.sk_3_46 2.0E+7 70 29E+5
s349 3 2 30563 73 416.96
107.sk_3_90 1.7E+15 86 1.9E+13
s1238a_3_2 2.2E+6 87 25824.41
s344_15_7 24751 91 271.10
32.sk_4 38 5.8E+5 94 6228.23
10.sk_1_46 6.5E+7 112 5.8E+5
29.sk_3_45 2.2E+8 150 1.5E+6
s420_new_7_4 41E+6 152 27272.30
s1488 3 2 52 163 0.32
s953a_3 2 6.4E+8 165 3.9E+6
s420_new_15_7 4.5E+6 186 24014.34
70.sk_3_40 2.9E+6 201 14544.89
s444 157 13470 202 66.82
s420_newl_3_2 2.6E+6 211 12084.36
s820a_3_2 2189 221 991
s444 3 2 11186 247 45.22
s713_3_2 8.8E+10 255 3.5E+8
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Benchmark Baseline Barbarik2(s) Speedup
109.sk_4_36 6.6E+5 269 2459.36
s820a_7_4 4240 277 15.33
63.sk_3_64 5.8E+11 282 2.1E+49
s641 7 4 8.2E+10 311 2.6E+8
53.sk 4 32 55060 313 176.08
s382_15_7 33182 343 96.86
s820a_15_7 4154 370 11.23
ProjectService3.sk_12_55 1.3E+10 458 2.9E+7
s35932_3 2 3.6E+2 TO -
s35932 7 4 3.6E+2 TO -
s35932_15_7 3.6E+2 TO -
s953a_7 4 5.7E+8 689 8.3E+5
UserServicelmpl.sk_8_32 479 720 0.67
30.sk_5_76 7.0E+14 1116 6.2E+11
77.sk_3_44 5.3E+6 1687 3156.66
tableBased Addition.sk_240 3.8E+14 1832 2.1E+11
81.sk_5_51 5.0E+9 2099 2.4E+6
LoginService2.sk_23_36 12951 2368 5.47
20.sk_1_51 1.1E+10 2568 41E+6
19.sk_3_48 3.1E+8 2760 1.1E+5
17.sk_3_45 45E+7 3016 14948.13
71.sk_3_65 4.7E+12 4365 1.1E+9
54.sk_12_97 2.7E+18 4688 5.8E+14
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A.1.2.2 For wQuicksampler

Benchmark Baseline Barbarik2(s) Speedup
s344_3_2 24751.45 3 8534.98
s344_15_7 24751.45 4 7071.84
s349_7_4 28212.36 4 7624.96
s298_7_4 512.82 4 119.26
s420_newl_3_2 5.1E+6 4 1.2E+6
s420_new_3_2 2.2E+6 4 5.1E+5
s420_new_15_7 3.5E+6 4 7.8E+5
s382_7_4 12429.39 5 2589.46
s444 7 4 51980.83 5 10192.32
s820a_7_4 2283.19 5 430.79
s1488_7_4 128.07 6 20.99
s444 3_2 8700.57 6 1359.46
s838_7_4 1.3E+13 7 1.8E+12
27.sk_3_32 48942.42 7 6797.56
s1238a_3_2 1.6E+6 7 2.2E+5
s953a_7_4 6.6E+8 8 8.8E+7
s1488_3_2 65.65 8 8.31
s838_3_2 1.9E+13 8 24E+12
s1488_15_7 60.56 9 6.80
s349_15_7 35265.44 9 3833.20
s344 7 4 22501.32 9 2393.76
s349_3_2 14106.18 10 1424.87
55.sk_3_46 4.5E+7 10 43E+6
s1238a_7_4 1.1E+6 11 97431.59
s298_3_2 534.49 11 46.89
s832a_7_4 4139.28 12 344.94
111.sk_2_36 5.2E+5 12 41613.34
s838_15_7 2.6E+13 12 2.1E+12
s420_newl 7 4 2.2E+6 13 1.7E+5

124



Benchmark Baseline Barbarik2(s) Speedup
s832a_15_7 13861.52 14 1011.79
UserServicelmpl.sk_8_32 326.81 14 23.68
s382_15 7 27149.56 15 1859.56
53.sk 4 32 91767.04 16 5595.55
s820a_15_7 5665.59 17 335.24
84.sk 4 77 2.1E+13 18 1.2E+12
51.sk_4_38 1.8E+6 19 91363.08
s444 15 7 14817.06 19 763.77
109.sk_4_36 6.6E+5 20 33425.00
107.sk_3_90 1.6E+15 21 74E+13
71.sk_3 65 1.3E+12 27 5.0E+10
s641_3_2 2.8E+10 28 1.0E+9
s298_15_7 1153.85 30 38.98
32.sk 4 38 1.2E+6 34 36689.91
s420_3_2 4.5E+6 34 1.3E+5
s420_new_7_4 3.5E+6 36 96896.05
80.sk_2_48 2.1E+8 37 5.7E+6
s832a_3 2 2149.58 45 47.66
19.sk_3_48 45E+8 50 9.0E+6
63.sk_3_64 2.1E+11 51 4.0E4+9
17.sk_3_45 8.3E+7 55 1.5E+6
s713.3.2 9.4E+10 56 1.7E+9
s953a_15_7 6.7E+8 79 8.5E+6
20.sk_1_51 4.0E+9 82 4.8E+7
70.sk_3_40 43E+6 101 42475.10
s1238a_15_7 1.0E+6 107 9614.31
10.sk_1_46 71E+7 128 5.5E+5
s953a_3 2 3.4E+8 132 2.6E+6
s820a_3 2 1167.90 137 8.54
30.sk_5_76 3.0E+14 210 1.4E+12
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Benchmark Baseline Barbarik2(s) Speedup
ProjectService3.sk_12_55 6.4E4+9 219 2.9E+7
LoginService2.sk_23_36 12692.30 229 55.52
s420_newl_15_7 3.2E+6 232 13726.91
77.sk_3_44 1.2E+7 409 30125.88
29.sk_3_45 1.3E+8 658 2.0E+5
54.sk_12_97 4.0E+17 690 5.8E+14
s641 7 4 6.8E+10 1117 6.1E+7
s35932_15_7 1.4E+4356 1182 1.2E+353
tableBased Addition.sk_240 3.0E+13 1430 2.1E+10
s35932_7 4 1.2E+356 2227 5.5E+352
$35932_3_2 1.1E+356 2346 4.5E+352
81.sk_5 51 2.0E+9 2461 8.3E+5
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A.1.2.3 For wUnigen

Benchmark Baseline Barbarik2(s) Speedup
s1488_3_2 229.78 6648 0.03
s298_7_4 7564.11 10758 0.70
s1488_15_7 643.45 11493 0.06
s298_15_7 2948.72 12325 0.24
s349_7_4 1.8E+06 12858 136.40
s820a_15_7 48724.11 14070 3.46
s344_15_7 3.8E+05 14074 27.18
s1488_7_4 853.78 15049 0.06
s820a_7_4 42728.33 16124 2.65
s349_15_7 3.9E+05 17690 21.80
s382_7_4 9.7E+05 21785 44 .45
s349_3_2 3.0E+05 22395 13.54
s832a_15_7 5.6E+05 23036 24.45
s420_new_7_4 4.0E+09 24092 1.7E+5
s344 7 4 1.7E4+06 26423 64.55
51.sk_4_38 2.7E4+09 26612 1.0E+5
s820a_3_2 2.3E+05 27408 8.47
s298_3_2 2061.62 30262 0.07
s344_3_2 5.0E+05 32378 15.29
s1238a_7_4 1.5E+09 33689 45408.69
s832a_7_4 76990.55 34315 2.24
s382_15_7 1.0E+07 39024 263.98
s1238a_3_2 7.1E+08 40406 17575.38
s420_new_15_7 4.9E+09 40725 1.2E+5
27.sk_3_32 7.4E406 41997 176.26
s832a_3_2 74844.43 42696 1.75
UserServicelmpl.sk_8_32 21547.88 45090 0.48
32.sk_4_38 4.9E+08 45126 10872.88
s420_newl_7_4 2.8E+08 48911 5639.38
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Benchmark Baseline Barbarik2(s) Speedup

s444_3_2 1.9E+06 55017 34.61
LoginService2.sk_23_36 1.3E4+06 56229 22.38
s420_3_2 2.3E+09 68048 33247.50
53.sk_4_32 2.2E+07 70590 312.87
s420_new_3_2 1.2E+10 75284 1.6E+5

A.2 From Chapter 4

A.2.1 Comparing Barbarik2 and Barbarik3

Performance of Barbarik3. We experiment with 87 benchmarks, and out of the 87
benchmarks. In the table “TO’ represents that either the tester timed out or asked
for more than 10°® samples. The value of the parameter for closeness is ¢ = 0.05,

for farness is 7 = 0.9 and for confidence is § = 0.2. Here R denotes Reject, and A

denotes Accept.
Barbarik?2 Barbarik3
Benchmark Dimensions Result # of samples Time(ins) Result # ofsamples Time(ins)

SetTest 21 R 2817 170 R 58000 2290
s27_15_7 R 4789 0.99 R 30000 6.14
s27 7 4 R 4789 1.06 R 30000 6.43
polynomial.sk 25 R 4789 8.41 R 66000 95.0
Pollard.sk_1_10 10 R 7606 168 R 36000 525
$298_3 2 17 R 57431 50.75 R 50000 61.53
s27 3.2 R 62220 10.75 R 30000 6.49
s27_new_15_7 7 R 128264 19.04 R 30000 11.79
s526a_3_2 24 R 848148 1373 R 64000 191
s444 3 2 24 R 848148 1161 R 64000 142
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s27_new_3_2
s510_15_7
s1488_15_7
s298_7_4
s27 new_7 4
s298_15_7
s349 7 4
110.sk_3_88
s344_3_2
s526_3_2
53.sk_4_32
s420_7_4
10.sk_1_46
17.sk_3_45
s349_15_7
s820a_7_4
s832a_15_7
80.sk_2 48
s344 15_7
81.sk_5_51
s420_3_2

s420 newl 15 7

UserService
111.sk_2_36
s349_3 2
s953a_7 4
s444 7 4
77.sk_3_44
51.sk_4_38
109.sk_4_36
s832a_7 4
sb26a_15_7

~ > AR AR R

TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO

905579
12708989
12708989
12708989
23997012
38126967
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138
18844
38070
10186
3558
36140
0.28
2.98
0.33
0.38
0.32
0.31
0.4
0.9
0.51
0.28
0.43
0.58
0.87
6.71
0.25
0.39
0.7
0.33
0.3
0.71
1.9
0.82
1.04
0.69
0.3
86.82

A" AR A A A A A A A A A A A AAAAAAAAAAAAAA A A" A”A

30000
66000
44000
50000
30000
50000
64000
190000
64000
64000
80000
83000
107000
105000
64000
62000
62000
111000
64000
117000
83000
83000
80000
87000
64000
105000
64000
103000
91000
87000
62000
64000

7.16
206
198
63.58
7.24
72.77
130
5082
127
169
224
297
521
801
161
221
281
656
145
13505
275
335
706
257
120
783
153
862
1689
843
237
291



s420 new_7 4
s382_3 2
s641_3 2

s420_new_3_2

LoginService2
s832a_3_2

s420 new_15 7

s420_new1_3_2
s838_3_2
70.sk_3_40

s820a_15 7
29.sk_3_45
19.sk_3_48
57.sk_4_64
s444 157
s1238a_3_2
s526_7 4
s382_7 4
s1238a_7_4
7.sk_4_50
55.sk_3_46
s713_7_4

s420 newl 7 4
s641_7 4

s1196a_15_7

ProjectService3

s1196a_3_2
s1238a_15_7
$526_15_7
s820a_3_2
27.sk_3_32
s510_3_2

24
54

36
23
34
34
66
40
23
45
48
64
24
32
24
24
32
50
46
54
34
54
32
55
32
32
24
23
32
25

TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
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0.27
0.24
19.96
0.26
18.86
0.34
0.29
0.26
0.7
0.4
0.39
3.29
3.51
0.98
0.48
0.92
46.45
0.31
1.1
0.68
0.44
198
0.35
240
2.29
184
0.91
2.39
122
0.32
0.24
0.28

~N "R AR A A A A A A A A A A A AAAAAAAAAAAAAA A A" A”A

83000
64000
123000
83000
87000
62000
83000
83000
147000
95000
62000
105000
111000
143000
64000
80000
64000
64000
80000
115000
107000
123000
83000
123000
80000
125000
80000
80000
64000
62000
80000
66000

276
142
951
286
6639
233
324
277
1640
450
216
6514
2259
1501
169
493
216
138
537
834
512
1288
290
1300
613
5557
490
664
318
188
196
176



s1196a_7_4 32 TO - 1.15 R 80000
s344 7 4 24 TO - 0.32 R 64000
s713_3_2 54 TO - 44.5 R 123000

s953a_3_2 45 TO - 0.65 R 105000
s526a_7_4 24 TO - 44.16 R 64000
s420_15_7 34 TO - 0.39 R 83000

s953a_15_7 45 TO - 0.95 R 105000
s838_7_4 66 TO - 0.81 R 147000

56.sk_6_38 38 TO - 0.52 R 91000

32.sk_4_38 38 TO - 0.35 R 91000

s382_15_7 24 TO - 8.83 R 64000
s1488_3_2 14 TO - 0.42 R 44000
63.sk_3_64 64 TO - 3.33 R 143000

546
130
1027
731
224
346
912
1552
526
358
190
154
9191

A.3 From Chapter 5

The timeout for all our experiments was set to 7200 seconds.

A.3.1 Synthetic PCs

In the following table, the first column indicates the benchmark, the second and
the third indicate the closeness parameter € and 7 used in the test. The fourth
column indicates actual dry distance between the two benchmark PCs . The fifth
column indicates the test outcome and the sixth represents the expected outcome.
‘A’ represents Accept and ‘R’ represents Reject and ‘A /R’ represents that both ‘A’

and ‘R’ are acceptable outputs.

Table A.6: Extended Table of Results

Benchmark ¢ n Actual dpy Result Expected
Result

14_4 0.9 0.99 0.773 A A

172 075 099 0998 R R
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14_2 0.9 099 0.764 A A
18_3 075 096  0.930 R A/R
17_4 075 099 0941 R A/R
18_3 0.8 099 0.930 R A/R
17_1 0.8 096 0.874 R A/R
17_0 0.85 094 0.968 A A/R
14 2 085 094 0.764 A

14_4 085 094 0.773 A

15_4 0.9 094 0941 R

16_2 0.9 099  0.987 A A/R
14 0 075 09 0.771 A A/R
16_3 0.8 0.9 0.879 A A/R
17_2 075 096 0.998 R R
15_0 0.8 0.9 0.984 R R
18_0 075 094 0994 R R
17_4 075 096 0941 R A/R
18_4 075 099 0.907 R A/R
18_2 075 099 00918 R A/R
141 0.75 099 0.740 A A
16_1 085 09 0.918 R R
17_0 085 096 0.968 A A/R
15_4 085 094 0941 R R
17_0 0.8 094 0.968 A A/R
17 0 085 099 0.968 A A/R
14 0 0.9 094 0.771 A A
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16_4 075 096 0.833 A A/R
15_1 085 096 0927 R A/R
14_4 0.9 096 0.773 A A
14 3 0.8 096  0.852 A A/R
14 2 0.9 096 0.764 A A
16_4 075 09 0.833 A A/R
17_3 0.9 094 0914 A A/R
151 085 09 0.927 R R
16_4 0.9 096 0.833 A A
14_3 0.8 094 0.852 A A/R
16_1 0.8 099 00918 R A/R
16_2 085 096 0.987 A A/R
15_3 075 099 0.804 R A/R
14 3 075 094 0.852 A A/R
16_4 085 096 0.833 A A
18_0 0.8 0.9 0.994 R R
18_4 0.8 094 0.907 R A/R
18_4 0.85 099 0.907 A A/R
18_0 0.9 099 0994 R R
151 0.9 099  0.927 R A/R
14 3 0.85 096 0.852 A A/R
16_2 075 094 0987 R R
15_0 0.9 096 0.984 R R
18_4 0.8 096  0.907 R A/R
17_0 075 09 0.968 R R

133



18_1 0.9 096  0.993 R R
18_0 0.9 096 0994 R R
17_3 0.8 099 0914 A A/R
18_3 085 09 0.930 R R
17 2 085 094 0.998 R R
151 075 094 0927 R A/R
14 3 075 09 0.852 R A/R
15_3 0.8 099 0.804 R A/R
17_3 085 094 0914 A A/R
14_3 0.8 0.9 0.852 R A/R
17_3 075 099 0914 R A/R
14 3 0.9 099 0.852 A A
17_0 075 094 0.968 R R
18_2 0.8 099 0918 R A/R
17_0 0.8 096  0.968 A A/R
17_1 085 094 0.874 A A/R
16_3 0.8 094 0.879 A A/R
141 085 094 0.740 A A
16_3 085 099 0.879 A A/R
18_0 085 096 0.994 R R
15_3 0.9 094 0.804 A A
16_4 0.8 0.9 0.833 A A/R
141 0.75 096 0.740 A A
16_2 0.8 0.9 0.987 R R
17_1 075 096 0.874 R A/R
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151 0.8 0.9 0.927 R R
15_4 0.8 096 0941 R A/R
18_2 0.9 094 00918 R A/R
18_4 085 094 0.907 R A/R
18_4 085 096 0.907 R A/R
16_3 0.9 099 0.879 A A

14 0 075 099 0771 A A/R
16_0 085 09 0.954 R

14 4 085 099 0.773 A A
16_1 0.8 0.9 0.918 R R
171 0.8 094 0.874 R A/R
17_1 085 099 0.874 A A/R
16_4 0.9 099 0.833 A

141 0.9 094 0.740 A A
17_0 0.8 0.9 0.968 R R

14 2 075 096 0.764 A A/R
150 085 096 0.984 R R

14 0 0.8 096 0.771 A A

14 4 075 096 0.773 A A/R
16_3 075 09 0.879 R A/R
172 0.9 094 0.998 R R
15_2 085 09 0.905 A A/R
14 4 0.8 094 0.773 A A

14 2 0.8 094 0.764 A A
16_0 0.8 099 0.954 R A/R
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17_2 085 09 0.998 R R
16_3 085 096 0.879 A A/R
14_2 075 094 0.764 A A/R
18_1 0.8 094 0.993 R R
18_1 085 099 0.993 R R
18_1 0.9 099  0.993 R R
16_4 075 099 0.833 A A/R
15_0 0.9 099 0.984 R A/R
15_1 0.9 096  0.927 R A/R
16_0 0.9 094 0.954 A A/R
171 075 09 0.874 R A/R
15_0 0.8 094 0.984 R R
17_4 0.8 099 0941 R A/R
18_2 085 09 0.918 R R
14_2 075 09 0.764 A A/R
15_0 0.8 099 0984 R A/R
14 2 0.8 0.9 0.764 A A
14_4 0.8 0.9 0.773 A

141 085 09 0.740 A A
17_0 075 099 0.968 A A/R
14 0 085 09 0.771 A A
17_1 075 094 0.874 R A/R
18_1 085 094 0.993 R R
18_1 0.8 099  0.993 R R
18_1 075 09 0.993 R R
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17_3 0.8 096 0914 R A/R
18_3 0.9 096  0.930 R A/R
16_2 0.8 094 0.987 A A/R
14 0 085 094 0.771 A A
16_2 085 099 0.987 A A/R
16_4 0.8 094 0.833 A A/R
18_1 085 096 0.993 R R
16_4 085 099 0.833 A A
15_2 0.9 094 0.905 A A/R
15_0 075 09 0.984 R R
16_0 0.9 099 0.954 A A/R
15_4 0.8 0.9 0.941 R R
17_0 075 096 0.968 R R
15_3 0.8 096  0.804 R A/R
18_3 0.9 094 0.930 R A/R
18_3 085 094 0.930 R A/R
16_0 0.8 096 0.954 A A/R
17_4 085 096 0941 R A/R
14 3 075 099 0.852 A A/R
17_2 0.85 096 0.998 R R
17_4 0.8 094 0941 R R
16_2 0.8 096  0.987 A A/R
17_4 085 099 0941 R A/R
16_3 0.8 096 0.879 A A/R
17_1 0.8 0.9 0.874 R A/R
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16_2 075 096 0987 R R
15_3 085 096 0.804 A A
17_2 0.8 094 0.998 R R
141 0.8 096  0.740 A A
14 0 085 099 0.771 A A
16_2 075 09 0.987 R R
15_2 085 094 0.905 A A/R
14_3 0.85 099 0.852 A A/R
15_3 085 09 0.804 R A/R
14_2 085 099 0.764 A A
16_3 0.8 099 0.879 A A/R
17_3 085 09 0.914 A A/R
16_0 0.85 096 0.954 A A/R
141 0.75 094 0.740 A A
18_4 0.8 0.9 0.907 R R
18_0 0.8 094 0.994 R R
14 3 0.8 099 0.852 A A/R
18_0 0.85 099 0994 R R
18_2 0.9 099 0918 R A/R
16_3 075 099 0.879 A A/R
15_3 0.9 099 0.804 A A
16_4 075 094 0.833 A A/R
15_2 0.9 096  0.905 A A/R
16_1 0.9 094 0918 R A/R
18_2 0.8 096 0918 R A/R
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17_2 0.9 096  0.998 R R
15_1 0.8 094 0.927 R A/R
17_3 0.9 099 0914 A A/R
151 075 096 0927 R A/R
15_1 0.8 099 0927 R A/R
141 0.8 0.9 0.740 A A
17_4 075 094 0941 R

18_0 075 096 0994 R R
17_1 075 099 0.874 R A/R
17 2 075 094 0.998 R R
18_0 0.8 099  0.994 R R
18_0 075 09 0.994 R R
17_2 0.8 096  0.998 R R
18_2 0.9 096 0918 R A/R
16_1 0.8 094 00918 R A/R
16_1 0.85 099 00918 R A/R
18_2 085 096 0918 R A/R
151 0.9 094 0.927 R A/R
15_1 075 09 0.927 R R
16_1 0.9 099 0918 R A/R
14 3 075 096 0.852 A A/R
18_3 075 094 0.930 R A/R
15_2 0.8 096  0.905 A A/R
18_0 0.9 094 0994 R R
18_1 075 099 0.993 R R
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18_2 085 094 00918 R A/R
17_3 085 096 0914 A A/R
14_2 075 099 0.764 A A/R
15_3 085 094 0.804 A A
17 2 0.8 0.9 0.998 R R
16_3 075 096 0.879 A A/R
14 2 085 09 0.764 A A
15_2 0.85 096 0.905 A A/R
141 0.9 096  0.740 A A
16_1 075 09 0.918 R R
17_4 0.9 094 0941 R R
15_4 085 09 0.941 R R
16_4 0.8 099 0.833 A A/R
15_0 075 099 0.984 R A/R
15_0 085 09 0.984 R R
16_2 0.8 099 0987 A A/R
17 0 085 09 0.968 A A/R
16_1 085 096 0918 R A/R
14 0 075 094 0771 A A/R
16_2 0.9 096  0.987 A A/R
18_3 0.8 0.9 0.930 R R
18_3 0.8 094 0.930 R A/R
14 2 0.8 099 0.764 A A
16_1 0.9 096 0918 R A/R
18_3 0.85 099 0.930 R A/R

140



14_4 0.8 099 0.773 A A
16_0 0.9 096 0954 A A/R
18_3 0.9 099  0.930 R A/R
16_2 075 099 0.987 A A/R
14 0 085 096 0.771 A A
15_2 0.9 0.99  0.905 A A/R
16_1 075 094 0918 R A/R
16_4 0.9 094 0.833 A A
15_3 0.9 096  0.804 A A
16_2 0.9 094 0.987 A A/R
18_3 0.8 096  0.930 R A/R
17_3 0.9 096 0914 A A/R
15_2 0.8 094 0.905 A A/R
17_0 0.8 0.99  0.968 A A/R
15_2 075 094 0.905 R A/R
18_4 085 09 0.907 R R
15_4 0.8 099 0941 R A/R
15_4 075 094 0941 R R

14 4 075 09 0.773 A A/R
14_0 0.8 0.9 0.771 A A

14 0 0.9 099 0.771 A

18_1 075 096 0.993 R

17_3 075 094 0914 R A/R
18_3 075 09 0.930 R R
17_4 085 094 0941 R R
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16_0 0.8 094 0.954 A A/R
15_0 085 099 0.984 R A/R
16_0 085 099 0954 A A/R
15_4 075 09 0.941 R R
15_1 085 099 0.927 R A/R
18_3 0.85 096 0.930 R A/R
150 0.9 094 0.984 R R
15_2 075 09 0.905 R R
15_2 085 099 0.905 A A/R
15_2 0.8 0.9 0.905 A A/R
15_3 0.85 099 0.804 A A
18_2 075 094 0918 R A/R
18_4 075 094 0907 R A/R
15_1 0.8 096  0.927 R A/R
18_1 0.9 094 0.993 R R
18_0 075 099 0.994 R R
14 3 085 09 0.852 A A/R
16_3 085 09 0.879 A A/R
16_1 0.8 096 0918 R A/R
141 0.85 099 0.740 A A
15_0 085 094 0.984 R R
17_2 0.85 099 0.998 R R
14 2 0.9 094 0.764 A A
14 4 0.9 094 0.773 A A
17_3 0.8 0.9 0.914 R R
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16_0 075 096 0954 R A/R
14 0 0.9 096 0.771 A

17_1 0.9 094 0.874 A

16_0 075 09 0.954 R R

14 1 0.8 094 0.740 A A
151 075 099 0927 R A/R
17_1 085 09 0.874 R A/R
18_2 0.8 0.9 0.918 R R
18_2 0.8 094 00918 R A/R
14_1 0.8 099 0.740 A A
18_2 085 099 00918 R A/R
18_4 0.9 099  0.907 A A/R
16_1 075 099 0918 R A/R
14 1 0.85 096 0.740 A A
16_0 075 094 0954 R R
15_4 0.9 096 0941 R A/R
17 2 075 09 0.998 R R
16_3 0.9 094 0.879 A A
18_0 0.8 096 0.994 R

17_4 075 09 0.941 R R
15_3 0.8 094 0.804 R A/R
17_1 0.8 099 0.874 R A/R
18_1 085 09 0.993 R R
153 075 094 0.804 R A/R
141 075 09 0.740 A A
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17_1 0.9 099 0.874 A A
15_3 075 096  0.804 R A/R
18_4 075 096 0.907 R A/R
141 0.9 099  0.740 A A
18_2 075 096 0918 R A/R
18_4 0.8 099  0.907 R A/R
18_4 075 09 0.907 R R
18_2 075 09 0.918 R R
17_4 0.8 096 0941 R A/R
14_3 085 094 0.852 A A/R
18_4 0.9 096  0.907 A A/R
17_3 075 09 0.914 R R
17_4 0.9 096 0.941 R A/R
15_3 075 09 0.804 R A/R
16_0 0.8 0.9 0.954 R R
17_3 075 096 0914 R A/R
153 0.8 0.9 0.804 R A/R
18_1 075 094 0.993 R R
16_1 085 094 0918 R A/R
16_3 085 094 0.879 A A/R
18_4 0.9 094 0907 A A/R
15_0 0.8 096  0.984 R R
16_0 0.85 094 0954 A A/R
14 4 085 09 0.773 A A
18_3 075 099 0.930 R A/R
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17_0 0.9 096  0.968 A A/R
18_0 085 094 0.994 R R
17_1 0.9 096 0.874 A A
16_4 0.8 096 0.833 A A/R
16_2 085 09 0.987 A A/R
17_1 085 096 0.874 A A/R
14 4 075 099 0.773 A A/R
16_4 085 09 0.833 A A
17_3 0.8 094 0914 R A/R
151 085 094 0927 R A/R
17_3 085 099 0914 A A/R
14 3 0.9 094 0.852 A A
17_4 0.8 0.9 0.941 R R
16_1 075 096 0918 R A/R
15_4 085 096 0941 R A/R
14 2 0.8 096 0.764 A A
14 3 0.9 096  0.852 A A
17_0 0.9 094 0.968 A A/R
14 4 0.8 096 0.773 A A
16_3 0.9 096  0.879 A A
15_4 075 099 0941 R A/R
14_0 0.8 094 0.771 A A
17_4 085 09 0.941 R R
15_2 075 099 0.905 A A/R
14_4 075 094 0.773 A A/R
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17_4 0.9 099 0941 A A/R
18_1 0.8 0.9 0.993 R R
15_4 085 099 0941 R A/R
14 0 0.8 099 0.771 A A

17 2 0.9 099  0.998 R R

14 0 075 09 0.771 A A/R
14 4 085 096 0.773 A A
16_0 075 099 0954 R A/R
14 2 0.85 096 0.764 A A
15_4 0.9 099 0941 A A/R
16_3 075 094 0.879 R A/R
16_4 085 094 0.833 A A
18_1 0.8 096  0.993 R

15_0 075 096 0.984 R R
16_2 085 094 0987 A A/R
15_4 0.8 094 0941 R R

17 2 0.8 0.99  0.998 R R
18_0 085 09 0.994 R R
15_0 075 094 0.984 R R
15_4 075 096 0941 R A/R
17_0 0.9 099  0.968 A A/R
15_2 0.8 099  0.905 A A/R
15_2 075 096  0.905 R A/R
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A.3.2 Real-world PCs

In the following table, the first column indicates the benchmark, the second indi-
cates the time required for the test, and the third column indicates the test outcome.

‘A’ represents Accept and ‘R’ represents Reject.

Table A.7: Extended Table of Results for Real-world PCs

Benchmark Teq(s) Result
or-70-10-8-UC-10_0 23.2 A
or-70-10-8-UC-10_1 22.72 R
or-70-10-8-UC-10_2 2292 R
or-70-10-8-UC-10_3 22.87 R
or-70-10-8-UC-10_4 22.78 R
or-70-10-8-UC-10_5 23.06 R
or-70-10-8-UC-10_6 22.99 R
or-70-10-8-UC-10_7 22.93 R
or-70-10-8-UC-10_8 22.82 R
or-70-10-8-UC-10_9 22.82 R
s641_15_7 0 33.66 A
s641_15_7_1 33.4 R
s641 15 7 2 33.45 R
s641_15_7_3 33.32 R
s641_15_7_4 33.51 R
s641_15_7_5 33.21 R
s641_15_7_6 33.46 R
s641_15_7 7 33.23 R
s641_15_7_8 33.61 R
s641_15_7 9 33.51 R
or-50-5-4_0 414.17 A
or-50-5-4_1 414.84 R
or-50-5-4_2 410.16 R
or-50-5-4_3 414.15 R
or-50-5-4_4 410.07 R
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or-50-5-4_5

or-50-5-4_6

or-50-5-4_7

or-50-5-4_8

or-50-5-4_9
ProjectService3.sk_12_55_0
ProjectService3.sk_12_55_1
ProjectService3.sk_12_55_2
ProjectService3.sk_12_55_3
ProjectService3.sk_12_55_4
ProjectService3.sk_12_55_5
ProjectService3.sk_12_55_6
ProjectService3.sk_12_55_7
ProjectService3.sk_12_55_8
ProjectService3.sk_12_55_9
s713_15_7_0

s713_15_7_1

s713_15_7_2

s713_15_7_3

s713_15_7_4

s713_15_7_5

s713_15_7_6

s713_15_7_7

s713_15_7_8

s713_15_7_9
or-100-10-2-UC-30_0
or-100-10-2-UC-30_1
or-100-10-2-UC-30_2
or-100-10-2-UC-30_3
or-100-10-2-UC-30_4
or-100-10-2-UC-30_5
or-100-10-2-UC-30_6

412.27
414.77
415.19
416.84
408.59
356.58
353.77
355.93
356.11
356.15
355.64
357.89
356.69
353.36
356.14
24.56
24.68
24.28
24.47
24.65
24.32
244
24.39
24.86
24.41
31.11
31.16
31.04
31.13
31.14
31.04
31.03
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or-100-10-2-UC-30_7
or-100-10-2-UC-30_8
or-100-10-2-UC-30_9

s1423a_3.2_ 0
s1423a_3 2 1
s1423a_3_2_2
s1423a_3.2_3
s1423a_3_2 4
s1423a_3_2_5
s1423a_3_2_6
s1423a_ 3 2 7
s1423a_3_2_8
s1423a_3_2_9
s1423a_7 4 0
sl423a_7_4_1
s1423a_7_4_2
s1423a_7_4 3
s1423a_7_4 4
s1423a_7 4.5
s1423a_7_4 6
sl423a_7_4_7
s1423a_7_4_8
s1423a_7_4 9
or-50-5-10_0
or-50-5-10_1
or-50-5-10 2
or-50-5-10_3
or-50-5-10_4
or-50-5-10_5
or-50-5-10_6
or-50-5-10_7
or-50-5-10_8

31.13
31.17
31.0
153.8
152.37
152.01
150.96
152.64
153.13
151.52
152.53
152.4
152.81
104.28
103.4
103.82
104.18
103.95
103.59
104.31
104.93
104.93
103.51
282.09
282.49
279.63
281.8
280.69
27991
283.05
282.69
279.65

149

A A P> A AR A AA AR P AA AR AAAAARAAA PP AAA”AA A AR A”AA



or-50-5-10_9

or-60-20-6-UC-20_0
or-60-20-6-UC-20_1
or-60-20-6-UC-20_2
or-60-20-6-UC-20_3
or-60-20-6-UC-20_4
or-60-20-6-UC-20_5
or-60-20-6-UC-20_6
or-60-20-6-UC-20_7
or-60-20-6-UC-20_8
or-60-20-6-UC-20_9

282.97
359.89
362.3
363.1
363.11
362.76
358.76
363.32
358.41
358.8
362.8

A R”R AR P> A AR A A AR

150



	Acknowledgments
	Contents
	Abstract
	List of Figures
	List of Tables
	Introduction
	Oracles for Faster Distribution Testing
	Problem Statements
	The Decision Problem
	The Estimation Problem


	Preliminaries
	Complexity Basics
	Distance Measures for Distributions
	Relevance to Applications

	Some Useful Tools
	Access Oracles

	Decision Problems
	a: an Algorithm Based on Pair-Conditioning
	Introduction
	Notations and Preliminaries
	Chain Formulas
	Kernel and the Subquery Consistency Assumption
	Log-Linear Distributions and Inverse Transform Sampling

	An Overview of the a Algorithm
	Theoretical Analysis

	Proof of Correctness of a
	Evaluation

	Scalability via Bucketing
	a: an Linear Query Algorithm for the Decision Problem
	Algorithm Outline
	Lower Bound
	The a Subroutine 
	The a Subroutine

	Evaluation
	Setting A - scalable benchmarks
	Setting B - real-life benchmarks



	Estimation Problems
	Probabilistic Circuits
	Preliminaries
	Probability distributions

	a: a Tractable Algorithm for Closeness Testing
	Proving the correctness of a 

	Evaluation
	Setting A - Synthetic benchmarks
	Setting B - Real-world benchmarks
	One variable perturbation

	A characterization of the complexity of testing
	Upper bounds
	Hardness
	A Test for Equivalence
	An analysis of a


	Polynomial Query Distance Estimation
	Notations and Preliminaries
	Distance Approximation
	Taming Distributions
	Related Work
	Lower Bound

	a: a Distance Estimation Algorithm
	High-Level Overview
	Theoretical Analysis
	The Discrete Hypergrid n

	Experiments


	Bibliography
	Extended table of results 
	From Chapter 3
	Comparing sample complexity.
	Comparing the runtime performance

	From Chapter 4
	Comparing a and a

	From Chapter 5
	Synthetic PCs
	Real-world PCs



